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Abstract

In this project work, we study the set of non-Lebesgue points of New-
tonian functions when 1 < p < ∞.

1 Lebesgue’s Differentiation Theorem

In this section we give some background.

Theorem 1.1. (Lebesgue’s differentiation theorem) Let f : X → Y , Y is a
Banach space, be a locally integrable function in a doubling metric measure
space (X, d, µ). Then

lim
r→0

 
B(x,r)

f(y)dµ(y) = f(x) (1.1)

for µ-almost every x ∈ X.

This theorem is known as the classic Lebesgue differentiation theorem which
states that the derivative of the integral exists and is equal to f(x) at almost
every point x ∈ X. The theorem asserts that almost every point is a Lebesgue
point for a locally integrable function. By Lebesgue points, we mean

Definition 1.2. (Lebesgue point) A point x ∈ X is a Lebesgue point of a locally
integrable function f : X → Y , if

lim
r→0

 
B(x,r)

|f(y)− f(x)| dµ(y) = 0 (1.2)

Clearly, (1.2) implies (1.1). In general, (1.2) claims that the average |f − f(x)|
are small on a small balls centered at x. In other words, function f does not
oscillate too much at its Lebesgue points in an average sense.

The concept of Lebesgue points is a weaker property of continuity, i.e., Eq.
(1.2) is a form of continuity in integral average sense. A continuous function
have Lebesgue point everywhere, however, the converse is not true. The example
below will illustrate the claim.
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Example 1.3. Let f : R→ R, f(x) =
∑∞
i=1 un(x), where

un(x) =


2n3x− 2n2, if 1

n ≤ x ≤
1
n + 1

2n3 ,

−2n3x+ 2n2 + 2, if 1
n + 1

2n3 ≤ x ≤ 1
n + 1

n3 ,

0, otherwise.

The above function is discontinuous at the origin, x = 0 since f(0) = 0 and
arbitrarily close to 0 there are point where f(x) = 1, but still have Lebesgue
points everywhere even at x = 0.

2 Lebesgue points and Sobolev Spaces

In the preceding section we have seen that functions in L1
loc have Lebesgue points

almost everywhere, that is the set of non-Lebesgue points has µ-measure zeros.
However, even a set of measure zero can be relatively large. Naturally a question
arises that if the function is more regular, is the exceptional set smaller? To
answer such question, we study Lebesgue points for Sobolev spaces on a metric
measure space. Sobolev functions are defined only up to a set of measure zero,
but they can be defined pointwise up to a set of capacity zero. The existence of
Lebesgue points is proven to be outside a set of capacity zero for such functions.
Thus the concept of capacity plays a key role in understanding the pointwise
behaviour of Sobolev functions.

Throughout this work, we denote X = (X, d, µ) a metric space endowed
with metric d and be a nontrivial locally finite outer Borel regular measure µ
on X. Recall that a metric measure space equipped with a doubling measure µ
implies σ-finite and thus X can be written as a countable union of balls of finite
measure. The locally finite property means that for every point x ∈ X there is
an r > 0 such that µ(B(x, r)) < ∞. The outer measure µ is Borel regular if it
is a Borel measure and for every E ⊂ X there is a Borel set B ⊂ X such that
E ⊂ B and µ(E) = µ(B). The measure µ is said to be doubling if there exists
a constant cµ ≥ 1, called doubling constant of µ, such that

µ(B(x, 2r)) ≤ cµµ(B(x, r)) (2.1)

for every ball in X. An iteration of the doubling property implies that if B(y,R)
is a ball in X, x ∈ B(y,R) and 0 < r < R <∞, then

µ(B(x, r))

µ(B(y,R))
≤ c
( r
R

)Q
(2.2)

for some c = c(cµ) and Q = log cµ/ log 2. The exponent Q plays as a counterpart
of dimension related to the measure.

An ε-separated set, ε > 0, in a metric space is a set such that every two
distinct points in the set have distance at least ε. A metric space X is called
doubling with constant N , where N ≥ 1 is an integer, if, for every ball B(x, r),
every r/2-separated subset of B(x, r) has at most N points. It is clear that every
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subset of a doubling space is doubling with the same constant. The motivation
behind this is that we want to show that if a doubling metric space X is equipped
with a nontrivial locally finite doubling measure then X is separable.

Lemma 2.1. Assume that X is a doubling space with a constant N , then every
ball in X can be covered by at most Ck balls of radius 2−kr, where k > 1 is an
integer.

The above lemma asserts that if X is a doubling metric space, for each K ≥ 1
there is a constant CK > 1 such that for every r > 0 we can find a countable
cover of X of form {B(xi, r)}i such that∑

i=1

χB(xi,Kr) ≤ CK . (2.3)

This means every point x ∈ X is contained in at most CK balls of Kr radius.
Lipschitz partition of unity We can find a partition of unity subordinate

to the above cover: for every i there is a C/r-Lipschitz function ϕr,i : X →
[0, 1] such that the support of ϕr,i lies in B(xi, 2r) and

∑
i=1 ϕr,i ≡ 1. The

construction of this partition of unity can be found section 4.1.
Discrete convolution We define a discrete convolution of a measurable

function u : X → Y
ur(x) :=

∑
i=1

ϕr,i(x)uB(xi,r). (2.4)

Discrete maximal function Let rj , j = 1, 2, . . . , be enumeration of the
positive rationals. Observe that for each of such radius we can choose a covering
{B(xi, rj)} of X as above. Define the discrete maximal function

M∗u(x) := sup
j
|u|rj (x) (2.5)

for every x ∈ X.
Recall the definitions

Definition 2.2. (Maximal Function) For f ∈ L1
loc(X), the maximal function

is

Mf(x) := sup
B

 
B(x,r)

|f(y)| dµ(y), (2.6)

where the supremum is taken over all balls B centered x.

Definition 2.3. (Upper gradient) . A non-negative Borel function g on X is
an upper gradient of an extended real-valued function f on X if for all paths
γ : [0, lγ ]→ X,

|f(γ(0))− f(γ(lγ))| ≤
ˆ
γ

g ds, (2.7)

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
´
γ
g ds =∞ otherwise.
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If (2.7) holds for p-almost every path, then g is a p-weak upper gradient of
f . By saying this, we mean the assertion fails only for a path family with zero
p-modulus. Further more, if g ∈ Lp(X) is a p-upper gradient of f , then there
exist a sequence {gi}∞i=1 of upper gradients of f such that gi → g in Lp(X)
of f . And if f has an upper gradient in Lp(X), then it has a minimal p-weak
upper gradient gf ∈ Lp(X) in the sense that for every p-weak upper gradient
g ∈ Lp(X) of f , gf ≤ g a.e.

Definition 2.4. (Newtonian Space) The Newtonian space or Sobolev space on
a metric measure space X is the quotient space

N1,p(X) = {u ∈ Lp(X) : ‖u‖N1,p(X) <∞}/ ∼, (2.8)

where

‖u‖N1,p(X) =
( ˆ

X

|u|p dµ+ inf
g

ˆ
X

gp dµ
)1/p

, (2.9)

and u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Definition 2.5. A space X is said to support a (1, p)- Poincaré inequality if
there exist a constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X, all
integrable functions u on X and for all upper gradients g of u 

B(x,r)

|u− uB |q dµ ≤ C(diamB)
( 

B(x,λr)

gpu dµ
)1/p

. (2.10)

By Hölder’s inequality, one can show that if X is equipped with a doubling
measure µ and X supports a (1, p)-Poincaré inequality, then X also supports
(q, p)-Poincaré inequality for some q > p.

In particular, if X supports a (1, p)-Poincaré inequality, 1 < p <∞, and the
measure is doubling, it follows that Lipschitz functions are dense in N1,p(X).
This means that N1,p(X) can be characterized as the completion of C(X) ∩
N1,p(X) with respect to the norm (2.9). In fact, the Sobolev space N1,p(X), 1 <
p < ∞ with the norm (2.9) is a Banach space. It is also worth noticing that
this space is closed under taking maximum and minimum over finitely many
functions. In general, a doubling space may not be complete.

Another result obtained from a doubling metric measure space supporting
a (1, p)-Poincaré inequality is that it implies a Sobolev-Poincaré inequality. In
particular, if 1 < p < Q,Q ≥ 1, there is a constant C > 0 and λ ≥ 1 such that(  

B(x,r)

|u− uB |p
∗
dµ
)1/p∗ ≤ C(diamB)

( 
B(x,λr)

gpudµ
)1/p

. (2.11)

where p∗ = pQ/(Q− p) and the constant C depends on p, p∗ and cµ.

Definition 2.6. (Sobolev p-Capacity) The Sobolev p-capacity of a set E ⊂ X
is the number

Cp(E) = inf{‖u‖pN1,p(X) : u ∈ A(E)}, (2.12)

where

A(E) = {u ∈ N1,p(X) : u ≥ 1 on the neighbourhood of E}. (2.13)
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If A(E) = ∅, we set Cp(E) = ∞. The Sobolev capacity is monotone and
countably subadditive set function. It is easy to see that the Sobolev capacity
is an outer capacity, which means that

Cp(E) = inf{Cp(V )V ⊃ E, V open}. (2.14)

The capacity measures the exceptional sets for Sobolev functions and is obvi-
ously dependent on p. A property that holds everywhere but on a set of capacity
zero is said to hold quasi-everywhere or q.e. for short.

Proposition 2.7. Let {ui} be a sequence of functions in N1,p(X) with {gui}
a corresponding p-weak upper gradient sequence. If ui → u in Lp(X) and if
gui
→ gu in Lp(X) then u has a representative in N1,p(X) with each Borel

representative of gu as its p-weak upper gradient. Moreover, a subsequence of
{ui} converges pointwise to this representative of u outside a set of p-capacity
zero.

Lemma 2.8. If 0 < r < 1 and x ∈ X then

Cp(B(x, r)) ≤ Cr−pµ(B(x, y)).

Proof. Let u : X → R be the Lipschitz function given by

u(x) =


1, if y ∈ B(x, r),

2− |x−y|r , if y ∈ B(x, 2r)\B(x, r),

0, if y ∈ X\B(x, 2r),

then 0 ≤ u ≤ 1 onX and u is supported onB(x, 2r). Moreover, u is 1
r−Lipschitz.

Thus

Cp(B(x, r)) ≤ ‖u‖pN1,p(X) =

ˆ
B(x,2r)

|u|p dµ+ inf

ˆ
B(x,2r)

gpdµ

≤ (1 +
1

rp
)µ(B(x, 2r)) ≤ (

1

rp
+

1

rp
)µ(B(x, 2r))

≤ Cr−p |B(x, r)| .

Lemma 2.9. If f is a nonnegative function in L1
loc(X) and

E = {x ∈ X : lim sup
r→0+

rp
 
B(x,r)

fdµ > 0}

then Cp(E) = 0.

Proof. We show the case f ∈ L1(X). Let ε > 0 and

Eε = {x ∈ X : lim
r→0+

rp
 
B(x,r)

fdµ > ε}.
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It suffices to show that Cp(Eε) = 0 for every ε > 0, then the claim follows
by subadditivity. Recall that, by the absolute continuity of integrals, for every
ε > 0 there exists τ > 0 such that whenever A ⊂ X is a measurable set with
µ(A) < τ , then

´
A
fdµ < ε. Fix ε1 > 0, let τ be as above and chose 0 < δ < 1/5

such that
δp

ε

ˆ
X

fdµ < τ.

Note that for every x ∈ Eε there is some rx with 0 < rx ≤ δ such that

rpx

 
B(x,rx)

fdµ < ε.

We can cover Eε by such balls and by the Vitali covering theorem, there exists
a subfamily of countably many pairwise disjoint balls B(xi, ri), i = 1, 2, ..., such
that

Eε ⊂ ∪iB(xi, 5ri).

By subadditivity of the capacity

Cp(Eε) ≤
∑
i

Cp(B(xi, 5ri)) ≤ C
∑
i

µ(Bi)

rpi

≤ C

ε

∑
i

ˆ
Bi

fdµ =
C

ε

ˆ
∪iBi

fdµ.

On the other hand,

µ(∪iBi) =
∑
i

µ(Bi) ≤
∑
i

rpi
ε

ˆ
Bi

fdµ ≤ δp

ε

ˆ
X

fdµ < τ. (2.15)

Therefore,

Cp(Eε) ≤
C

ε
ε1 → 0 as ε1 → 0.

Lemma 2.10. There is a constant C > 1, which depend only on the doubling
constant cµ, such that, for every measurable function u : X → Y ,

C−1Mu ≤M∗u ≤ CMu. (2.16)

Proof. We begin by proving the second inequality. Let rj be a positive rational
number and x ∈ X. Then

|u|rj (x) =
∑
i

ϕrj ,i(x) |u|B(xi,rj)
. (2.17)

Observe that if i is such that ϕrj ,i(x) 6= 0 then x ∈ B(xi, 2rj) and B(xi, 2rj) ⊂
B(x, 4rj), we have by the doubling condition of µ that

|u|rj (x) =
∑
i

ϕrj ,i(x) |u|B(xi,4rj)

µ(B(x, 4rj))

µ(B(x, rj))
≤ C |u|B(xi,4rj)

≤ CMu(x),

(2.18)
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Taking supremum over j on the left side yields the last inequality. Here C
depends only on the doubling constant cµ.

To prove the first inequality, we observe that if r > 0, there are some rj such
that rj/4 ≤ r ≤ rj/2. We denote the set

Ij(x) = {i ∈ N : B(xi, rj) ∩B(x, r) 6= ∅}

By the doubling property of µ, Ij is a nonempty finite set for every x ∈ X.
For every i ∈ Ij(x) we have B(x, r) ⊂ B(xi, 2rj) and B(xi, rj) ⊂ B(x, 6r) which
imply

|u|B(x,r) ≤
∑

i∈Ij(x)

ϕrj ,i(x)
B(xi, 2rj)

B(x, r)
|u|B(xi,2rj)

= C |u|2rj ≤ cM
∗u(x). (2.19)

The claim follows by taking the supremum over all r > 0 on the left hand side,
where C depends on the doubling constant cµ.

Proposition 2.11. Suppose that p > 1, u ∈ N1,p(X), gu ∈ Lp(X) is the min-
imal p-weak upper gradient of u, and X supports a q-Poincaré inequality for
some 1 ≤ q < p. Then for every r > 0 we have that the discrete convolution
ur ∈ N1,p(X) and that there is a constant C > 0, independent of u and r,
such that C(Mgqu)1/q ∈ Lp(X) is a p-weak upper gradient of ur. Moreover,
M∗u ∈ N1,p(X) with C(Mgqu)1/q as a p-weak upper gradient.

Proof. We have

ur(x) =
∑
i=1

ϕr,i(x)uB(xi,r) = u(x) +
∑
i=1

ϕr,i(x)(uB(xi,r) − u(x). (2.20)

Since at each x the sum is only over finitely many balls then the series clearly
converges. We want to show that

gur (x) = gu +
∑
i=1

(C
r

∣∣uB(xi,r) − u
∣∣+ gu

)
χB(xi,2r) (2.21)

is a p-weak upper gradient of ur. Note that the sum is locally finite.
Let x ∈ B(xi, 2r), then by triangle inequality∣∣u(x)− uB(xi,r)

∣∣ ≤ ∣∣u(x)− uB(x,4r)

∣∣+
∣∣uB(x,4r) − uB(xi,r)

∣∣ (2.22)

The second term on the right side is estimated by the Poincaré inequality and
the doubling condition as

∣∣uB(x,4r) − uB(xi,r)

∣∣ =

∣∣∣∣∣
 
B(xi,r)

(u− uB(x,4r))dµ

∣∣∣∣∣ ≤
 
B(xi,r)

∣∣u− uB(x,4r)

∣∣ dµ
≤ µ(B(x, 4r))

µ(B(xi, r))

 
B(x,4r)

∣∣u− uB(x,4r)

∣∣ dµ ≤ Cr( 
B(x,4λr)

gqudµ
)1/q

≤ Cr
(
Mgqu(x)

)1/q
.

(2.23)
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The first term on the right side is estimated by a standard telescoping argument.
Write Bj = B(x, 22−jr) for each nonnegative integer i. Since µ-almost every
point is a Lebesgue point for u, lim

j→∞
uBj

= u(x). By doubling property of µ

and Poincaré inequality we have

∣∣u(x)− uB(x,4r)

∣∣ ≤ ∞∑
j=0

∣∣uBj
− uBj+1

∣∣ ≤ ∞∑
j=0

 
Bj+1

∣∣u− uBj

∣∣ dµ
≤ C

∞∑
j=0

 
Bj

∣∣u− uBj

∣∣ dµ
≤ C

∞∑
j=0

2−jr
( 

λBj

gqdµ
)1/q ≤ Cr(Mgqu(x)

)1/q
.

(2.24)

Therefore, for µ-a.e. x ∈ B(xi, 2r),∣∣u(x)− uB(xi,r)

∣∣ ≤ Cr(Mgqu(x)
)1/q

. (2.25)

By Lebesgue differentiation theorem, we observe that gu(x) ≤
(
Mgqu(x)

)1/q
for

µ-a.e. x ∈ X. Thus C
(
Mgqu

)1/q
is a p-weak upper gradient of ur. Moreover, this

function is p-integrable since the maximal function theorem shows that there is
C = c(p, cµ) > 0 such that∥∥∥(Mgqu)1/q

∥∥∥
Lp(X)

≤ C
∥∥∥(gqu)1/q

∥∥∥
Lp(X)

≤ C ‖g‖Lp(X) . (2.26)

Given k, there is at most C balls B(xi, 2r) intersect the ball B(xk, r),

ˆ
B(xk,r)

|ur|p dµ ≤
ˆ
B(xk,r)

∑
i=1

|ϕr,i(x)|p
∣∣uB(xi,r)

∣∣p dµ
≤ C

∑
i

µ(B(xk, r))

µ(B(xi, r))

ˆ
B(xi,r)

|u|p dµ

≤ C
ˆ
B(xk,3r)

|u|p dµ.

(2.27)

The second inequality follows by Hölder inequality. Summing over k yields that
ur ∈ N1,p(X),

ˆ
X

|ur|p dµ ≤
∑
k

ˆ
B(xk,r)

|ur|p dµ ≤
∑
k

C

ˆ
B(xk,3r)

|u|p dµ

≤
ˆ
X

∑
k

CχB(xk,3r) |u|
p
dµ ≤ C ‖u‖pLp(X) .

(2.28)

Towards the last claim, since |u| ∈ N1,p(X) with gu as a p-weak upper gradient
of |u|. From the first part of our claim, for each j we have that |u|rj ∈ N

1,p(X)
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with C
(
Mgqu

)1/q
as a p-weak upper gradient. For k ∈ N, define

vk = max
1≤j≤k

|u|rj .

Then vk ∈ N1,p(X) with the same p-weak upper gradient. By Lemma 2.10
we infer that M∗u ∈ Lp(X) and hence, by the monotone convergence theorem,
vk →M∗u in Lp(X). By the second part of proposition , M∗u ∈ N1,p(X) with
C(Mgqu)1/q as a p-integrable p-weak upper gradient.

Lemma 2.12. Suppose that p > 1 and that X supports a q-Poincaré inequality
for some 1 ≤ q < p. If u ∈ N1,p(X) then, for every λ > 0,

Cp({x ∈ X : Mu(x) > λ}) ≤ C

λp
‖u‖pN1,p(X) .

Proof. Let
Eλ = {x ∈ X : CM∗u(x) ≥ λ},

where C is the comparison constant from Lemma 2.10. Eλ is open by lover
semicontinuous of M∗u .Then

{x ∈ X : Mu(x) ≥ λ} ⊂ Eλ, (2.29)

hence the desired p-capacity is estimated from above by Cp(Eλ). Since (C/λM∗u) ∈
N1,p(X) and hence is admissible for estimating the p-capacity of Eλ. With ex-
ponents p > 1 and p/q > 1,

Cp(Eλ) ≤
∥∥∥∥CλM∗u

∥∥∥∥p
N1,p(X)

≤ C

λp
(
‖M∗u‖pLp(X) +

∥∥∥(Mgqu)1/q
∥∥∥p
Lp(X)

)
≤ C

λp
(
‖u‖pLp(X) + ‖gu‖pLp(X)

)
≤ C

λp
‖u‖pN1,p(X) .

By taking the infimum over all maximal gradients of u on the right hand side,
the claim follows.

Theorem 2.13. Suppose that p > 1 and that X supports a q-Poincaré inequality
for some 1 ≤ q < p, and Q ≥ 1. If u ∈ N1,p(X), then p-q.e. point in X is a
Lebesgue point of u. Furthermore, if p < Q then, for p-q.e. x ∈ X,

lim
r→0

 
B(x,r)

|u− u(x)|p
∗
dµ = 0 (2.30)

where

p∗ =
pQ

Q− p
.
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Proof. Let

A =
{
x ∈ X : lim sup

r→0
rp
 
B(x,r)

gpudµ > 0
}

Since gu ∈ Lp(X), we have gpu ∈ L1(X) and hence by Lemma 2.9, Cp(A) = 0.
By Poincaré inequality, if x ∈ X\A then

( 
B(x,r)

∣∣u− uB(x,r)

∣∣ dµ)p ≤ Crp  
B(x,λr)

gpudµ→ 0 (2.31)

as r → 0, that is,

lim
r→0

 
B(x,r)

∣∣u− uB(x,r)

∣∣ = 0 (2.32)

whenever x ∈ X\A. Since X supports a p-Poincaré inequality, it follows that
Lipschitz functions are dense in N1,p(X). Let {uj} be a sequence of Lipschitz
function in N1,p(X) such that

‖u− uj‖pN1,p(X) ≤ 2−j(p+1),

for each j and there exists a set K with Cp(K) = 0 for which uj → u pointwise
everywhere in X\K. Such a sequence exists because of proposition 2.7. For
j ∈ N, let

Aj = {x ∈ X : M(u− uj)(x) > 2−j},

and set Ej = A ∪K ∪
(
∪k>j Ak

)
. By Lemma 2.12,

Cp(Aj) ≤
C

2−jp
‖u− uj‖pN1,p(X) ≤

C

2−jp
2−j(p+1) = 2−jC.

Then, by the subadditivity of the p-capacity

Cp(Ej) ≤ 2× 2−jC.

Note that ∣∣uk − uB(x,r)

∣∣ ≤  
B(x,r)

|u− uk(x)| dµ
 
B(x,r)

|uk − u| dµ+

 
B(x,r)

|uk − uk(x)| dµ

≤M(uk − u)(x) +

 
B(x,r)

|uk − uk(x)| dµ.

Hence, if x ∈ X\Ej and k > j then

lim sup
r→0

∣∣uk(x)− uB(x,r)

∣∣ ≤ lim sup
r→0

 
B(x,r)

|u− uk(x)| dµ

≤M(uk − u)(x) ≤ 2−k.

(2.33)
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Therefore, for every x ∈ X\Ej and for every l ≥ k ≥ j,

|uk − ul(x)| ≤ lim sup
r→0

∣∣uk(x)− uB(x,r)

∣∣+ lim sup
r→0

∣∣ul(x)− uB(x,r)

∣∣ ≤ 21−k,

which shows that {xk} converges uniformly on X\Ej to u. (Note that, as
K ⊂ Ej , uj → u pointwise on X\Ej). Thus, it follows that u is continuous on
X\Ej . Moreover, by the estimate in (2.33) if x ∈ X\Ej and k ≥ j then, for
l ≥ k,

lim sup
r→0

 
B(x,r)

|u− u(x)| dµ

≤ lim sup
r→0

 
B(x,r)

|u− uk(x)| dµ+ |uk(x)− u(x)|

≤ 2−k + |uk(x)− u(x)|

and since uk(x)→ u(x) as k →∞, we see that

lim sup
r→0

 
B(x,r)

|u− u(x)| dµ→ 0.

Thus, each point x ∈ X\Ej is a Lebesgue point of u.
In the case where p < Q, for every x ∈ X\Ej , we can apply the Sobolev-

Poincaré inequality (2.11) instead of Poincaré inequality to estimate

 
B(x,r)

|u− u(x)|p
∗
dµ ≤ Cr

( 
B(x,λr)

gpudµ
)p∗/p → 0

as r → 0. Thus we get

lim sup
r→0

 
B(x,r)

|u− u(x)|p
∗
dµ = 0.

Hence, for x ∈ X\Ej , using a fact that x is a Lebesgue point of u

lim sup
r→0

 
B(x,r)

|u− u(x)|p
∗
dµ

≤ 2p
∗

lim
r→0

 
B(x,r)

∣∣u− uB(x,r)

∣∣p∗ dµ+ 2p
∗

lim
r→0

∣∣u(x)− uB(x,r)

∣∣p∗
= 0.

By taking E = ∩jEj we see Cp(E) = 0 and the discussion holds for each
x ∈ X\E. This completes the proof.
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