MS-E1991 Calculus Of Variations
 Lebesgue Differentiation Theorem

Lien Tran

April 2, 2019

Abstract

In this project work, we study the set of non-Lebesgue points of Newtonian functions when $1<p<\infty$.

1 Lebesgue's Differentiation Theorem

In this section we give some background.
Theorem 1.1. (Lebesgue's differentiation theorem) Let $f: X \rightarrow Y, Y$ is a Banach space, be a locally integrable function in a doubling metric measure space (X, d, μ). Then

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{B(x, r)} f(y) d \mu(y)=f(x) \tag{1.1}
\end{equation*}
$$

for μ-almost every $x \in X$.
This theorem is known as the classic Lebesgue differentiation theorem which states that the derivative of the integral exists and is equal to $f(x)$ at almost every point $x \in X$. The theorem asserts that almost every point is a Lebesgue point for a locally integrable function. By Lebesgue points, we mean

Definition 1.2. (Lebesgue point) A point $x \in X$ is a Lebesgue point of a locally integrable function $f: X \rightarrow Y$, if

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{B(x, r)}|f(y)-f(x)| d \mu(y)=0 \tag{1.2}
\end{equation*}
$$

Clearly, (1.2) implies (1.1). In general, (1.2) claims that the average $|f-f(x)|$ are small on a small balls centered at x. In other words, function f does not oscillate too much at its Lebesgue points in an average sense.

The concept of Lebesgue points is a weaker property of continuity, i.e., Eq. (1.2) is a form of continuity in integral average sense. A continuous function have Lebesgue point everywhere, however, the converse is not true. The example below will illustrate the claim.

Example 1.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sum_{i=1}^{\infty} u_{n}(x)$, where

$$
u_{n}(x)= \begin{cases}2 n^{3} x-2 n^{2}, & \text { if } \frac{1}{n} \leq x \leq \frac{1}{n}+\frac{1}{2 n^{3}} \\ -2 n^{3} x+2 n^{2}+2, & \text { if } \frac{1}{n}+\frac{1}{2 n^{3}} \leq x \leq \frac{1}{n}+\frac{1}{n^{3}} \\ 0, & \text { otherwise. }\end{cases}
$$

The above function is discontinuous at the origin, $x=0$ since $f(0)=0$ and arbitrarily close to 0 there are point where $f(x)=1$, but still have Lebesgue points everywhere even at $x=0$.

2 Lebesgue points and Sobolev Spaces

In the preceding section we have seen that functions in $L_{l o c}^{1}$ have Lebesgue points almost everywhere, that is the set of non-Lebesgue points has μ-measure zeros. However, even a set of measure zero can be relatively large. Naturally a question arises that if the function is more regular, is the exceptional set smaller? To answer such question, we study Lebesgue points for Sobolev spaces on a metric measure space. Sobolev functions are defined only up to a set of measure zero, but they can be defined pointwise up to a set of capacity zero. The existence of Lebesgue points is proven to be outside a set of capacity zero for such functions. Thus the concept of capacity plays a key role in understanding the pointwise behaviour of Sobolev functions.

Throughout this work, we denote $X=(X, d, \mu)$ a metric space endowed with metric d and be a nontrivial locally finite outer Borel regular measure μ on X. Recall that a metric measure space equipped with a doubling measure μ implies σ-finite and thus X can be written as a countable union of balls of finite measure. The locally finite property means that for every point $x \in X$ there is an $r>0$ such that $\mu(B(x, r))<\infty$. The outer measure μ is Borel regular if it is a Borel measure and for every $E \subset X$ there is a Borel set $B \subset X$ such that $E \subset B$ and $\mu(E)=\mu(B)$. The measure μ is said to be doubling if there exists a constant $c_{\mu} \geq 1$, called doubling constant of μ, such that

$$
\begin{equation*}
\mu(B(x, 2 r)) \leq c_{\mu} \mu(B(x, r)) \tag{2.1}
\end{equation*}
$$

for every ball in X. An iteration of the doubling property implies that if $B(y, R)$ is a ball in $X, x \in B(y, R)$ and $0<r<R<\infty$, then

$$
\begin{equation*}
\frac{\mu(B(x, r))}{\mu(B(y, R))} \leq c\left(\frac{r}{R}\right)^{Q} \tag{2.2}
\end{equation*}
$$

for some $c=c\left(c_{\mu}\right)$ and $Q=\log c_{\mu} / \log 2$. The exponent Q plays as a counterpart of dimension related to the measure.

An ε-separated set, $\varepsilon>0$, in a metric space is a set such that every two distinct points in the set have distance at least ε. A metric space X is called doubling with constant N, where $N \geq 1$ is an integer, if, for every ball $B(x, r)$, every $r / 2$-separated subset of $B(x, r)$ has at most N points. It is clear that every
subset of a doubling space is doubling with the same constant. The motivation behind this is that we want to show that if a doubling metric space X is equipped with a nontrivial locally finite doubling measure then X is separable.

Lemma 2.1. Assume that X is a doubling space with a constant N, then every ball in X can be covered by at most C^{k} balls of radius $2^{-k} r$, where $k>1$ is an integer.

The above lemma asserts that if X is a doubling metric space, for each $K \geq 1$ there is a constant $C_{K}>1$ such that for every $r>0$ we can find a countable cover of X of form $\left\{B\left(x_{i}, r\right)\right\}_{i}$ such that

$$
\begin{equation*}
\sum_{i=1} \chi_{B\left(x_{i}, K r\right)} \leq C_{K} \tag{2.3}
\end{equation*}
$$

This means every point $x \in X$ is contained in at most C_{K} balls of $K r$ radius.
Lipschitz partition of unity We can find a partition of unity subordinate to the above cover: for every i there is a C / r-Lipschitz function $\varphi_{r, i}: X \rightarrow$ $[0,1]$ such that the support of $\varphi_{r, i}$ lies in $B\left(x_{i}, 2 r\right)$ and $\sum_{i=1} \varphi_{r, i} \equiv 1$. The construction of this partition of unity can be found section 4.1.

Discrete convolution We define a discrete convolution of a measurable function $u: X \rightarrow Y$

$$
\begin{equation*}
u_{r}(x):=\sum_{i=1} \varphi_{r, i}(x) u_{B\left(x_{i}, r\right)} \tag{2.4}
\end{equation*}
$$

Discrete maximal function Let $r_{j}, j=1,2, \ldots$, be enumeration of the positive rationals. Observe that for each of such radius we can choose a covering $\left\{B\left(x_{i}, r_{j}\right)\right\}$ of X as above. Define the discrete maximal function

$$
\begin{equation*}
M^{*} u(x):=\sup _{j}|u|_{r_{j}}(x) \tag{2.5}
\end{equation*}
$$

for every $x \in X$.
Recall the definitions
Definition 2.2. (Maximal Function) For $f \in L_{l o c}^{1}(X)$, the maximal function is

$$
\begin{equation*}
M f(x):=\sup _{B} f_{B(x, r)}|f(y)| d \mu(y) \tag{2.6}
\end{equation*}
$$

where the supremum is taken over all balls B centered x.
Definition 2.3. (Upper gradient) . A non-negative Borel function g on X is an upper gradient of an extended real-valued function f on X if for all paths $\gamma:\left[0, l_{\gamma}\right] \rightarrow X$,

$$
\begin{equation*}
\left|f(\gamma(0))-f\left(\gamma\left(l_{\gamma}\right)\right)\right| \leq \int_{\gamma} g d s \tag{2.7}
\end{equation*}
$$

whenever both $f(\gamma(0))$ and $f\left(\gamma\left(l_{\gamma}\right)\right)$ are finite, and $\int_{\gamma} g d s=\infty$ otherwise.

If (2.7) holds for p-almost every path, then g is a p-weak upper gradient of f. By saying this, we mean the assertion fails only for a path family with zero p-modulus. Further more, if $g \in L^{p}(X)$ is a p-upper gradient of f, then there exist a sequence $\left\{g_{i}\right\}_{i=1}^{\infty}$ of upper gradients of f such that $g_{i} \rightarrow g$ in $L^{p}(X)$ of f. And if f has an upper gradient in $L^{p}(X)$, then it has a minimal p-weak upper gradient $g_{f} \in L^{p}(X)$ in the sense that for every p-weak upper gradient $g \in L^{p}(X)$ of $f, g_{f} \leq g$ a.e.
Definition 2.4. (Newtonian Space) The Newtonian space or Sobolev space on a metric measure space X is the quotient space

$$
\begin{equation*}
N^{1, p}(X)=\left\{u \in L^{p}(X):\|u\|_{N^{1, p}(X)}<\infty\right\} / \sim, \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\|u\|_{N^{1, p}(X)}=\left(\int_{X}|u|^{p} d \mu+\inf _{g} \int_{X} g^{p} d \mu\right)^{1 / p} \tag{2.9}
\end{equation*}
$$

and $u \sim v$ if and only if $\|u-v\|_{N^{1, p}(X)}=0$.
Definition 2.5. A space X is said to support a $(1, p)$ - Poincaré inequality if there exist a constants $C>0$ and $\lambda \geq 1$ such that for all balls $B \subset X$, all integrable functions u on X and for all upper gradients g of u

$$
\begin{equation*}
f_{B(x, r)}\left|u-u_{B}\right|^{q} d \mu \leq C(\operatorname{diam} B)\left(f_{B(x, \lambda r)} g_{u}^{p} d \mu\right)^{1 / p} \tag{2.10}
\end{equation*}
$$

By Hölder's inequality, one can show that if X is equipped with a doubling measure μ and X supports a $(1, p)$-Poincaré inequality, then X also supports (q, p)-Poincaré inequality for some $q>p$.

In particular, if X supports a $(1, p)$-Poincaré inequality, $1<p<\infty$, and the measure is doubling, it follows that Lipschitz functions are dense in $N^{1, p}(X)$. This means that $N^{1, p}(X)$ can be characterized as the completion of $C(X) \cap$ $N^{1, p}(X)$ with respect to the norm (2.9). In fact, the Sobolev space $N^{1, p}(X), 1<$ $p<\infty$ with the norm (2.9) is a Banach space. It is also worth noticing that this space is closed under taking maximum and minimum over finitely many functions. In general, a doubling space may not be complete.

Another result obtained from a doubling metric measure space supporting a $(1, p)$-Poincaré inequality is that it implies a Sobolev-Poincaré inequality. In particular, if $1<p<Q, Q \geq 1$, there is a constant $C>0$ and $\lambda \geq 1$ such that

$$
\begin{equation*}
\left(f_{B(x, r)}\left|u-u_{B}\right|^{p^{*}} d \mu\right)^{1 / p^{*}} \leq C(\operatorname{diam} B)\left(f_{B(x, \lambda r)} g_{u}^{p} d \mu\right)^{1 / p} \tag{2.11}
\end{equation*}
$$

where $p^{*}=p Q /(Q-p)$ and the constant C depends on p, p^{*} and c_{μ}.
Definition 2.6. (Sobolev p-Capacity) The Sobolev p-capacity of a set $E \subset X$ is the number

$$
\begin{equation*}
C_{p}(E)=\inf \left\{\|u\|_{N^{1, p}(X)}^{p}: u \in \mathcal{A}(E)\right\}, \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{A}(E)=\left\{u \in N^{1, p}(X): u \geq 1 \text { on the neighbourhood of } E\right\} \tag{2.13}
\end{equation*}
$$

If $\mathcal{A}(E)=\emptyset$, we set $C_{p}(E)=\infty$. The Sobolev capacity is monotone and countably subadditive set function. It is easy to see that the Sobolev capacity is an outer capacity, which means that

$$
\begin{equation*}
C_{p}(E)=\inf \left\{C_{p}(V) V \supset E, V \text { open }\right\} \tag{2.14}
\end{equation*}
$$

The capacity measures the exceptional sets for Sobolev functions and is obviously dependent on p. A property that holds everywhere but on a set of capacity zero is said to hold quasi-everywhere or q.e. for short.

Proposition 2.7. Let $\left\{u_{i}\right\}$ be a sequence of functions in $N^{1, p}(X)$ with $\left\{g_{u i}\right\}$ a corresponding p-weak upper gradient sequence. If $u_{i} \rightarrow u$ in $L^{p}(X)$ and if $g_{u_{i}} \rightarrow g_{u}$ in $L^{p}(X)$ then u has a representative in $N^{1, p}(X)$ with each Borel representative of g_{u} as its p-weak upper gradient. Moreover, a subsequence of $\left\{u_{i}\right\}$ converges pointwise to this representative of u outside a set of p-capacity zero.

Lemma 2.8. If $0<r<1$ and $x \in X$ then

$$
C_{p}(B(x, r)) \leq C r^{-p} \mu(B(x, y))
$$

Proof. Let $u: X \rightarrow \mathbb{R}$ be the Lipschitz function given by

$$
u(x)= \begin{cases}1, & \text { if } y \in B(x, r) \\ 2-\frac{|x-y|}{r}, & \text { if } y \in B(x, 2 r) \backslash B(x, r) \\ 0, & \text { if } y \in X \backslash B(x, 2 r)\end{cases}
$$

then $0 \leq u \leq 1$ on X and u is supported on $B(x, 2 r)$. Moreover, u is $\frac{1}{r}$-Lipschitz. Thus

$$
\begin{aligned}
\mathrm{C}_{p}(B(x, r)) \leq\|u\|_{N^{1, p}(X)}^{p} & =\int_{B(x, 2 r)}|u|^{p} d \mu+\inf \int_{B(x, 2 r)} g^{p} d \mu \\
& \leq\left(1+\frac{1}{r^{p}}\right) \mu(B(x, 2 r)) \leq\left(\frac{1}{r^{p}}+\frac{1}{r^{p}}\right) \mu(B(x, 2 r)) \\
& \leq C r^{-p}|B(x, r)|
\end{aligned}
$$

Lemma 2.9. If f is a nonnegative function in $L_{l o c}^{1}(X)$ and

$$
E=\left\{x \in X: \limsup _{r \rightarrow 0^{+}} r^{p} f_{B(x, r)} f d \mu>0\right\}
$$

then $C_{p}(E)=0$.
Proof. We show the case $f \in L^{1}(X)$. Let $\epsilon>0$ and

$$
E_{\epsilon}=\left\{x \in X: \lim _{r \rightarrow 0^{+}} r^{p} f_{B(x, r)} f d \mu>\epsilon\right\} .
$$

It suffices to show that $\mathrm{C}_{p}\left(E_{\epsilon}\right)=0$ for every $\epsilon>0$, then the claim follows by subadditivity. Recall that, by the absolute continuity of integrals, for every $\epsilon>0$ there exists $\tau>0$ such that whenever $A \subset X$ is a measurable set with $\mu(A)<\tau$, then $\int_{A} f d \mu<\epsilon$. Fix $\epsilon_{1}>0$, let τ be as above and chose $0<\delta<1 / 5$ such that

$$
\frac{\delta^{p}}{\epsilon} \int_{X} f d \mu<\tau
$$

Note that for every $x \in E_{\epsilon}$ there is some r_{x} with $0<r_{x} \leq \delta$ such that

$$
r_{x}^{p} f_{B\left(x, r_{x}\right)} f d \mu<\epsilon
$$

We can cover E_{ϵ} by such balls and by the Vitali covering theorem, there exists a subfamily of countably many pairwise disjoint balls $B\left(x_{i}, r_{i}\right), i=1,2, \ldots$, such that

$$
E_{\epsilon} \subset \cup_{i} B\left(x_{i}, 5 r_{i}\right)
$$

By subadditivity of the capacity

$$
\begin{aligned}
\mathrm{C}_{p}\left(E_{\epsilon}\right) & \leq \sum_{i} \mathrm{C}_{p}\left(B\left(x_{i}, 5 r_{i}\right)\right) \leq C \sum_{i} \frac{\mu\left(B_{i}\right)}{r_{i}^{p}} \\
& \leq \frac{C}{\epsilon} \sum_{i} \int_{B_{i}} f d \mu=\frac{C}{\epsilon} \int_{\cup_{i} B_{i}} f d \mu
\end{aligned}
$$

On the other hand,

$$
\begin{equation*}
\mu\left(\cup_{i} B_{i}\right)=\sum_{i} \mu\left(B_{i}\right) \leq \sum_{i} \frac{r_{i}^{p}}{\epsilon} \int_{B_{i}} f d \mu \leq \frac{\delta^{p}}{\epsilon} \int_{X} f d \mu<\tau \tag{2.15}
\end{equation*}
$$

Therefore,

$$
\mathrm{C}_{p}\left(E_{\epsilon}\right) \leq \frac{C}{\epsilon} \epsilon_{1} \rightarrow 0 \text { as } \epsilon_{1} \rightarrow 0
$$

Lemma 2.10. There is a constant $C>1$, which depend only on the doubling constant c_{μ}, such that, for every measurable function $u: X \rightarrow Y$,

$$
\begin{equation*}
C^{-1} M u \leq M^{*} u \leq C M u \tag{2.16}
\end{equation*}
$$

Proof. We begin by proving the second inequality. Let r_{j} be a positive rational number and $x \in X$. Then

$$
\begin{equation*}
|u|_{r_{j}}(x)=\sum_{i} \varphi_{r_{j}, i}(x)|u|_{B\left(x_{i}, r_{j}\right)} . \tag{2.17}
\end{equation*}
$$

Observe that if i is such that $\varphi_{r_{j}, i}(x) \neq 0$ then $x \in B\left(x_{i}, 2 r_{j}\right)$ and $B\left(x_{i}, 2 r_{j}\right) \subset$ $B\left(x, 4 r_{j}\right)$, we have by the doubling condition of μ that

$$
\begin{equation*}
|u|_{r_{j}}(x)=\sum_{i} \varphi_{r_{j}, i}(x)|u|_{B\left(x_{i}, 4 r_{j}\right)} \frac{\mu\left(B\left(x, 4 r_{j}\right)\right)}{\mu\left(B\left(x, r_{j}\right)\right)} \leq C|u|_{B\left(x_{i}, 4 r_{j}\right)} \leq C M u(x) \tag{2.18}
\end{equation*}
$$

Taking supremum over j on the left side yields the last inequality. Here C depends only on the doubling constant c_{μ}.

To prove the first inequality, we observe that if $r>0$, there are some r_{j} such that $r_{j} / 4 \leq r \leq r_{j} / 2$. We denote the set

$$
I_{j}(x)=\left\{i \in \mathbb{N}: B\left(x_{i}, r_{j}\right) \cap B(x, r) \neq \emptyset\right\}
$$

By the doubling property of μ, I_{j} is a nonempty finite set for every $x \in X$. For every $i \in I_{j}(x)$ we have $B(x, r) \subset B\left(x_{i}, 2 r_{j}\right)$ and $B\left(x_{i}, r_{j}\right) \subset B(x, 6 r)$ which imply

$$
\begin{equation*}
|u|_{B(x, r)} \leq \sum_{i \in I_{j}(x)} \varphi_{r_{j}, i}(x) \frac{B\left(x_{i}, 2 r_{j}\right)}{B(x, r)}|u|_{B\left(x_{i}, 2 r_{j}\right)}=C|u|_{2 r_{j}} \leq c M^{*} u(x) \tag{2.19}
\end{equation*}
$$

The claim follows by taking the supremum over all $r>0$ on the left hand side, where C depends on the doubling constant c_{μ}.

Proposition 2.11. Suppose that $p>1, u \in N^{1, p}(X), g_{u} \in L^{p}(X)$ is the minimal p-weak upper gradient of u, and X supports a q-Poincaré inequality for some $1 \leq q<p$. Then for every $r>0$ we have that the discrete convolution $u_{r} \in N^{1, p}(X)$ and that there is a constant $C>0$, independent of u and r, such that $C\left(M g_{u}^{q}\right)^{1 / q} \in L^{p}(X)$ is a p-weak upper gradient of u_{r}. Moreover, $M^{*} u \in N^{1, p}(X)$ with $C\left(M g_{u}^{q}\right)^{1 / q}$ as a p-weak upper gradient.
Proof. We have

$$
\begin{equation*}
u_{r}(x)=\sum_{i=1} \varphi_{r, i}(x) u_{B\left(x_{i}, r\right)}=u(x)+\sum_{i=1} \varphi_{r, i}(x)\left(u_{B\left(x_{i}, r\right)}-u(x)\right. \tag{2.20}
\end{equation*}
$$

Since at each x the sum is only over finitely many balls then the series clearly converges. We want to show that

$$
\begin{equation*}
g_{u_{r}}(x)=g_{u}+\sum_{i=1}\left(\frac{C}{r}\left|u_{B\left(x_{i}, r\right)}-u\right|+g_{u}\right) \chi_{B\left(x_{i}, 2 r\right)} \tag{2.21}
\end{equation*}
$$

is a p-weak upper gradient of u_{r}. Note that the sum is locally finite.
Let $x \in B\left(x_{i}, 2 r\right)$, then by triangle inequality

$$
\begin{equation*}
\left|u(x)-u_{B\left(x_{i}, r\right)}\right| \leq\left|u(x)-u_{B(x, 4 r)}\right|+\left|u_{B(x, 4 r)}-u_{B\left(x_{i}, r\right)}\right| \tag{2.22}
\end{equation*}
$$

The second term on the right side is estimated by the Poincaré inequality and the doubling condition as

$$
\begin{align*}
\left|u_{B(x, 4 r)}-u_{B\left(x_{i}, r\right)}\right| & =\left|f_{B\left(x_{i}, r\right)}\left(u-u_{B(x, 4 r)}\right) d \mu\right| \leq f_{B\left(x_{i}, r\right)}\left|u-u_{B(x, 4 r)}\right| d \mu \\
& \leq \frac{\mu(B(x, 4 r))}{\mu\left(B\left(x_{i}, r\right)\right)} f_{B(x, 4 r)}\left|u-u_{B(x, 4 r)}\right| d \mu \leq C r\left(f_{B(x, 4 \lambda r)} g_{u}^{q} d \mu\right)^{1 / q} \\
& \leq C r\left(M g_{u}^{q}(x)\right)^{1 / q} \tag{2.23}
\end{align*}
$$

The first term on the right side is estimated by a standard telescoping argument. Write $B_{j}=B\left(x, 2^{2-j} r\right)$ for each nonnegative integer i. Since μ-almost every point is a Lebesgue point for $u, \lim _{j \rightarrow \infty} u_{B_{j}}=u(x)$. By doubling property of μ and Poincaré inequality we have

$$
\begin{align*}
\left|u(x)-u_{B(x, 4 r)}\right| & \leq \sum_{j=0}^{\infty}\left|u_{B_{j}}-u_{B_{j+1}}\right| \leq \sum_{j=0}^{\infty} f_{B_{j+1}}\left|u-u_{B_{j}}\right| d \mu \\
& \leq C \sum_{j=0}^{\infty} f_{B_{j}}\left|u-u_{B_{j}}\right| d \mu \tag{2.24}\\
& \leq C \sum_{j=0}^{\infty} 2^{-j} r\left(f_{\lambda B_{j}} g^{q} d \mu\right)^{1 / q} \leq \operatorname{Cr}\left(M g_{u}^{q}(x)\right)^{1 / q}
\end{align*}
$$

Therefore, for μ-a.e. $x \in B\left(x_{i}, 2 r\right)$,

$$
\begin{equation*}
\left|u(x)-u_{B\left(x_{i}, r\right)}\right| \leq C r\left(M g_{u}^{q}(x)\right)^{1 / q} \tag{2.25}
\end{equation*}
$$

By Lebesgue differentiation theorem, we observe that $g_{u}(x) \leq\left(M g_{u}^{q}(x)\right)^{1 / q}$ for μ-a.e. $x \in X$. Thus $C\left(M g_{u}^{q}\right)^{1 / q}$ is a p-weak upper gradient of u_{r}. Moreover, this function is p-integrable since the maximal function theorem shows that there is $C=c\left(p, c_{\mu}\right)>0$ such that

$$
\begin{equation*}
\left\|\left(M g_{u}^{q}\right)^{1 / q}\right\|_{L^{p}(X)} \leq C\left\|\left(g_{u}^{q}\right)^{1 / q}\right\|_{L^{p}(X)} \leq C\|g\|_{L^{p}(X)} . \tag{2.26}
\end{equation*}
$$

Given k, there is at most C balls $B\left(x_{i}, 2 r\right)$ intersect the ball $B\left(x_{k}, r\right)$,

$$
\begin{align*}
\int_{B\left(x_{k}, r\right)}\left|u_{r}\right|^{p} d \mu & \leq \int_{B\left(x_{k}, r\right)} \sum_{i=1}\left|\varphi_{r, i}(x)\right|^{p}\left|u_{B\left(x_{i}, r\right)}\right|^{p} d \mu \\
& \leq C \sum_{i} \frac{\mu\left(B\left(x_{k}, r\right)\right)}{\mu\left(B\left(x_{i}, r\right)\right)} \int_{B\left(x_{i}, r\right)}|u|^{p} d \mu \tag{2.27}\\
& \leq C \int_{B\left(x_{k}, 3 r\right)}|u|^{p} d \mu
\end{align*}
$$

The second inequality follows by Hölder inequality. Summing over k yields that $u_{r} \in N^{1, p}(X)$,

$$
\begin{align*}
\int_{X}\left|u_{r}\right|^{p} d \mu & \leq \sum_{k} \int_{B\left(x_{k}, r\right)}\left|u_{r}\right|^{p} d \mu \leq \sum_{k} C \int_{B\left(x_{k}, 3 r\right)}|u|^{p} d \mu \\
& \leq \int_{X} \sum_{k} C \chi_{B\left(x_{k}, 3 r\right)}|u|^{p} d \mu \leq C\|u\|_{L^{p}(X)}^{p} \tag{2.28}
\end{align*}
$$

Towards the last claim, since $|u| \in N^{1, p}(X)$ with g_{u} as a p-weak upper gradient of $|u|$. From the first part of our claim, for each j we have that $|u|_{r_{j}} \in N^{1, p}(X)$
with $C\left(M g_{u}^{q}\right)^{1 / q}$ as a p-weak upper gradient. For $k \in \mathbb{N}$, define

$$
v_{k}=\max _{1 \leq j \leq k}|u|_{r_{j}} .
$$

Then $v_{k} \in N^{1, p}(X)$ with the same p-weak upper gradient. By Lemma 2.10 we infer that $M^{*} u \in L^{p}(X)$ and hence, by the monotone convergence theorem, $v_{k} \rightarrow M^{*} u$ in $L^{p}(X)$. By the second part of proposition, $M^{*} u \in N^{1, p}(X)$ with $C\left(M g_{u}^{q}\right)^{1 / q}$ as a p-integrable p-weak upper gradient.

Lemma 2.12. Suppose that $p>1$ and that X supports a q-Poincaré inequality for some $1 \leq q<p$. If $u \in N^{1, p}(X)$ then, for every $\lambda>0$,

$$
C_{p}(\{x \in X: M u(x)>\lambda\}) \leq \frac{C}{\lambda^{p}}\|u\|_{N^{1, p}(X)}^{p}
$$

Proof. Let

$$
E_{\lambda}=\left\{x \in X: C M^{*} u(x) \geq \lambda\right\}
$$

where C is the comparison constant from Lemma 2.10. E_{λ} is open by lover semicontinuous of $M^{*} u$.Then

$$
\begin{equation*}
\{x \in X: M u(x) \geq \lambda\} \subset E_{\lambda} \tag{2.29}
\end{equation*}
$$

hence the desired p-capacity is estimated from above by $\mathrm{C}_{p}\left(E_{\lambda}\right)$. Since $\left(C / \lambda M^{*} u\right) \in$ $N^{1, p}(X)$ and hence is admissible for estimating the p-capacity of E_{λ}. With exponents $p>1$ and $p / q>1$,

$$
\begin{aligned}
\mathrm{C}_{p}\left(E_{\lambda}\right) & \leq\left\|\frac{C}{\lambda} M^{*} u\right\|_{N^{1, p}(X)}^{p} \leq \frac{C}{\lambda^{p}}\left(\left\|M^{*} u\right\|_{L^{p}(X)}^{p}+\left\|\left(M g_{u}^{q}\right)^{1 / q}\right\|_{L^{p}(X)}^{p}\right) \\
& \leq \frac{C}{\lambda^{p}}\left(\|u\|_{L^{p}(X)}^{p}+\left\|g_{u}\right\|_{L^{p}(X)}^{p}\right) \leq \frac{C}{\lambda^{p}}\|u\|_{N^{1, p}(X)}^{p}
\end{aligned}
$$

By taking the infimum over all maximal gradients of u on the right hand side, the claim follows.

Theorem 2.13. Suppose that $p>1$ and that X supports a q-Poincaré inequality for some $1 \leq q<p$, and $Q \geq 1$. If $u \in N^{1, p}(X)$, then p-q.e. point in X is a Lebesgue point of u. Furthermore, if $p<Q$ then, for $p-q . e . x \in X$,

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{B(x, r)}|u-u(x)|^{p^{*}} d \mu=0 \tag{2.30}
\end{equation*}
$$

where

$$
p^{*}=\frac{p Q}{Q-p}
$$

Proof. Let

$$
A=\left\{x \in X: \limsup _{r \rightarrow 0} r^{p} f_{B(x, r)} g_{u}^{p} d \mu>0\right\}
$$

Since $g_{u} \in L^{p}(X)$, we have $g_{u}^{p} \in L^{1}(X)$ and hence by Lemma 2.9, $\mathrm{C}_{p}(A)=0$. By Poincaré inequality, if $x \in X \backslash A$ then

$$
\begin{equation*}
\left(f_{B(x, r)}\left|u-u_{B(x, r)}\right| d \mu\right)^{p} \leq C r^{p} f_{B(x, \lambda r)} g_{u}^{p} d \mu \rightarrow 0 \tag{2.31}
\end{equation*}
$$

as $r \rightarrow 0$, that is,

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{B(x, r)}\left|u-u_{B(x, r)}\right|=0 \tag{2.32}
\end{equation*}
$$

whenever $x \in X \backslash A$. Since X supports a p-Poincaré inequality, it follows that Lipschitz functions are dense in $N^{1, p}(X)$. Let $\left\{u_{j}\right\}$ be a sequence of Lipschitz function in $N^{1, p}(X)$ such that

$$
\left\|u-u_{j}\right\|_{N^{1, p}(X)}^{p} \leq 2^{-j(p+1)}
$$

for each j and there exists a set K with $\mathrm{C}_{p}(K)=0$ for which $u_{j} \rightarrow u$ pointwise everywhere in $X \backslash K$. Such a sequence exists because of proposition 2.7. For $j \in \mathbb{N}$, let

$$
A_{j}=\left\{x \in X: M\left(u-u_{j}\right)(x)>2^{-j}\right\}
$$

and set $E_{j}=A \cup K \cup\left(\cup_{k>j} A_{k}\right)$. By Lemma 2.12,

$$
\mathrm{C}_{p}\left(A_{j}\right) \leq \frac{C}{2^{-j p}}\left\|u-u_{j}\right\|_{N^{1, p}(X)}^{p} \leq \frac{C}{2^{-j p}} 2^{-j(p+1)}=2^{-j} C
$$

Then, by the subadditivity of the p-capacity

$$
\mathrm{C}_{p}\left(E_{j}\right) \leq 2 \times 2^{-j} C
$$

Note that

$$
\begin{aligned}
\left|u_{k}-u_{B(x, r)}\right| & \leq f_{B(x, r)}\left|u-u_{k}(x)\right| d \mu \\
& f_{B(x, r)}\left|u_{k}-u\right| d \mu+f_{B(x, r)}\left|u_{k}-u_{k}(x)\right| d \mu \\
& \leq M\left(u_{k}-u\right)(x)+f_{B(x, r)}\left|u_{k}-u_{k}(x)\right| d \mu
\end{aligned}
$$

Hence, if $x \in X \backslash E_{j}$ and $k>j$ then

$$
\begin{align*}
\limsup _{r \rightarrow 0}\left|u_{k}(x)-u_{B(x, r)}\right| & \leq \limsup _{r \rightarrow 0} f_{B(x, r)}\left|u-u_{k}(x)\right| d \mu \tag{2.33}\\
& \leq M\left(u_{k}-u\right)(x) \leq 2^{-k}
\end{align*}
$$

Therefore, for every $x \in X \backslash E_{j}$ and for every $l \geq k \geq j$,

$$
\left|u_{k}-u_{l}(x)\right| \leq \limsup _{r \rightarrow 0}\left|u_{k}(x)-u_{B(x, r)}\right|+\limsup _{r \rightarrow 0}\left|u_{l}(x)-u_{B(x, r)}\right| \leq 2^{1-k}
$$

which shows that $\left\{x_{k}\right\}$ converges uniformly on $X \backslash E_{j}$ to u. (Note that, as $K \subset E_{j}, u_{j} \rightarrow u$ pointwise on $\left.X \backslash E_{j}\right)$. Thus, it follows that u is continuous on $X \backslash E_{j}$. Moreover, by the estimate in (2.33) if $x \in X \backslash E_{j}$ and $k \geq j$ then, for $l \geq k$,

$$
\begin{aligned}
\limsup _{r \rightarrow 0} f_{B(x, r)} & |u-u(x)| d \mu \\
& \leq \limsup _{r \rightarrow 0} f_{B(x, r)}\left|u-u_{k}(x)\right| d \mu+\left|u_{k}(x)-u(x)\right| \\
& \leq 2^{-k}+\left|u_{k}(x)-u(x)\right|
\end{aligned}
$$

and since $u_{k}(x) \rightarrow u(x)$ as $k \rightarrow \infty$, we see that

$$
\limsup _{r \rightarrow 0} f_{B(x, r)}|u-u(x)| d \mu \rightarrow 0
$$

Thus, each point $x \in X \backslash E_{j}$ is a Lebesgue point of u.
In the case where $p<Q$, for every $x \in X \backslash E_{j}$, we can apply the SobolevPoincaré inequality (2.11) instead of Poincaré inequality to estimate

$$
f_{B(x, r)}|u-u(x)|^{p^{*}} d \mu \leq C r\left(f_{B(x, \lambda r)} g_{u}^{p} d \mu\right)^{p^{*} / p} \rightarrow 0
$$

as $r \rightarrow 0$. Thus we get

$$
\limsup _{r \rightarrow 0} f_{B(x, r)}|u-u(x)|^{p^{*}} d \mu=0
$$

Hence, for $x \in X \backslash E_{j}$, using a fact that x is a Lebesgue point of u

$$
\begin{aligned}
& \limsup _{r \rightarrow 0} f_{B(x, r)}|u-u(x)|^{p^{*}} d \mu \\
& \quad \leq 2^{p^{*}} \lim _{r \rightarrow 0} f_{B(x, r)}\left|u-u_{B(x, r)}\right|^{p^{*}} d \mu+2^{p^{*}} \lim _{r \rightarrow 0}\left|u(x)-u_{B(x, r)}\right|^{p^{*}} \\
& \quad=0
\end{aligned}
$$

By taking $E=\cap_{j} E_{j}$ we see $\mathrm{C}_{p}(E)=0$ and the discussion holds for each $x \in X \backslash E$. This completes the proof.

References

[1] Kinnunen, J., \& Latvala, V. (2002). Lebesgue points for Sobolev functions on metric spaces. Revista Matemtica Iberoamericana, 18(3), 685-700.
[2] Heinonen, J., Koskela, P., Shanmugalingam, N., \& Tyson, J. T. (2015). Sobolev spaces on metric measure spaces (No. 27). Cambridge University Press.
[3] Rudin, W. (2006). Real and complex analysis. Tata McGraw-Hill Education.

