Assouad Embedding Theorem, MS-E1991 Calculus of Variations, Project work

Valter Lillberg

March 27, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Assouad embedding theorem, N independent of α) For each $C_0 \ge 1$, there is an integer N and, for $1/2 < \alpha < 1$, a constant $C = C(C_0, \alpha)$ such that if (E, d) is a metric space hat admits the metric doubling constant C_0 , we can find an injection $F : E \to \mathbb{R}^N$ such that

$$C^{-1}d(x,y)^{lpha} \leq |F(x) - F(y)| \leq Cd(x,y)^{lpha}$$

for $x, y \in E$.

The embedding problem for metric spaces

An *embedding* is a map that is a homeomorphism onto its image.

An embedding $f : X \to Y$ is called:

• *quasisymmetric* if there is a homeomorphism

$$\eta: [0,\infty)
ightarrow [0,\infty)$$
 so that

 $|x-a| \leq t|x-b|$ implies $|f(x) - f(a)| \leq \eta(t)|f(x) - f(b)|$

for all triples a, b, x of points in X, and for all t > 0. Quasisymmetric maps distort *relative* distances by a bounded amount.

- bi-Lipschitz if both f and f⁻¹ are Lipschitz.
 bi-Lipschitz maps distort absolute distances by a bounded amount, a much stricter condition.
- The snowflaking identity map $(X, |x y|) \rightarrow (X, |x y|^{\alpha})$ is t^{α} -quasisymmetric. C-bi-Lipschitz maps are $C^{2}t$ -quasisymmetric.
- Thus, Assouad's snowflaked bi-Lipshitz embedding is quasisymmetric.

When is a metric space bi-Lipshitz embeddable to \mathbb{R}^n ?

A *necessary condition* is that the space is doubling. But this is *not sufficient*. Common counterexamples include:

- The Heisenberg group with its Carnot metric (Py Pansu's thm: every lipschitz map is differentiable a.e., would get an algebra homomorphism, incompatible with the Abelian structure of
 \mathbb{R}^n
 . Because of non-commutativity of the Heisenberg group has necessarily a kernel, but bilipschitzness implies injectivity).
- 2. Laakso spaces ($[0,1] \times K$, where K is a Cantor set with identification of points through wormholes).
- 3. Bourdon-Pajot spaces (related to certain hyperbolic buildings).

However, if we alter our metric *slightly* by mapping the metric space (M.d(x, y)) with an identity mapping to the metric space $(M, d(x, y)^{\alpha}), 0 < \alpha < 1$, we obtain the desired embedding into an Euclidean space \mathbb{R}^n for some $n \in \mathbb{N}$. This modification of the metric is called *snowflaking*.

Assouad implies quasisymmetric embeddings

Which metric spaces are quasisymmetrically equivalent? Difficult. Which spaces can be quasisymmetrically embedded in some Euclidean space? Easier:

Theorem (Quasisymmetric embeddability)

A metric space is quasisymmetrically embeddable in some Euclidean space if and only if it is doubling, quantitatively. Necessity follows from the following

Theorem (Conservation of the doubling property)

A quasisymmetric image of a doubling space is doubling, quantitatively.

Sufficiency is implied by the Assouad embedding theorem as snowflaking is t^{α} -quasisymmetric.

Theorem (Assouad Embedding Theorem)

Each snowflaked version of a doubling metric space admits a bi-Lipschitz embedding in some Euclidean space.

Assouad Embedding Theorem

Theorem (Assouad embedding theorem, original) Let (E, d(x, y)) be a doubling metric space. Then for every $\alpha \in (0, 1)$ there exist N, C > 0 and $F : E \to \mathbb{R}^N$ such that

$$C^{-1}d(x,y)^{lpha} \leq |F(x) - F(y)| \leq Cd(x,y)^{lpha}$$

for all $x, y \in M$.

We prove a version with dimension independent of snowflaking.

Theorem (Assouad embedding theorem, N independent of α) For each $C_0 \ge 1$, there is an integer N and, for $1/2 < \alpha < 1$, a constant $C = C(C_0, \alpha)$ such that if (E, d) is a metric space hat admits the metric doubling constant C_0 , we can find an injection $F : E \to \mathbb{R}^N$ such that

$$C^{-1}d(x,y)^{lpha} \leq |F(x) - F(y)| \leq Cd(x,y)^{lpha}$$

for $x, y \in E$.

Snowflake spaces

Definition

. . .

Let (M, d(x, y)) be a metric space. Its *snowlaked version* is a metric space $(M, d(x, y)^{\alpha}), 0 < \alpha < 1$.

The name stems from the fact that $(\mathbb{R}, |x - y|^{\alpha}), 1/2 < \alpha < 1$ admits a bi-Lipschitz embedding in \mathbb{R}^2 , and the image resembles the boundary of a snowflake.

(P. Assouad, Plongements lipschitziens dans \mathbb{R}^n) - la troisième méthode utilise des courbes de Von KOCH généralisées (de fait cette méthode étend l'observation, due à GLAESER [5] p. 57, que la courbe classique de H. Von KOCH [7] réalise un plongement Lipschitzien de l'espace ([0,1], $||\cdot||^{\log 3/\log 4}$) dans (\mathbb{R}^2 , $||\cdot||$)).

La construction que nous allons écrire généralise, comme on le verra, celle de la courbe de Von Koch classique [7]; c'est ce qui justifie notre terminologie. Figure: Glaeser: Koch curve is a bi-Lipschitz image of $([0,1], |\cdot|^{\log 3/\log 4})$ on $(\mathbb{R}^2, ||\cdot||)$.

Un exemple plus élémentaire est fourni par la célèbre courbe de von Koch ([1]).

Exemple 8.

Figure 2

On sait que cette courbe C n'est pas rectifiable; mais on peut définir sur C une mesure: sa "pseudo-longueur" (Cf. Bouligand [1] p. 218) possédant l'"exposant de similitude" $\alpha = \log 4/\log 3$. Cela veut dire que si l'on soumet C à une similitude de rapport k, sa pseudo-longueur est multipliée par k^{α} . Figure: Glaeser: Koch curve is a bi-Lipschitz image of $([0,1], |\cdot|^{\log 3/\log 4})$ on $(\mathbb{R}^2, |\cdot|)$.

On sait que cette courbe est localement semblable à elle-même.

Lemme. Il existe deux constantes K et K' telles que, pour tout couple de points $M, N \in C$, on ait :

 $0 \leq K'$, $||MN||^{\alpha} \leq pseudo-longueur de l'arc <math>\widehat{MN} \leq K$, $||MN||^{\alpha}$.

L'existence des constantes est trivialement assurée si l'on se borne à envisager des couples M, N satisfaisant à $||MN|| \ge 1/9$ (si l'on prend 1 = ||AE|| pour unité de longueut).

Remarquons alors qui si $||MN|| \leq 1/9$, l'arc \widehat{MN} est entièrement intérieur à l'un des trois arcs suivants : \widehat{AC} , \widehat{IJ} , ou \widehat{BC} (cf. fig.). Il en résulte qu'il existe une similitade de rapport $\sqrt{3}$ ou 3 (suivant le cas) qui transforme l'arc \widehat{MN} en un autre arc de C.

Ceci posé, quels que soient M et N, il existe un entier k tel que $1/(\sqrt{3})^{k+1} \leq ||MN||| \leq 1/(\sqrt{3})^k$. Tant que $k \geq 4$, la remarque précédente permet des substituet à l'arc \hat{MN} un arc plus grand semblable au premier. Dans une telle similitade, le rapport $\frac{\text{ps-long }\hat{MN}}{||MN||^4}$ n'est pas modifié. On peut donc toujours se ramener au cas où $||MN|| \geq 1/9$. Le lemme est ainsi établi.

Glaeser: Koch curve is a bi-Lipschitz image of $([0,1], |\cdot|^{\log 3/\log 4})$ on $(\mathbb{R}^2, |\cdot|))$.

Lemma (Glaeser, 1958)

For each point $x, y \in C$, there exist constants K and K' such that

 $0 \le K' |x-y|^{lpha} \le \ {\it pseudo-length \ of \ arc \ } \widehat{xy} \le K |x-y|^{lpha}, lpha = \log 3/\log 4$

Proof.

- ▶ If $|x y| \ge 1/9$, existence of constants K, K' is easy to see.
- If |x − y| ≤ 1/9, then the arc xy is entirely within one of the following segments of the curve (cf. figure) AC, IJ or BC.
- Depending on the case, there exists a similarity mapping of ratio $\sqrt{3}$ or 3 between the segment \widehat{xy} and another arc of C.

• Thus, there exist a $k \in \mathbb{N}$, $1/(\sqrt{3})^{k+1} \le |x-y| \le 1/(\sqrt{3})^k$.

► For $k \ge 4$ we can substitute the arc with a bigger similar arc without changing $\frac{pseudolength(\widehat{xy})}{|x-y|^{\alpha}}$. Can reduce to $|x-y| \ge 1/9$.

Snowflake space is a metric space

- If (M, d(x, y)) is any metric space and 0 < α < 1, then d(x, y)^α also defines a metric on M.
- We need to check that the *triangle inequality* still holds. If a, b are nonnegative real numbers and 0 < α < 1, then</p>

$$(a+b)^{\alpha} \leq a^{\alpha}+b^{\alpha}.$$

Observe, that

$$\max(a,b) \leq (a^{lpha}+b^{lpha})^{1/lpha}$$

Then

$$a+b\leq (a^lpha+b^lpha)\max(a,b)^{1-lpha}\leq (a^lpha+b^lpha)^{1/lpha}.$$

The snowflaked metric d(x, y)^α still generates the same topology as d(x, y).

Snowflaking turns all continuous paths of finite length unrectifiable.

- Let (E, d(x, y)) be a metric space and $x, y \in E, x \neq y$.
- Let $\gamma : [0,1] \to E$ be a rectifiable path joining x and y.
- ▶ Then, for every $\epsilon > 0$, there exists a partition $0 = t_0 < t_1 < t_2 \cdots \leq t_n = 1$ of the interval [0, 1] such that $d(\gamma(t_i), \gamma(t_{i-1})) \leq \epsilon$ for all $i \in 1, \dots, n$.
- For length *l*(γ) of the path γ in the snowflaked metric *d*(x, y)^α, 0 < α < 1, the following holds:</p>

$$egin{aligned} & d(\gamma)_{(E,d^lpha)} \geq \sum_{i=1}^n d(\gamma(t_i),\gamma(t_{i-1}))^lpha \ & \geq \sum_{i=1}^n d(\gamma(t_i),\gamma(t_{i-1})) \ \epsilon^{lpha-1} \ & \geq \epsilon^{lpha-1} d(x,y) o \infty \ ext{as} \ \epsilon o 0 \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Snowflaked spaces have plenty of nonconstant functions with "gradient" 0

Suppose that f is a Lipschitz function on M with respect to d(x, y).

Then

$$\lim_{p\to x} = \frac{|f(x) - f(p)|}{d(x,p)^{\alpha}} = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Thus there are plenty of nonconstant functions with "gradient" 0 with respect to the snowflaked distance. Every Lipschitz function with respect to the original meric will do.
- See Semmes, "Calculus, fractals, and analysis on metric spaces", for more.

Problems with the original proof

For values of α bounded away from both 0 and 1 we can use the standard Assouad proof to show that the resulting snowflake spaces can all be embedded in a fixed dimensional Euclidean space. For α close to 0, the dimension independence fails necessarily. Even when $E = \mathbb{R}$ with the usual distance, we need many dimensions to construct an α -snowflake. However, for α close to 1, we can get dimension independence, but the standard proof does not give it. In fact $N \to \infty$, as $\alpha \to 1$, by the standard proof of Assouad's theorem.

Assouad with dimension independent of snowflaking

A probabilistic proof of the following theorem was given by Naor and Neiman. Their proof constructs a random embedding to \mathbb{R}^N with a limited dependency structure of events and proves that the desired bi-Lipschitz embedding exists with positive probability using a generalized version of Lovasz Local Lemma. We present a simpler non-probabilistic proof by David and Snipes (2012) that modifies the standard proof. We use an adaptive argument and work at *small relative scales* to use the fact that there is *a lot of space* in \mathbb{R}^n . A very *sparse collection of scales* helps control the residual terms.

Assouad Embedding Theorem, dimension independent of snowflaking, statement

Definition

A metric space (E, d) is metrically doubling if there is an integer $C_0 \ge 1$ such that for every r > 0, every (closed) ball of radius 2r in E can be covered with no more than C_0 balls of radius r. We call C_0 a metric doubling constant for (E, d).

Theorem (Naor, Neiman (2012), David, Snipes (2012))

For each $C_0 \ge 1$, there is an integer N and, for $1/2 < \alpha < 1$, a constant $C = C(C_0, \alpha)$, such that if (E, d) is a metric space that admits the metric doubling constant C_0 , we can find an injection $F : E \to \mathbb{R}^N$ such that

$$C^{-1}d(x,y)^{lpha} \leq |F(x) - F(y)| \leq Cd(x,y)^{lpha}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $x, y \in E$.

Assouad Embedding Theorem, dimension independent of snowflaking, proof

Proof.(David,Snipes(2012))

We need to consider only α very close to 1. We use a small parameter $\tau > 0$, with $\tau \le 1 - \alpha$, and work at the scales

$$r_k = \tau^{2k}, k \in \mathbb{Z}.$$
 (1)

Suppose first that *E* has finite diameter. Then we can choose an initial scale $k = k_0$ such that $r_{k_0} \ge \text{diam } E$. Our construction and main constants will not depend on this choice.

For each $k \ge k_0$, select a maximal collection $\{x_j\}, j \in J_k$, of points of *E*, with $d(x_i, x_j) \ge r_k$ for $i \ne j$. Thus, by maximality

$$E \subset \bigcup_{j \in J_k} B(x_j, r_k).$$
 (2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assouad Embedding Theorem, dimension independent of snowflaking, proof (2)

Let N(x) denote the number of indices $j \in J_k$ such that $d(x_j, x) \leq 10r_k$. Then

$$N(x) \le C_0^5 \text{ for } x \in E.$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This holds, since we can cover $B(x, 10r_k)$ with fewer than C_0^5 balls D_l of radius $r_k/3$.

Each D_i contains at most one x_j , because $d(x_i, x_j) \ge r_k$ for $i \ne j$. All the x_j that lie in $B(x, 10r_k)$ are contained in some D_i , so (3) follows.

From (3) and the assumption that E is bounded, we get that J_k is finite.

Assouad Embedding Theorem, proof (3)

Set $\Xi = \{1, 2, ..., C_0^5\}$ (a set of colors).

Enumerate J_k , and for $j \in J_k$ let $\xi(j)$ be the first color not taken by an earlier close neighbor, i.e. earlier $i \in J_k$ such that $d(x_i, x_j) \leq 10r_k$. By construction

 $\xi(i) \neq \xi(j)$ for $i, j \in J_k$ with $i \neq j$ and $d(x_i, x_j) \leq 10r_k$.

For each color $\xi \in \Xi$, define the set $J_k(\xi) := \{j \in J_k : \xi(j) = \xi\}$. Thus

$$d(x_i, x_j) > 10r_k$$
 for $i, j \in J_k(\xi)$ such that $i \neq j$. (4)

For each $j \in J_k$, set $\varphi_j(x) = max\{0, 1 - r_k^{-1}dist(x, B_j)\}$. This makes sure that

$$0 \leq \varphi_j(x) \leq 1 \text{ everywhere,}$$

$$\varphi_j(x) = 1 \text{ for } x \in B_j,$$

$$\varphi_j(x) = 0 \text{ for } x \in E \setminus 2B_j.$$
(5)

and

$$\varphi_j$$
 is Lipschitz, with $||\varphi_j||_{lip} \leq r_k^{-1}$. (6)

Assouad Embedding Theorem, proof (4)

For each color $\xi \in \Xi$, we will construct two mappings: $F^{\xi} : E \to \mathbb{R}^{M}$ and a slightly modified version $\widetilde{F}^{\xi} : E \to \mathbb{R}^{M}$. Here M is a very large integer depending only on the metric doubling constant.

Our final mapping will be the tensor product of these $2C_0^5$ mappings. Thus the dimension N is $2C_0^5M$. The mapping F^{ξ} will be of the form:

$$F^{\xi}(x) = \sum_{k \ge k_0} r_k^{\alpha} f_k^{\xi}(x),$$

where

$$f_k^{\xi}(x) = \sum_{j \in J_k(\xi)} v_j \varphi_j(x), \tag{7}$$

with vectors $v_j \in \mathbb{R}^M$ that will be carefully chosen later.

Assouad Embedding Theorem, proof (5)

The extra room in \mathbb{R}^M will be used to give lots of different choices of v_j .

The other mapping \widetilde{F}^{ξ} will have the same form, but with a different choice of the vectors $\{v_j\}$.

For both functions we will choose the v_j inductively, and so that

$$v_j \in B(0, \tau^2) \subset \mathbb{R}^M,$$

with the same very small $\tau > 0$ as in the definition of the scales $r_k = \tau^{2k}$. τ will be chosen later. ($\tau \le 1 - \alpha$ will do, as we'll see.) With this choice, we see that

$$||f_k^{\xi}||_{\infty} \leq \tau^2$$

because the $\varphi_j, j \in J_k(\xi)$ have disjoint supports by (4) and(5). Hence, the series in (7) converges.

Assouad Embedding Theorem, proof (6)

Moreover, if we set

$$F_k^{\xi} = \sum_{k_0 \le \ell \le k} r_\ell^{\alpha} f_\ell^{\xi}(x), \tag{8}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

we get that

$$||F^{\xi} - F_{k}^{\xi}||_{\infty} \leq \sum_{\ell \geq k} r_{\ell}^{\alpha} \tau^{2} = r_{k+1}^{\alpha} \tau^{2} \sum_{\ell \geq 0} \tau^{2\ell\alpha} \leq 2\tau^{2} r_{k+1}^{\alpha}$$
(9)

because $r_{\ell} = \tau^{2\ell}$ and $\tau^{2\alpha} < 1/2$ when τ is small.

Assouad Embedding Theorem, proof (7), bound $|| \cdot ||_{lip}$

The Lipschitz norm of f_k^{ξ} is

$$||f_k^{\xi}||_{\mathit{lip}} \leq au^2 r_k^{-1}$$

by (6) and because the φ_j are supported on disjoint balls. Thus

$$\begin{split} ||F_k^{\xi}||_{lip} &\leq \sum_{\ell \leq k} r_{\ell}^{\alpha} ||f_{\ell}^{\xi}||_{lip} \\ &\leq \tau^2 \sum_{\ell \leq k} r_{\ell}^{\alpha-1} \\ &= \tau^2 r_k^{\alpha-1} \sum_{\ell \leq k} \tau^{2(\ell-k)(\alpha-1)} \\ &= \tau^2 r_k^{\alpha-1} (1 - \tau^{2(1-\alpha)})^{-1} \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Assouad Embedding Theorem, proof (8), bound $|| \cdot ||_{lip}$

Now, take $\tau \leq 1 - \alpha$. Then

$$\ln(\tau^{2(1-\alpha)}) = 2(1-\alpha)\ln(\tau) = -2(1-\alpha)\ln(\frac{1}{\tau}) \le -2\tau\ln(\frac{1}{\tau}).$$

By exponentiating, we get that

$$au^{2(1-lpha)} \leq e^{-2 au \ln(rac{1}{ au})} \leq 1 - au \ln(rac{1}{ au})$$

if τ is small enough, hence

$$1 - \tau^{2(1-\alpha)} \ge \tau \ln(\frac{1}{\tau}),$$

and thus

$$||F_k^{\xi}||_{lip} \le \frac{\tau}{\ln(\frac{1}{\tau})} r_k^{\alpha-1} \le r_k^{\alpha-1} \tag{10}$$

if au is small enough, for example au < 1/2 works.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Assouad Embedding Theorem, proof (9), choose vectors v_j

- We want to choose the vectors v_j, j ∈ J_k so that the differences |F^ξ_k(x) − F^ξ_k(y)|, will be as large as possible in order to allow us to prove that the inverse (F^ξ_k)⁻¹ is Lipschitz.
- Fix k ≥ k₀, suppose that the F_{k-1} were already constructed, and fix a color ξ ∈ Ξ.
- Put any order < on the finite set J_k(ξ).
- We will choose the v_j for F_k^{ξ} in Lemma 3 using the order <.

• We will use the reverse order for \widetilde{F}_k^{ξ} .

Assouad Embedding Theorem, proof (10), choose v_j

Recall that we defined

$$F_{k}^{\xi}(y) = F_{k-1}^{\xi} + r_{k}^{\alpha} f_{k}^{\xi}(y) = F_{k-1}^{\xi} + r_{k}^{\alpha} \sum_{i \in J_{k}(\xi)} v_{i} \varphi_{i}(y).$$
(11)

For each $j \in J_k(\xi)$, we shall also consider the *partial sum* $G_{k,j}^{\xi}$ defined by

$$G_{k,j}^{\xi}(y) = F_{k-1}^{\xi}(y) + r_k^{\alpha} \sum_{i \in J_k: i < j} v_i \varphi_i(y), \qquad (12)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

which we therefore assume to be known before we choose v_i .

Assouad Embedding Theorem, proof (11), choose v_j

Lemma (3)

For each $j \in J_k(\xi)$, we can choose $v_j \in B(0, au^2)$ so that

$$|F_k^{\xi}(x) - G_{k,j}^{\xi}(y)| \ge \tau^3 r_k^{\alpha} \tag{13}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $x \in B_j$ and $y \in B(x_j, 10\tau^{-2}r_k) \setminus 2B_j$. For $x \in B_j$, we have $\varphi_j(x) = 1$ and $\varphi_i(x) = 0$ for all the other indices $i \neq j \in J_k(\xi)$. Thus

$$F_{k}^{\xi}(x) = F_{k-1}\xi(x) + r_{k}^{\alpha}f_{k}^{\xi}(x) = F_{k-1}^{\xi}(x) + r_{k}^{\alpha}v_{j}$$
(14)

by definitions of the functions (7) and (8).

Assouad Embedding Theorem, proof (12): We use $|| \cdot ||_{lip}$ bounds to work with discrete sets By the Lipschitz bound for F_k^{ξ} (10), and its proof we have that

$$||F_k^\xi||_{\mathit{lip}} \leq r_k^{lpha-1}$$
 and also $||G_{k,j}^\xi||_{\mathit{lip}} \leq r_k^{lpha-1}$

since we just add fewer terms.

- We use this to replace B_j and B(x_j, 10τ⁻²r_k) \ 2B_j with discrete sets.
- Set η = τ³r_k, and pick an η-dense set X in B_j and an η-dense set Y in B(x_j, 10τ⁻²r_k) \ 2B_j
- We shall prove that we can choose the vectors v_i so that

$$|F_k^{\xi}(x) - G_{k,j}^{\xi}(y)| \ge 3\tau^3 r_k^{\alpha} \tag{15}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $x' \in X$ and $y' \in Y$.

We check next that the lemma will follow.

Assouad Embedding Theorem, proof (13): Proof of Lemma 3 assuming that the discrete bound holds

For $x \in B_i$, we can find $x' \in X$ such that

$$|F_k^{\xi}(x')-F_k^{\xi}(x)|\leq ||F_k^{\xi}||_{lip}\eta\leq r_k^{\alpha-1}\cdot\tau^3r_k=\tau^3r_k^{\alpha}.$$

Similarly, for $y \in B(x_j, 10\tau^{-2}r_k) \setminus 2B_j$ we can find y'inY such that

$$|\mathsf{G}_{k,j}^{\xi}(y)-\mathsf{G}_{k,j}^{\xi}(y')|\leq ||\mathsf{G}_{k,j}^{\xi}||_{\mathit{lip}}\eta\leq au^{3}\mathsf{r}_{k}^{lpha}.$$

Then (13) follows. In other words, we can find a vector v_j such that the points considered map to points sufficiently far away from each other.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assouad Embedding Theorem, proof (14): The discrete sets X and Y are small.

Remark 1.

In a doubling metric space, for $\lambda > 0$, every ball of radius λr can be covered by $C_0 \lambda^{N_0}$ balls of radius r, where $N_0 = \log_2 C_0$. To see this replace λ by the next power of 2.

- First we bound |X|, the number of elements in X.
- Here we can use the doubling property, as above.
- ▶ Thus, we can cover $B_j = B(x_j, r_k)$ by $C_0(2\tau^{-3})^{N_0}$ balls of radius $\eta/2$, since $\eta = \tau^3 r_k$.
- We keep those that meet B_j, pick an element of B_j in each such ball and get an η-dense net X, with |X| ≤ C₀(2τ⁻³)^{N₀} balls of radius η/2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assouad Embedding Theorem, proof (15): The discrete sets X and Y are small.

Similarly, we can find a discrete η -dense net Y such that

$$|Y| \leq C_0 \left(2 \frac{10\tau^{-2} r_k}{\eta} \right)^{N_0} = C_0 \left(\frac{20\tau^{-2} r_k}{\tau^3 r_k} \right)^{N_0} = C_0 (20\tau^{-5})^{N_0}.$$

The total number of pairs (x', y') for which we have to check that discrete points map far (15), is thus

$$|X||Y| \le C_0^2 (40\tau^{-8})^{N_0}$$

Assouad Embedding Theorem, proof (16):

A ball $B(0, \tau^2) \subset \mathbb{R}^M$ for sufficiently large M contains a bigger (|V| > |X||Y|), maximal finite set V with points separated by at least $7\tau^3$.

- Pick such a set.
- For each pair (x', y'), the different choices of v_j ∈ V yield the same value of G^ξ_{k,j}(y')
- The values of $F_k^{\xi}(x')$ differ by at least $7\tau^3 r_k^{\alpha}$, because the only $F_k^{\xi}(x')$ changes by precisely v_j .
- Thus the discrete bound (15) cannot for this pair (x', y') can fail for at most one choice of v_j ∈ V.
- Thus it is enough to show that V has more than |X||Y| elements.
- Take C_M to be the doubling constant of \mathbb{R}^M .
- Remark 1 implies that $|V| \ge C_M (\frac{1}{7\tau})^{\log_2 C_M}$.
- ► This is larger than |X||Y| if C_M > C₀⁸ and τ is small enough, depending on M. Lemma 3 follows.

Assouad Embedding Theorem, proof (17): Define F.

- For each color ξ, choose the vectors v_j, and hence the mapping F^ξ_k, as in Lemma (3).
- Also define a second version \widetilde{F}_k^{ξ} using the opposite order on $J_k(\xi)$.
- By (9), $F^{\xi}: E \to \mathbb{R}^M$ is the limit $F^{\xi} = \lim_{k \to \infty} F_k^{\xi}$.
- We are ready to check that F, the tensor product of the maps {F^ξ, F̃^ξ : ξ ∈ Ξ}, is bilipschitz from the snowflaked space (E, d^α).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assouad Embedding Theorem, proof (18): Lemma 4.

Lemma (4)

We have that

$$rac{ au^2}{8} d(x,y)^lpha \leq |F(x)-F(y)| \leq 5N au^{-2(1-lpha)} d(x,y)^lpha ext{ for } x,y \in E.$$

Proof.

Let $x, y \in E$ be given. We may assume that $x \neq y$. Let k be such that

$$4r_k \le d(x, y) \le 4r_{k-1} = 4\tau^{-2}r_k.$$
(16)

Then $r_k \leq 4r_k \leq d(x, y) \leq diam(E) \leq r_{k_0}$ by our definition of k_0 and so $k \geq k_0$.

Assouad Embedding Theorem, proof (19): Lemma 4, proof. Upper bound.

By the choice of r_k as above (16) and the Lipschitz bound (10), we get that

$$|F_{k}^{\xi}(x) - F_{k}^{\xi}(y)| \leq ||F_{k}^{\xi}||_{lip} d(x, y) \leq r_{k}^{\alpha - 1} d(x, y) \leq \left(\frac{d(x, y)}{4\tau^{-2}}\right)^{\alpha - 1} d(x, y)$$
(17)

But by the estimate (9) we get for sufficiently small τ , that

$$||F^{\xi}(x) - F^{\xi}(y)| - |F_{k}^{\xi}(x) - F_{k}^{\xi}(y)|| \leq 2||F^{\xi} - F_{k}^{\xi}||_{\infty}$$
$$\leq 4\tau^{2}r_{k+1}^{\alpha}$$
$$= 4\tau^{2}\tau^{2\alpha}r_{k}$$
$$\leq 2\tau^{2}d(x, y)^{\alpha}.$$
(18)

These inequalities give the upper bound in Lemma (4). Similarly, for \widetilde{F}_k^{ξ} .

Assouad Embedding Theorem, proof (20): Lemma 4, proof. Lower bound.

- For the lower bound, consider the same fixed $x, y \in E$.
- Since we have a covering, by (2), we can find j ∈ J_k such that x ∈ B_j.
- Let ξ ∈ Ξ be the color such that j ∈ J_k(ξ), i.e. the color of the ball B_j.
- consider two cases separately:
 - 1. $y \in 2B_i$ for some $i \in J_k(\xi)$. Then we need to be able to choose the v_j 's as in Lemma (3).
 - 2. $y \notin 2B_i$ for all $i \in J_k(\xi)$. Then all the terms $\varphi_i(x)$ vanish.
- Note that now we have

$$y \in B(x_j, 10\tau^{-2}r_k) \setminus 2B_j.$$
(19)

- y ∈ B(x_j, 10τ⁻²r_k) \ 2B_j, follows from our choice of scale (16), because d(x, x_j) ≤ r_k, since x ∈ B_j.
- Moreover, y ∉ 2B_j, since if y ∈ 2B_j, then d(x, y) ≤ d(x, x_j) + d(x_j, y) ≤ 3r_k, which would contradict our choice of scale (16).

Assouad Embedding Theorem, proof (21): Lemma 4, proof. Lower bound, case $y \in 2B_i$ for some $i \in J_k(\xi)$.

- We have $i \neq j$, by (19).
- Let us assume that i < j. Otherwise, we would use F^ξ_k instead of F^ξ_k.
- All the $\varphi_l(y), l \neq i$, are equal to 0, by the definition of φ_l and the coloring $J_k(\xi)$.

Then

$$F_k^{\xi}(y) = F_{k-1}^{\xi}(y) + r_k^{\alpha} v_i \varphi_i(y) = G_{k,j}^{\xi}(y)$$

with $F_{k-1}^{\xi}(y) = 0$ if $k = k_0$.

Now we can apply Lemma (3), because of the fact that $y \in B(x_j, 10\tau^{-2}r_k) \setminus 2B_j$. Thus

$$|F_k^{\xi}(x) - F_k^{\xi}(y)| = |F_k^{\xi}(x) - G_{k,j}(y)| \ge \tau^3 r_k^{\alpha}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assouad Embedding Theorem, proof (22): Lemma 4, proof. Lower bound, case $y \in 2B_i$ for some $i \in J_k(\xi)$. (2)

▶ We combine this with (18) and get that

$$\begin{aligned} |F^{\xi}(x) - F^{\xi}(y)| &\geq |F^{\xi}_{k}(x) - F^{\xi}_{k}(y)| - 4\tau^{2}\tau^{2\alpha}r^{\alpha}_{k} \\ &\geq \tau^{3}r^{\alpha}_{k} - 4\tau^{2}r^{\alpha}_{k+1} = \tau^{3}r^{\alpha}_{k}(1 - 4\tau^{-1}\tau^{2\alpha}) \geq \frac{\tau^{3}r^{\alpha}_{k}}{2} \end{aligned}$$

since by definition, $r_k = \tau^{2k}$ and because we can take $\alpha > 2/3$ and τ small.

• When $1/2 \le \alpha \le 2/3$ we could simply use the standard Assouad proof.

Now

$$|F(x) - F(y)| \ge |F^{\xi}(x) - F^{\xi}(y)| \ge \frac{\tau^3 r_k^{\alpha}}{2}$$
$$\ge \frac{\tau^3}{2} \left(\frac{d(x, y)}{4\tau^{-2}}\right)^{\alpha}$$
$$\ge \frac{\tau^5}{8} d(x, y)^{\alpha}$$

Assouad Embedding Theorem, proof (23): Lemma 4, proof. Conclusion.

- This proves the lemma when $y \in 2B_i$ for some $i \in J_k(\xi)$.
- ► Thus F^ξ_k(y) = G^ξ_{k,j}(y) = F^ξ_{k-1}(y) for all j by the definition of the functions F^ξ_k and G^ξ_{k,j}.
- In the other case, all the φ_i(x) vanish by the definition of the functions φ_i.
- ► Thus $F_k^{\xi}(y) = G_{k,j}^{\xi}(y) = F_{k-1}^{\xi}(y)$ as in the first case and we can continue similarly.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This proves Lemma(4).

Assouad Embedding Theorem, proof (24): E unbounded.

- Now suppose E is an unbounded metric space with doubling constant C₀.
- Fix an origin x₀.
- Apply the construction above to sets $E_m = E \cap B(x_0, 2^m)$.
- The set E_m is itself a doubling metric space with constant C_0^2 .
- Why? If x ∈ E_m and r > 0, we can cover the set E_m ∩ B(x, 2r) with C₀² balls of radius r/2 which, when they meet E_m, we can replace with balls of radius r whose centers are in E_m.
- From the proof above, we get a mapping F_m such that

$$C^{-1}d(x,y)^{lpha} \leq |F_m(x) - F_m(y)| \leq Cd(x,y)^{lpha}$$

for $x, y \in E_m$, where C depends only on C_0 and α , but not on m.

We may assume hat F_m(x₀) = 0, after possibly adding a constant, which would not destroy the bilipshitz estimate above.

Assouad Embedding Theorem, proof (25): E unbounded. Conclusion.

- ▶ Define for each $k \in \mathbb{Z}$, a maximal collection $\{x_j\} \subset E, j \in J_k$, with $d(x_i, x_j) \ge r_k$ for $i \ne j$. This is still at most countable.
- ► For each x_j, the sequence {F_m(x_j)} is bounded. Hence we can extract a subsequence, so that the sequence F_{m_j} converges for each x_j.
- The convergence is uniform on each bounded subset of E and thus the bilipschitz estimate above passes to the limit.
- ► This completes our proof of the Assouad Embedding Theorem.

(日)((1))

References

P. Assouad, *Plongements lipschitziens dans* \mathbb{R}^n , Bull. Soc. Math. France, 111(4), 429-447, 1983.

J. Heinonen, *Lectures on Analysis on Metric Spaces*, Springer-Verlag, 2001.

G. David, M. Snipes, A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension, Analysis and Geomery in Metric Spaces, 2013, 36-41.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

S. Semmes, Calculus, fractals, and analysis on metric spaces.

R. Korte, Metrisen avaruuden upottaminen avaruuteen \mathbb{R}^n , Matematiikan erikoistyö, 2003.

G. Glaeser, Étude de quelques algebres Tayloriennes, 1944,