MS-E1991 Calculus Of Variations Lebesgue Differentiation Theorem

Lien Tran

April 2, 2019

Abstract

In this project work, we study the set of non-Lebesgue points of Newtonian functions when 1 .

1 Lebesgue's Differentiation Theorem

In this section we give some background.

Theorem 1.1. (Lebesgue's differentiation theorem) Let $f : X \to Y$, Y is a Banach space, be a locally integrable function in a doubling metric measure space (X, d, μ) . Then

$$\lim_{r \to 0} \oint_{B(x,r)} f(y) d\mu(y) = f(x)$$
(1.1)

for μ -almost every $x \in X$.

This theorem is known as the classic Lebesgue differentiation theorem which states that the derivative of the integral exists and is equal to f(x) at almost every point $x \in X$. The theorem asserts that almost every point is a Lebesgue point for a locally integrable function. By Lebesgue points, we mean

Definition 1.2. (Lebesgue point) A point $x \in X$ is a Lebesgue point of a locally integrable function $f : X \to Y$, if

$$\lim_{r \to 0} \oint_{B(x,r)} |f(y) - f(x)| \, d\mu(y) = 0 \tag{1.2}$$

Clearly, (1.2) implies (1.1). In general, (1.2) claims that the average |f - f(x)| are small on a small balls centered at x. In other words, function f does not oscillate too much at its Lebesgue points in an average sense.

The concept of Lebesgue points is a weaker property of continuity, i.e., Eq. (1.2) is a form of continuity in integral average sense. A continuous function have Lebesgue point everywhere, however, the converse is not true. The example below will illustrate the claim.

Example 1.3. Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sum_{i=1}^{\infty} u_n(x)$, where

$$u_n(x) = \begin{cases} 2n^3x - 2n^2, & \text{if } \frac{1}{n} \le x \le \frac{1}{n} + \frac{1}{2n^3}, \\ -2n^3x + 2n^2 + 2, & \text{if } \frac{1}{n} + \frac{1}{2n^3} \le x \le \frac{1}{n} + \frac{1}{n^3}, \\ 0, & \text{otherwise.} \end{cases}$$

The above function is discontinuous at the origin, x = 0 since f(0) = 0 and arbitrarily close to 0 there are point where f(x) = 1, but still have Lebesgue points everywhere even at x = 0.

2 Lebesgue points and Sobolev Spaces

In the preceding section we have seen that functions in L^1_{loc} have Lebesgue points almost everywhere, that is the set of non-Lebesgue points has μ -measure zeros. However, even a set of measure zero can be relatively large. Naturally a question arises that if the function is more regular, is the exceptional set smaller? To answer such question, we study Lebesgue points for Sobolev spaces on a metric measure space. Sobolev functions are defined only up to a set of measure zero, but they can be defined pointwise up to a set of capacity zero. The existence of Lebesgue points is proven to be outside a set of capacity zero for such functions. Thus the concept of capacity plays a key role in understanding the pointwise behaviour of Sobolev functions.

Throughout this work, we denote $X = (X, d, \mu)$ a metric space endowed with metric d and be a nontrivial locally finite outer Borel regular measure μ on X. Recall that a metric measure space equipped with a doubling measure μ implies σ -finite and thus X can be written as a countable union of balls of finite measure. The locally finite property means that for every point $x \in X$ there is an r > 0 such that $\mu(B(x, r)) < \infty$. The outer measure μ is Borel regular if it is a Borel measure and for every $E \subset X$ there is a Borel set $B \subset X$ such that $E \subset B$ and $\mu(E) = \mu(B)$. The measure μ is said to be doubling if there exists a constant $c_{\mu} \geq 1$, called doubling constant of μ , such that

$$\mu(B(x,2r)) \le c_{\mu}\mu(B(x,r))$$
(2.1)

for every ball in X. An iteration of the doubling property implies that if B(y, R) is a ball in $X, x \in B(y, R)$ and $0 < r < R < \infty$, then

$$\frac{\mu(B(x,r))}{\mu(B(y,R))} \le c\left(\frac{r}{R}\right)^Q \tag{2.2}$$

for some $c = c(c_{\mu})$ and $Q = \log c_{\mu} / \log 2$. The exponent Q plays as a counterpart of dimension related to the measure.

An ε -separated set, $\varepsilon > 0$, in a metric space is a set such that every two distinct points in the set have distance at least ε . A metric space X is called doubling with constant N, where $N \ge 1$ is an integer, if, for every ball B(x, r), every r/2-separated subset of B(x, r) has at most N points. It is clear that every subset of a doubling space is doubling with the same constant. The motivation behind this is that we want to show that if a doubling metric space X is equipped with a nontrivial locally finite doubling measure then X is separable.

Lemma 2.1. Assume that X is a doubling space with a constant N, then every ball in X can be covered by at most C^k balls of radius $2^{-k}r$, where k > 1 is an integer.

The above lemma asserts that if X is a doubling metric space, for each $K \ge 1$ there is a constant $C_K > 1$ such that for every r > 0 we can find a countable cover of X of form $\{B(x_i, r)\}_i$ such that

$$\sum_{i=1} \chi_{B(x_i,Kr)} \le C_K. \tag{2.3}$$

This means every point $x \in X$ is contained in at most C_K balls of Kr radius.

Lipschitz partition of unity We can find a partition of unity subordinate to the above cover: for every *i* there is a C/r-Lipschitz function $\varphi_{r,i} : X \to [0,1]$ such that the support of $\varphi_{r,i}$ lies in $B(x_i, 2r)$ and $\sum_{i=1} \varphi_{r,i} \equiv 1$. The construction of this partition of unity can be found section 4.1.

Discrete convolution We define a discrete convolution of a measurable function $u: X \to Y$

$$u_r(x) := \sum_{i=1} \varphi_{r,i}(x) u_{B(x_i,r)}.$$
(2.4)

Discrete maximal function Let $r_j, j = 1, 2, ...$, be enumeration of the positive rationals. Observe that for each of such radius we can choose a covering $\{B(x_i, r_j)\}$ of X as above. Define the discrete maximal function

$$M^*u(x) := \sup_j |u|_{r_j}(x)$$
(2.5)

for every $x \in X$.

Recall the definitions

Definition 2.2. (Maximal Function) For $f \in L^1_{loc}(X)$, the maximal function is

$$Mf(x) := \sup_{B} \oint_{B(x,r)} |f(y)| \, d\mu(y), \tag{2.6}$$

where the supremum is taken over all balls B centered x.

Definition 2.3. (Upper gradient). A non-negative Borel function g on X is an upper gradient of an extended real-valued function f on X if for all paths $\gamma : [0, l_{\gamma}] \to X$,

$$|f(\gamma(0)) - f(\gamma(l_{\gamma}))| \le \int_{\gamma} g \, ds, \qquad (2.7)$$

whenever both $f(\gamma(0))$ and $f(\gamma(l_{\gamma}))$ are finite, and $\int_{\gamma} g \, ds = \infty$ otherwise.

If (2.7) holds for *p*-almost every path, then *g* is a *p*-weak upper gradient of *f*. By saying this, we mean the assertion fails only for a path family with zero *p*-modulus. Further more, if $g \in L^p(X)$ is a *p*-upper gradient of *f*, then there exist a sequence $\{g_i\}_{i=1}^{\infty}$ of upper gradients of *f* such that $g_i \to g$ in $L^p(X)$ of *f*. And if *f* has an upper gradient in $L^p(X)$, then it has a minimal *p*-weak upper gradient $g_f \in L^p(X)$ in the sense that for every *p*-weak upper gradient $g \in L^p(X)$ of *f*, $g_f \leq g$ a.e.

Definition 2.4. (Newtonian Space) The Newtonian space or Sobolev space on a metric measure space X is the quotient space

$$N^{1,p}(X) = \{ u \in L^p(X) : \|u\|_{N^{1,p}(X)} < \infty \} / \sim,$$
(2.8)

where

$$||u||_{N^{1,p}(X)} = \left(\int_X |u|^p \ d\mu + \inf_g \int_X g^p \ d\mu\right)^{1/p},\tag{2.9}$$

and $u \sim v$ if and only if $||u - v||_{N^{1,p}(X)} = 0$.

Definition 2.5. A space X is said to support a (1,p)-Poincaré inequality if there exist a constants C > 0 and $\lambda \ge 1$ such that for all balls $B \subset X$, all integrable functions u on X and for all upper gradients g of u

$$\int_{B(x,r)} |u - u_B|^q \ d\mu \le C(diamB) \left(\int_{B(x,\lambda r)} g_u^p \ d\mu \right)^{1/p}. \tag{2.10}$$

By Hölder's inequality, one can show that if X is equipped with a doubling measure μ and X supports a (1, p)-Poincaré inequality, then X also supports (q, p)-Poincaré inequality for some q > p.

In particular, if X supports a (1, p)-Poincaré inequality, $1 , and the measure is doubling, it follows that Lipschitz functions are dense in <math>N^{1,p}(X)$. This means that $N^{1,p}(X)$ can be characterized as the completion of $C(X) \cap N^{1,p}(X)$ with respect to the norm (2.9). In fact, the Sobolev space $N^{1,p}(X), 1 with the norm (2.9) is a Banach space. It is also worth noticing that this space is closed under taking maximum and minimum over finitely many functions. In general, a doubling space may not be complete.$

Another result obtained from a doubling metric measure space supporting a (1, p)-Poincaré inequality is that it implies a Sobolev-Poincaré inequality. In particular, if 1 , there is a constant <math>C > 0 and $\lambda \ge 1$ such that

$$\left(\int_{B(x,r)} |u - u_B|^{p^*} d\mu\right)^{1/p^*} \le C(diamB) \left(\int_{B(x,\lambda r)} g_u^p d\mu\right)^{1/p}.$$
 (2.11)

where $p^* = pQ/(Q-p)$ and the constant C depends on p, p^* and c_{μ} .

Definition 2.6. (Sobolev p-Capacity) The Sobolev p-capacity of a set $E \subset X$ is the number

$$C_p(E) = \inf\{\|u\|_{N^{1,p}(X)}^p : u \in \mathcal{A}(E)\},$$
(2.12)

where

$$\mathcal{A}(E) = \{ u \in N^{1,p}(X) : u \ge 1 \text{ on the neighbourhood of } E \}.$$
(2.13)

If $\mathcal{A}(E) = \emptyset$, we set $C_p(E) = \infty$. The Sobolev capacity is monotone and countably subadditive set function. It is easy to see that the Sobolev capacity is an outer capacity, which means that

$$C_p(E) = \inf\{C_p(V)V \supset E, V \text{ open}\}.$$
(2.14)

The capacity measures the exceptional sets for Sobolev functions and is obviously dependent on p. A property that holds everywhere but on a set of capacity zero is said to hold quasi-everywhere or q.e. for short.

Proposition 2.7. Let $\{u_i\}$ be a sequence of functions in $N^{1,p}(X)$ with $\{g_{ui}\}$ a corresponding p-weak upper gradient sequence. If $u_i \to u$ in $L^p(X)$ and if $g_{u_i} \to g_u$ in $L^p(X)$ then u has a representative in $N^{1,p}(X)$ with each Borel representative of g_u as its p-weak upper gradient. Moreover, a subsequence of $\{u_i\}$ converges pointwise to this representative of u outside a set of p-capacity zero.

Lemma 2.8. If 0 < r < 1 and $x \in X$ then

$$C_p(B(x,r)) \le Cr^{-p}\mu(B(x,y)).$$

Proof. Let $u: X \to \mathbb{R}$ be the Lipschitz function given by

$$u(x) = \begin{cases} 1, & \text{if } y \in B(x,r), \\ 2 - \frac{|x-y|}{r}, & \text{if } y \in B(x,2r) \backslash B(x,r), \\ 0, & \text{if } y \in X \backslash B(x,2r), \end{cases}$$

then $0 \le u \le 1$ on X and u is supported on B(x, 2r). Moreover, u is $\frac{1}{r}$ -Lipschitz. Thus

$$C_{p}(B(x,r)) \leq ||u||_{N^{1,p}(X)}^{p} = \int_{B(x,2r)} |u|^{p} d\mu + \inf \int_{B(x,2r)} g^{p} d\mu$$

$$\leq (1 + \frac{1}{r^{p}}) \mu(B(x,2r)) \leq (\frac{1}{r^{p}} + \frac{1}{r^{p}}) \mu(B(x,2r))$$

$$\leq Cr^{-p} |B(x,r)|.$$

Lemma 2.9. If f is a nonnegative function in $L^1_{loc}(X)$ and

$$E = \{ x \in X : \limsup_{r \to 0^+} r^p \oint_{B(x,r)} f d\mu > 0 \}$$

then $C_p(E) = 0$.

Proof. We show the case $f \in L^1(X)$. Let $\epsilon > 0$ and

$$E_{\epsilon} = \{ x \in X : \lim_{r \to 0^+} r^p \oint_{B(x,r)} f d\mu > \epsilon \}.$$

It suffices to show that $C_p(E_{\epsilon}) = 0$ for every $\epsilon > 0$, then the claim follows by subadditivity. Recall that, by the absolute continuity of integrals, for every $\epsilon > 0$ there exists $\tau > 0$ such that whenever $A \subset X$ is a measurable set with $\mu(A) < \tau$, then $\int_A f d\mu < \epsilon$. Fix $\epsilon_1 > 0$, let τ be as above and chose $0 < \delta < 1/5$ such that

$$\frac{\delta^p}{\epsilon} \int_X f d\mu < \tau.$$

Note that for every $x \in E_{\epsilon}$ there is some r_x with $0 < r_x \leq \delta$ such that

$$r_x^p \oint_{B(x,r_x)} f d\mu < \epsilon.$$

We can cover E_{ϵ} by such balls and by the Vitali covering theorem, there exists a subfamily of countably many pairwise disjoint balls $B(x_i, r_i), i = 1, 2, ...,$ such that

$$E_{\epsilon} \subset \cup_i B(x_i, 5r_i).$$

By subadditivity of the capacity

$$C_p(E_{\epsilon}) \leq \sum_i C_p(B(x_i, 5r_i)) \leq C \sum_i \frac{\mu(B_i)}{r_i^p}$$
$$\leq \frac{C}{\epsilon} \sum_i \int_{B_i} f d\mu = \frac{C}{\epsilon} \int_{\cup_i B_i} f d\mu.$$

On the other hand,

$$\mu(\cup_i B_i) = \sum_i \mu(B_i) \le \sum_i \frac{r_i^p}{\epsilon} \int_{B_i} f d\mu \le \frac{\delta^p}{\epsilon} \int_X f d\mu < \tau.$$
(2.15)

Therefore,

$$C_p(E_{\epsilon}) \leq \frac{C}{\epsilon} \epsilon_1 \to 0 \text{ as } \epsilon_1 \to 0.$$

 $\langle \mathbf{n} \rangle$

Lemma 2.10. There is a constant C > 1, which depend only on the doubling constant c_{μ} , such that, for every measurable function $u : X \to Y$,

$$C^{-1}Mu \le M^*u \le CMu. \tag{2.16}$$

Proof. We begin by proving the second inequality. Let r_j be a positive rational number and $x \in X$. Then

$$|u|_{r_j}(x) = \sum_{i} \varphi_{r_j,i}(x) |u|_{B(x_i,r_j)}.$$
(2.17)

Observe that if i is such that $\varphi_{r_j,i}(x) \neq 0$ then $x \in B(x_i, 2r_j)$ and $B(x_i, 2r_j) \subset B(x, 4r_j)$, we have by the doubling condition of μ that

$$|u|_{r_j}(x) = \sum_i \varphi_{r_j,i}(x) |u|_{B(x_i,4r_j)} \frac{\mu(B(x,4r_j))}{\mu(B(x,r_j))} \le C |u|_{B(x_i,4r_j)} \le CMu(x),$$
(2.18)

Taking supremum over j on the left side yields the last inequality. Here C depends only on the doubling constant c_{μ} .

To prove the first inequality, we observe that if r > 0, there are some r_j such that $r_j/4 \le r \le r_j/2$. We denote the set

$$I_j(x) = \{i \in \mathbb{N} : B(x_i, r_j) \cap B(x, r) \neq \emptyset\}$$

By the doubling property of μ , I_j is a nonempty finite set for every $x \in X$. For every $i \in I_j(x)$ we have $B(x,r) \subset B(x_i,2r_j)$ and $B(x_i,r_j) \subset B(x,6r)$ which imply

$$|u|_{B(x,r)} \le \sum_{i \in I_j(x)} \varphi_{r_j,i}(x) \frac{B(x_i, 2r_j)}{B(x,r)} |u|_{B(x_i, 2r_j)} = C |u|_{2r_j} \le cM^* u(x).$$
(2.19)

The claim follows by taking the supremum over all r > 0 on the left hand side, where C depends on the doubling constant c_{μ} .

Proposition 2.11. Suppose that p > 1, $u \in N^{1,p}(X)$, $g_u \in L^p(X)$ is the minimal p-weak upper gradient of u, and X supports a q-Poincaré inequality for some $1 \leq q < p$. Then for every r > 0 we have that the discrete convolution $u_r \in N^{1,p}(X)$ and that there is a constant C > 0, independent of u and r, such that $C(Mg_u^q)^{1/q} \in L^p(X)$ is a p-weak upper gradient of u_r . Moreover, $M^*u \in N^{1,p}(X)$ with $C(Mg_u^q)^{1/q}$ as a p-weak upper gradient.

Proof. We have

$$u_r(x) = \sum_{i=1} \varphi_{r,i}(x) u_{B(x_i,r)} = u(x) + \sum_{i=1} \varphi_{r,i}(x) (u_{B(x_i,r)} - u(x)).$$
(2.20)

Since at each x the sum is only over finitely many balls then the series clearly converges. We want to show that

$$g_{u_r}(x) = g_u + \sum_{i=1} \left(\frac{C}{r} \left| u_{B(x_i, r)} - u \right| + g_u \right) \chi_{B(x_i, 2r)}$$
(2.21)

is a *p*-weak upper gradient of u_r . Note that the sum is locally finite.

Let $x \in B(x_i, 2r)$, then by triangle inequality

$$|u(x) - u_{B(x_i,r)}| \le |u(x) - u_{B(x,4r)}| + |u_{B(x,4r)} - u_{B(x_i,r)}|$$
(2.22)

The second term on the right side is estimated by the Poincaré inequality and the doubling condition as

$$\begin{aligned} \left| u_{B(x,4r)} - u_{B(x_{i},r)} \right| &= \left| \int_{B(x_{i},r)} (u - u_{B(x,4r)}) d\mu \right| \leq \int_{B(x_{i},r)} \left| u - u_{B(x,4r)} \right| d\mu \\ &\leq \frac{\mu(B(x,4r))}{\mu(B(x_{i},r))} \int_{B(x,4r)} \left| u - u_{B(x,4r)} \right| d\mu \leq Cr \Big(\int_{B(x,4\lambda r)} g_{u}^{q} d\mu \Big)^{1/q} \\ &\leq Cr \Big(M g_{u}^{q}(x) \Big)^{1/q}. \end{aligned}$$

$$(2.23)$$

The first term on the right side is estimated by a standard telescoping argument. Write $B_j = B(x, 2^{2-j}r)$ for each nonnegative integer *i*. Since μ -almost every point is a Lebesgue point for u, $\lim_{j\to\infty} u_{B_j} = u(x)$. By doubling property of μ and Poincaré inequality we have

$$\begin{aligned} |u(x) - u_{B(x,4r)}| &\leq \sum_{j=0}^{\infty} |u_{B_j} - u_{B_{j+1}}| \leq \sum_{j=0}^{\infty} f_{B_{j+1}} |u - u_{B_j}| d\mu \\ &\leq C \sum_{j=0}^{\infty} f_{B_j} |u - u_{B_j}| d\mu \\ &\leq C \sum_{j=0}^{\infty} 2^{-j} r \big(f_{\lambda B_j} g^q d\mu \big)^{1/q} \leq C r \big(M g_u^q(x) \big)^{1/q}. \end{aligned}$$
(2.24)

Therefore, for μ -a.e. $x \in B(x_i, 2r)$,

$$|u(x) - u_{B(x_i,r)}| \le Cr (Mg_u^q(x))^{1/q}.$$
 (2.25)

By Lebesgue differentiation theorem, we observe that $g_u(x) \leq (Mg_u^q(x))^{1/q}$ for μ -a.e. $x \in X$. Thus $C(Mg_u^q)^{1/q}$ is a *p*-weak upper gradient of u_r . Moreover, this function is *p*-integrable since the maximal function theorem shows that there is $C = c(p, c_\mu) > 0$ such that

$$\left\| (Mg_u^q)^{1/q} \right\|_{L^p(X)} \le C \left\| (g_u^q)^{1/q} \right\|_{L^p(X)} \le C \left\| g \right\|_{L^p(X)}.$$
(2.26)

Given k, there is at most C balls $B(x_i, 2r)$ intersect the ball $B(x_k, r)$,

$$\int_{B(x_{k},r)} |u_{r}|^{p} d\mu \leq \int_{B(x_{k},r)} \sum_{i=1} |\varphi_{r,i}(x)|^{p} |u_{B(x_{i},r)}|^{p} d\mu
\leq C \sum_{i} \frac{\mu(B(x_{k},r))}{\mu(B(x_{i},r))} \int_{B(x_{i},r)} |u|^{p} d\mu
\leq C \int_{B(x_{k},3r)} |u|^{p} d\mu.$$
(2.27)

The second inequality follows by Hölder inequality. Summing over k yields that $u_r \in N^{1,p}(X)$,

$$\int_{X} |u_{r}|^{p} d\mu \leq \sum_{k} \int_{B(x_{k},r)} |u_{r}|^{p} d\mu \leq \sum_{k} C \int_{B(x_{k},3r)} |u|^{p} d\mu$$

$$\leq \int_{X} \sum_{k} C\chi_{B(x_{k},3r)} |u|^{p} d\mu \leq C ||u||_{L^{p}(X)}^{p}.$$
(2.28)

Towards the last claim, since $|u| \in N^{1,p}(X)$ with g_u as a *p*-weak upper gradient of |u|. From the first part of our claim, for each *j* we have that $|u|_{r_i} \in N^{1,p}(X)$ with $C(Mg_u^q)^{1/q}$ as a *p*-weak upper gradient. For $k \in \mathbb{N}$, define

$$v_k = \max_{1 \le j \le k} |u|_{r_j}$$

Then $v_k \in N^{1,p}(X)$ with the same *p*-weak upper gradient. By Lemma 2.10 we infer that $M^*u \in L^p(X)$ and hence, by the monotone convergence theorem, $v_k \to M^*u$ in $L^p(X)$. By the second part of proposition, $M^*u \in N^{1,p}(X)$ with $C(Mg_u^q)^{1/q}$ as a *p*-integrable *p*-weak upper gradient.

Lemma 2.12. Suppose that p > 1 and that X supports a q-Poincaré inequality for some $1 \le q < p$. If $u \in N^{1,p}(X)$ then, for every $\lambda > 0$,

$$C_p(\{x \in X : Mu(x) > \lambda\}) \le \frac{C}{\lambda^p} \|u\|_{N^{1,p}(X)}^p.$$

Proof. Let

$$E_{\lambda} = \{ x \in X : CM^*u(x) \ge \lambda \},\$$

where C is the comparison constant from Lemma 2.10. E_{λ} is open by lover semicontinuous of M^*u . Then

$$\{x \in X : Mu(x) \ge \lambda\} \subset E_{\lambda},\tag{2.29}$$

hence the desired *p*-capacity is estimated from above by $C_p(E_{\lambda})$. Since $(C/\lambda M^* u) \in N^{1,p}(X)$ and hence is admissible for estimating the *p*-capacity of E_{λ} . With exponents p > 1 and p/q > 1,

$$C_{p}(E_{\lambda}) \leq \left\| \frac{C}{\lambda} M^{*}u \right\|_{N^{1,p}(X)}^{p} \leq \frac{C}{\lambda^{p}} \left(\|M^{*}u\|_{L^{p}(X)}^{p} + \left\| (Mg_{u}^{q})^{1/q} \right\|_{L^{p}(X)}^{p} \right)$$
$$\leq \frac{C}{\lambda^{p}} \left(\|u\|_{L^{p}(X)}^{p} + \|g_{u}\|_{L^{p}(X)}^{p} \right) \leq \frac{C}{\lambda^{p}} \|u\|_{N^{1,p}(X)}^{p}.$$

By taking the infimum over all maximal gradients of u on the right hand side, the claim follows.

Theorem 2.13. Suppose that p > 1 and that X supports a q-Poincaré inequality for some $1 \le q < p$, and $Q \ge 1$. If $u \in N^{1,p}(X)$, then p-q.e. point in X is a Lebesgue point of u. Furthermore, if p < Q then, for p-q.e. $x \in X$,

$$\lim_{r \to 0} \oint_{B(x,r)} |u - u(x)|^{p^*} d\mu = 0$$
(2.30)

where

$$p^* = \frac{pQ}{Q-p}$$

Proof. Let

$$A = \left\{ x \in X : \limsup_{r \to 0} r^p \oint_{B(x,r)} g_u^p d\mu > 0 \right\}$$

Since $g_u \in L^p(X)$, we have $g_u^p \in L^1(X)$ and hence by Lemma 2.9, $C_p(A) = 0$. By Poincaré inequality, if $x \in X \setminus A$ then

$$\left(\int_{B(x,r)} \left|u - u_{B(x,r)}\right| d\mu\right)^p \le Cr^p \oint_{B(x,\lambda r)} g_u^p d\mu \to 0 \tag{2.31}$$

as $r \to 0$, that is,

$$\lim_{r \to 0} \oint_{B(x,r)} \left| u - u_{B(x,r)} \right| = 0 \tag{2.32}$$

whenever $x \in X \setminus A$. Since X supports a p-Poincaré inequality, it follows that Lipschitz functions are dense in $N^{1,p}(X)$. Let $\{u_j\}$ be a sequence of Lipschitz function in $N^{1,p}(X)$ such that

$$||u - u_j||_{N^{1,p}(X)}^p \le 2^{-j(p+1)},$$

for each j and there exists a set K with $C_p(K) = 0$ for which $u_j \to u$ pointwise everywhere in $X \setminus K$. Such a sequence exists because of proposition 2.7. For $j \in \mathbb{N}$, let

$$A_j = \{ x \in X : M(u - u_j)(x) > 2^{-j} \},\$$

and set $E_j = A \cup K \cup (\bigcup_{k>j} A_k)$. By Lemma 2.12,

$$C_p(A_j) \le \frac{C}{2^{-jp}} \|u - u_j\|_{N^{1,p}(X)}^p \le \frac{C}{2^{-jp}} 2^{-j(p+1)} = 2^{-j}C.$$

Then, by the subadditivity of the *p*-capacity

$$C_p(E_j) \le 2 \times 2^{-j}C.$$

Note that

$$\begin{aligned} |u_k - u_{B(x,r)}| &\leq \int_{B(x,r)} |u - u_k(x)| \, d\mu \\ &\int_{B(x,r)} |u_k - u| \, d\mu + \int_{B(x,r)} |u_k - u_k(x)| \, d\mu \\ &\leq M(u_k - u)(x) + \int_{B(x,r)} |u_k - u_k(x)| \, d\mu. \end{aligned}$$

Hence, if $x \in X \setminus E_j$ and k > j then

$$\limsup_{r \to 0} |u_k(x) - u_{B(x,r)}| \le \limsup_{r \to 0} \int_{B(x,r)} |u - u_k(x)| \, d\mu \le M(u_k - u)(x) \le 2^{-k}.$$
(2.33)

Therefore, for every $x \in X \setminus E_j$ and for every $l \ge k \ge j$,

$$|u_k - u_l(x)| \le \limsup_{r \to 0} |u_k(x) - u_{B(x,r)}| + \limsup_{r \to 0} |u_l(x) - u_{B(x,r)}| \le 2^{1-k},$$

which shows that $\{x_k\}$ converges uniformly on $X \setminus E_j$ to u. (Note that, as $K \subset E_j, u_j \to u$ pointwise on $X \setminus E_j$). Thus, it follows that u is continuous on $X \setminus E_j$. Moreover, by the estimate in (2.33) if $x \in X \setminus E_j$ and $k \geq j$ then, for $l \geq k$,

$$\begin{split} \limsup_{r \to 0} & \oint_{B(x,r)} |u - u(x)| \, d\mu \\ & \leq \limsup_{r \to 0} \int_{B(x,r)} |u - u_k(x)| \, d\mu + |u_k(x) - u(x)| \\ & \leq 2^{-k} + |u_k(x) - u(x)| \end{split}$$

and since $u_k(x) \to u(x)$ as $k \to \infty$, we see that

$$\limsup_{r \to 0} \int_{B(x,r)} |u - u(x)| \, d\mu \to 0.$$

Thus, each point $x \in X \setminus E_j$ is a Lebesgue point of u.

In the case where p < Q, for every $x \in X \setminus E_j$, we can apply the Sobolev-Poincaré inequality (2.11) instead of Poincaré inequality to estimate

$$\oint_{B(x,r)} |u - u(x)|^{p^*} d\mu \le Cr \left(\oint_{B(x,\lambda r)} g_u^p d\mu \right)^{p^*/p} \to 0$$

as $r \to 0$. Thus we get

$$\limsup_{r \to 0} \oint_{B(x,r)} |u - u(x)|^{p^*} d\mu = 0.$$

Hence, for $x \in X \setminus E_j$, using a fact that x is a Lebesgue point of u

$$\limsup_{r \to 0} \int_{B(x,r)} |u - u(x)|^{p^*} d\mu$$

$$\leq 2^{p^*} \lim_{r \to 0} \int_{B(x,r)} |u - u_{B(x,r)}|^{p^*} d\mu + 2^{p^*} \lim_{r \to 0} |u(x) - u_{B(x,r)}|^{p^*}$$

$$= 0.$$

By taking $E = \bigcap_j E_j$ we see $C_p(E) = 0$ and the discussion holds for each $x \in X \setminus E$. This completes the proof.

References

- [1] Kinnunen, J., & Latvala, V. (2002). Lebesgue points for Sobolev functions on metric spaces. Revista Matemtica Iberoamericana, 18(3), 685-700.
- [2] Heinonen, J., Koskela, P., Shanmugalingam, N., & Tyson, J. T. (2015). Sobolev spaces on metric measure spaces (No. 27). Cambridge University Press.
- [3] Rudin, W. (2006). Real and complex analysis. Tata McGraw-Hill Education.