Assouad Embedding Theorem, MS-E1991
 Calculus of Variations, Project work

Valter Lillberg

March 27, 2019

Theorem (Assouad embedding theorem, N independent of α) For each $C_{0} \geq 1$, there is an integer N and, for $1 / 2<\alpha<1$, a constant $C=C\left(C_{0}, \alpha\right)$ such that if (E, d) is a metric space hat admits the metric doubling constant C_{0}, we can find an injection $F: E \rightarrow \mathbb{R}^{N}$ such that

$$
C^{-1} d(x, y)^{\alpha} \leq|F(x)-F(y)| \leq C d(x, y)^{\alpha}
$$

for $x, y \in E$.

The embedding problem for metric spaces

An embedding is a map that is a homeomorphism onto its image.
An embedding $f: X \rightarrow Y$ is called:

- quasisymmetric if there is a homeomorphism $\eta:[0, \infty) \rightarrow[0, \infty)$ so that

$$
|x-a| \leq t|x-b| \text { implies }|f(x)-f(a)| \leq \eta(t)|f(x)-f(b)|
$$

for all triples a, b, x of points in X, and for all $t>0$.
Quasisymmetric maps distort relative distances by a bounded amount.

- bi-Lipschitz if both f and f^{-1} are Lipschitz. bi-Lipschitz maps distort absolute distances by a bounded amount, a much stricter condition.
- The snowflaking identity map $(X,|x-y|) \rightarrow\left(X,|x-y|^{\alpha}\right)$ is t^{α}-quasisymmetric. C-bi-Lipschitz maps are $C^{2} t$-quasisymmetric.
- Thus, Assouad's snowflaked bi-Lipshitz embedding is quasisymmetric.

When is a metric space bi-Lipshitz embeddable to \mathbb{R}^{n} ?

A necessary condition is that the space is doubling.
But this is not sufficient. Common counterexamples include:

1. The Heisenberg group with its Carnot metric (Py Pansu's thm: every lipschitz map is differentiable a.e., would get an algebra homomorphism, incompatible with the Abelian structure of \mathbb{R}^{n}. Because of non-commutativity of the Heisenberg group has necessarily a kernel, but bilipschitzness implies injectivity).
2. Laakso spaces $([0,1] \times K$, where K is a Cantor set with identification of points through wormholes).
3. Bourdon-Pajot spaces (related to certain hyperbolic buildings).

However, if we alter our metric slightly by mapping the metric space ($M . d(x, y))$ with an identity mapping to the metric space ($M, d(x, y)^{\alpha}$) , $0<\alpha<1$, we obtain the desired embedding into an Euclidean space \mathbb{R}^{n} for some $n \in \mathbb{N}$. This modification of the metric is called snowflaking.

Assouad implies quasisymmetric embeddings

Which metric spaces are quasisymmetrically equivalent? Difficult. Which spaces can be quasisymmetrically embedded in some Euclidean space? Easier:

Theorem (Quasisymmetric embeddability)
A metric space is quasisymmetrically embeddable in some Euclidean space if and only if it is doubling, quantitatively.
Necessity follows from the following
Theorem (Conservation of the doubling property)
A quasisymmetric image of a doubling space is doubling, quantitatively.
Sufficiency is implied by the Assouad embedding theorem as snowflaking is t^{α}-quasisymmetric.

Theorem (Assouad Embedding Theorem)
Each snowflaked version of a doubling metric space admits a bi-Lipschitz embedding in some Euclidean space.

Assouad Embedding Theorem

Theorem (Assouad embedding theorem, original)
Let $(E, d(x, y))$ be a doubling metric space. Then for every $\alpha \in(0,1)$ there exist $N, C>0$ and $F: E \rightarrow \mathbb{R}^{N}$ such that

$$
C^{-1} d(x, y)^{\alpha} \leq|F(x)-F(y)| \leq C d(x, y)^{\alpha}
$$

for all $x, y \in M$.
We prove a version with dimension independent of snowflaking.
Theorem (Assouad embedding theorem, N independent of α) For each $C_{0} \geq 1$, there is an integer N and, for $1 / 2<\alpha<1$, a constant $C=C\left(C_{0}, \alpha\right)$ such that if (E, d) is a metric space hat admits the metric doubling constant C_{0}, we can find an injection $F: E \rightarrow \mathbb{R}^{N}$ such that

$$
C^{-1} d(x, y)^{\alpha} \leq|F(x)-F(y)| \leq C d(x, y)^{\alpha}
$$

for $x, y \in E$.

Snowflake spaces

Definition

Let $(M, d(x, y))$ be a metric space. Its snowlaked version is a metric space $\left(M, d(x, y)^{\alpha}\right), 0<\alpha<1$.
The name stems from the fact that $\left(\mathbb{R},|x-y|^{\alpha}\right), 1 / 2<\alpha<1$ admits a bi-Lipschitz embedding in \mathbb{R}^{2}, and the image resembles the boundary of a snowflake.
(P. Assouad, Plongements lipschitziens dans \mathbb{R}^{n})

- la troisième méthode utilise des courbes de Von KOCH généralisées (de fait cette méthode étend l'observation, due à GLAESER [5] p. 57, que la courbe classique de H. Von KOCH [7] réalise un plongement Lipschitzien de I'espace $\left([0,1],\left.\|\cdot\|\right|^{\log 3 / \log 4}\right)$ dans $\left(\mathbb{R}^{2},\|\cdot\|\right)$).

La construction que nous allons écrire généralise, comme on le verra, celle de la courbe de Von Koch classique [7]; c'est ce qui justifie notre terminologie.

Figure: Glaeser: Koch curve is a bi-Lipschitz image of $\left([0,1],|\cdot|^{\log 3 / \log 4}\right)$ on $\left(\mathbb{R}^{2},\|\cdot\|\right)$).

Un exemple plus êlémentaire est fourni par la célèbre courbe de von Koch ([1]).

$$
\text { Exemple } 8 \text {. }
$$

Figure 2
On sait que cette courbe C n'est pas rectifiable; mais on peut définir sur C une mesure: sa "pseudo-longueur" (Cf. Bouligand [1] p. 218) possedant 1 ""exposant de similitude" $\alpha=\log 4 / \log 3$. Cela veut dire que si l'on soumet C à une similitude de rapport k, sa pseudo-longueur est multipliée par k^{a}.

Figure: Glaeser: Koch curve is a bi-Lipschitz image of $\left([0,1],|\cdot|^{\log 3 / \log 4}\right)$ on $\left(\mathbb{R}^{2},|\cdot|\right)$).

On sait que cette courbe est localement semblable à elle-même.
Lemme. Il existe deux constantes K et K^{\prime} telles que, pour tout couple de points $M, N \in C$, on ait:
$O \leqq K^{\prime} .\|M N\|^{a} \leqq$ pseudo-longueur de l'arc $\widehat{M N} \leqq K .\|M N\|^{a}$.
L'existence des constantes est trivialement assurée si l'on se borne à envisager des couples M, N satisfaisant a $\|M N\| \geqq 1 / 9$ (si l'on prend $\mathrm{t}=\|A E\|$ poat unixé de longueut).

Remarquons alors qui si $\|M N\| \leq 1 / 9$, l'arc $M \hat{N}$ est entictrement intériear i l'un des trois arcs saivants: $\widehat{A C}, \widehat{I J}$, ou $\widehat{B C}$ (cf. fig.). Il m tesulte qu'il existe une similitade de rafport $V^{-\frac{1}{3}}$ ou 3 (stivant le cas) qui cransforme l'arc $\hat{M N}$ en un autre are de C.

Ceci posé, quels que soient M et N, il existe th entier k tel que $t /(\sqrt{3})^{k+1} \leqq\|M N\| \leqq t /(\sqrt{3})^{t}$. Tant que $k \geqq 4$, la remarque precedente permer des substitue: à l'arc $\hat{M N}$ un arc plus grand semblable au premier. Dans une telle similitade, le rafport $\frac{\mathrm{ps} \text {-long } \widehat{M N}}{\|M N\|^{4}}$ n'est pas modiffé. On peut donc toujours se ramener av cas ou $\|M N\| \geq 1 / 9$. Le lemme est ainsi etabli.

Glaeser: Koch curve is a bi-Lipschitz image of $\left([0,1],|\cdot|^{\log 3 / \log 4}\right)$ on $\left.\left(\mathbb{R}^{2},|\cdot|\right)\right)$.

Lemma (Glaeser, 1958)
For each point $x, y \in C$, there exist constants K and K^{\prime} such that
$0 \leq K^{\prime}|x-y|^{\alpha} \leq$ pseudo-length of arc $\widehat{x y} \leq K|x-y|^{\alpha}, \alpha=\log 3 / \log 4$

Proof.

- If $|x-y| \geq 1 / 9$, existence of constants K, K^{\prime} is easy to see.
- If $|x-y| \leq 1 / 9$, then the arc $\widehat{x y}$ is entirely within one of the following segments of the curve (cf. figure) $\widehat{A C}, \widehat{I J}$ or $\widehat{B C}$.
- Depending on the case, there exists a similarity mapping of ratio $\sqrt{3}$ or 3 between the segment $\widehat{x y}$ and another arc of C.
- Thus, there exist a $k \in \mathbb{N}, 1 /(\sqrt{3})^{k+1} \leq|x-y| \leq 1 /(\sqrt{3})^{k}$.
- For $k \geq 4$ we can substitute the arc with a bigger similar arc without changing $\frac{\text { pseudolength }(\widehat{x y})}{|x-y|^{\alpha}}$. Can reduce to $|x-y| \geq 1 / 9$.

Snowflake space is a metric space

- If $(M, d(x, y))$ is any metric space and $0<\alpha<1$, then $d(x, y)^{\alpha}$ also defines a metric on M.
- We need to check that the triangle inequality still holds. If a, b are nonnegative real numbers and $0<\alpha<1$, then

$$
(a+b)^{\alpha} \leq a^{\alpha}+b^{\alpha}
$$

Observe, that

$$
\max (a, b) \leq\left(a^{\alpha}+b^{\alpha}\right)^{1 / \alpha}
$$

Then

$$
a+b \leq\left(a^{\alpha}+b^{\alpha}\right) \max (a, b)^{1-\alpha} \leq\left(a^{\alpha}+b^{\alpha}\right)^{1 / \alpha}
$$

- The snowflaked metric $d(x, y)^{\alpha}$ still generates the same topology as $d(x, y)$.

Snowflaking turns all continuous paths of finite length unrectifiable.

- Let $(E, d(x, y))$ be a metric space and $x, y \in E, x \neq y$.
- Let $\gamma:[0,1] \rightarrow E$ be a rectifiable path joining x and y.
- Then, for every $\epsilon>0$, there exists a partition $0=t_{0}<t_{1}<t_{2} \cdots \leq t_{n}=1$ of the interval $[0,1]$ such that $d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right) \leq \epsilon$ for all $i \in 1, \ldots, n$.
- For length $I(\gamma)$ of the path γ in the snowflaked metric $d(x, y)^{\alpha}, 0<\alpha<1$, the following holds:

$$
\begin{aligned}
I(\gamma)_{\left(E, d^{\alpha}\right)} & \geq \sum_{i=1}^{n} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right)^{\alpha} \\
& \geq \sum_{i=1}^{n} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right) \epsilon^{\alpha-1} \\
& \geq \epsilon^{\alpha-1} d(x, y) \rightarrow \infty \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

Snowflaked spaces have plenty of nonconstant functions with "gradient" 0

- Suppose that f is a Lipschitz function on M with respect to $d(x, y)$.
- Then

$$
\lim _{p \rightarrow x}=\frac{|f(x)-f(p)|}{d(x, p)^{\alpha}}=0
$$

- Thus there are plenty of nonconstant functions with "gradient" 0 with respect to the snowflaked distance. Every Lipschitz function with respect to the original meric will do.
- See Semmes, "Calculus, fractals, and analysis on metric spaces", for more.

Problems with the original proof

For values of α bounded away from both 0 and 1 we can use the standard Assouad proof to show that the resulting snowflake spaces can all be embedded in a fixed dimensional Euclidean space. For α close to 0 , the dimension independence fails necessarily. Even when $E=\mathbb{R}$ with the usual distance, we need many dimensions to construct an α-snowflake. However, for α close to 1 , we can get dimension independence, but the standard proof does not give it. In fact $N \rightarrow \infty$, as $\alpha \rightarrow 1$, by the standard proof of Assouad's theorem.

Assouad with dimension independent of snowflaking

A probabilistic proof of the following theorem was given by Naor and Neiman. Their proof constructs a random embedding to \mathbb{R}^{N} with a limited dependency structure of events and proves that the desired bi-Lipschitz embedding exists with positive probability using a generalized version of Lovasz Local Lemma.
We present a simpler non-probabilistic proof by David and Snipes (2012) that modifies the standard proof. We use an adaptive argument and work at small relative scales to use the fact that there is a lot of space in \mathbb{R}^{n}. A very sparse collection of scales helps control the residual terms.

Assouad Embedding Theorem, dimension independent of

 snowflaking, statementDefinition
A metric space (E, d) is metrically doubling if there is an integer $C_{0} \geq 1$ such that for every $r>0$, every (closed) ball of radius $2 r$ in E can be covered with no more than C_{0} balls of radius r. We call C_{0} a metric doubling constant for (E, d).

Theorem (Naor,Neiman(2012), David,Snipes(2012))
For each $C_{0} \geq 1$, there is an integer N and, for $1 / 2<\alpha<1$, a constant $C=C\left(C_{0}, \alpha\right)$, such that if (E, d) is a metric space that admits the metric doubling constant C_{0}, we can find an injection $F: E \rightarrow \mathbb{R}^{N}$ such that

$$
C^{-1} d(x, y)^{\alpha} \leq|F(x)-F(y)| \leq C d(x, y)^{\alpha}
$$

for $x, y \in E$.

Assouad Embedding Theorem, dimension independent of

 snowflaking, proofProof.(David,Snipes(2012))
We need to consider only α very close to 1 . We use a small parameter $\tau>0$, with $\tau \leq 1-\alpha$, and work at the scales

$$
\begin{equation*}
r_{k}=\tau^{2 k}, k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Suppose first that E has finite diameter. Then we can choose an initial scale $k=k_{0}$ such that $r_{k_{0}} \geq \operatorname{diam} E$. Our construction and main constants will not depend on this choice.
For each $k \geq k_{0}$, select a maximal collection $\left\{x_{j}\right\}, j \in J_{k}$, of points of E, with $d\left(x_{i}, x_{j}\right) \geq r_{k}$ for $i \neq j$. Thus, by maximality

$$
\begin{equation*}
E \subset \bigcup_{j \in J_{k}} B\left(x_{j}, r_{k}\right) \tag{2}
\end{equation*}
$$

Assouad Embedding Theorem, dimension independent of snowflaking, proof (2)

Let $N(x)$ denote the number of indices $j \in J_{k}$ such that $d\left(x_{j}, x\right) \leq 10 r_{k}$. Then

$$
\begin{equation*}
N(x) \leq C_{0}^{5} \text { for } x \in E \tag{3}
\end{equation*}
$$

This holds, since we can cover $B\left(x, 10 r_{k}\right)$ with fewer than C_{0}^{5} balls D_{l} of radius $r_{k} / 3$.
Each D_{l} contains at most one x_{j}, because $d\left(x_{i}, x_{j}\right) \geq r_{k}$ for $i \neq j$. All the x_{j} that lie in $B\left(x, 10 r_{k}\right)$ are contained in some D_{l}, so (3) follows.
From (3) and the assumption that E is bounded, we get that J_{k} is finite.

Assouad Embedding Theorem, proof (3)

Set $\equiv=\left\{1,2, \ldots, C_{0}^{5}\right\}$ (a set of colors).
Enumerate J_{k}, and for $j \in J_{k}$ let $\xi(j)$ be the first color not taken by an earlier close neighbor, i.e. earlier $i \in J_{k}$ such that $d\left(x_{i}, x_{j}\right) \leq 10 r_{k}$. By construction

$$
\xi(i) \neq \xi(j) \text { for } i, j \in J_{k} \text { with } i \neq j \text { and } d\left(x_{i}, x_{j}\right) \leq 10 r_{k} .
$$

For each color $\xi \in \Xi$, define the set $J_{k}(\xi):=\left\{j \in J_{k}: \xi(j)=\xi\right\}$. Thus

$$
\begin{equation*}
d\left(x_{i}, x_{j}\right)>10 r_{k} \text { for } i, j \in J_{k}(\xi) \text { such that } i \neq j \tag{4}
\end{equation*}
$$

For each $j \in J_{k}$, set $\varphi_{j}(x)=\max \left\{0,1-r_{k}^{-1} \operatorname{dist}\left(x, B_{j}\right)\right\}$. This makes sure that

$$
\begin{align*}
0 \leq \varphi_{j}(x) & \leq 1 \text { everywhere } \\
\varphi_{j}(x) & =1 \text { for } x \in B_{j}, \\
\varphi_{j}(x) & =0 \text { for } x \in E \backslash 2 B_{j} . \tag{5}
\end{align*}
$$

and
φ_{j} is Lipschitz, with $\left\|\varphi_{j}\right\|_{\text {lip }} \leq r_{k}^{-1}$.

Assouad Embedding Theorem, proof (4)

For each color $\xi \in$ 三, we will construct two mappings:
$F^{\xi}: E \rightarrow \mathbb{R}^{M}$ and a slightly modified version $\widetilde{F}^{\xi}: E \rightarrow \mathbb{R}^{M}$. Here M is a very large integer depending only on the metric doubling constant.
Our final mapping will be the tensor product of these $2 C_{0}^{5}$ mappings. Thus the dimension N is $2 C_{0}^{5} M$. The mapping F^{ξ} will be of the form:

$$
F^{\xi}(x)=\sum_{k \geq k_{0}} r_{k}^{\alpha} f_{k}^{\xi}(x)
$$

where

$$
\begin{equation*}
f_{k}^{\xi}(x)=\sum_{j \in J_{k}(\xi)} v_{j} \varphi_{j}(x) \tag{7}
\end{equation*}
$$

with vectors $v_{j} \in \mathbb{R}^{M}$ that will be carefully chosen later.

Assouad Embedding Theorem, proof (5)

The extra room in \mathbb{R}^{M} will be used to give lots of different choices of v_{j}.
The other mapping \widetilde{F}^{ξ} will have the same form, but with a different choice of the vectors $\left\{v_{j}\right\}$.
For both functions we will choose the v_{j} inductively, and so that

$$
v_{j} \in B\left(0, \tau^{2}\right) \subset \mathbb{R}^{M}
$$

with the same very small $\tau>0$ as in the definition of the scales $r_{k}=\tau^{2 k}$. τ will be chosen later. ($\tau \leq 1-\alpha$ will do, as we'll see.) With this choice, we see that

$$
\left\|f_{k}^{\xi}\right\|_{\infty} \leq \tau^{2}
$$

because the $\varphi_{j}, j \in J_{k}(\xi)$ have disjoint supports by (4) and(5). Hence, the series in (7) converges.

Assouad Embedding Theorem, proof (6)

Moreover, if we set

$$
\begin{equation*}
F_{k}^{\xi}=\sum_{k_{0} \leq \ell \leq k} r_{\ell}^{\alpha} f_{\ell}^{\xi}(x) \tag{8}
\end{equation*}
$$

we get that

$$
\begin{equation*}
\left\|F^{\xi}-F_{k}^{\xi}\right\|_{\infty} \leq \sum_{\ell \geq k} r_{\ell}^{\alpha} \tau^{2}=r_{k+1}^{\alpha} \tau^{2} \sum_{\ell \geq 0} \tau^{2 \ell \alpha} \leq 2 \tau^{2} r_{k+1}^{\alpha} \tag{9}
\end{equation*}
$$

because $r_{\ell}=\tau^{2 \ell}$ and $\tau^{2 \alpha}<1 / 2$ when τ is small.

Assouad Embedding Theorem, proof (7), bound $\|\cdot\|_{\text {lip }}$

The Lipschitz norm of f_{k}^{ξ} is

$$
\left\|f_{k}^{\xi}\right\|_{l i p} \leq \tau^{2} r_{k}^{-1}
$$

by (6) and because the φ_{j} are supported on disjoint balls. Thus

$$
\begin{aligned}
\left\|F_{k}^{\xi}\right\|_{l i p} & \leq \sum_{\ell \leq k} r_{\ell}^{\alpha}\left\|f_{\ell}^{\xi}\right\|_{l i p} \\
& \leq \tau^{2} \sum_{\ell \leq k} r_{\ell}^{\alpha-1} \\
& =\tau^{2} r_{k}^{\alpha-1} \sum_{\ell \leq k} \tau^{2(\ell-k)(\alpha-1)} \\
& =\tau^{2} r_{k}^{\alpha-1}\left(1-\tau^{2(1-\alpha)}\right)^{-1}
\end{aligned}
$$

Assouad Embedding Theorem, proof (8), bound $\|\cdot\|_{\text {lip }}$
Now, take $\tau \leq 1-\alpha$. Then

$$
\ln \left(\tau^{2(1-\alpha)}\right)=2(1-\alpha) \ln (\tau)=-2(1-\alpha) \ln \left(\frac{1}{\tau}\right) \leq-2 \tau \ln \left(\frac{1}{\tau}\right)
$$

By exponentiating, we get that

$$
\tau^{2(1-\alpha)} \leq e^{-2 \tau \ln \left(\frac{1}{\tau}\right)} \leq 1-\tau \ln \left(\frac{1}{\tau}\right)
$$

if τ is small enough, hence

$$
1-\tau^{2(1-\alpha)} \geq \tau \ln \left(\frac{1}{\tau}\right)
$$

and thus

$$
\begin{equation*}
\left\|F_{k}^{\xi}\right\|_{\text {lip }} \leq \frac{\tau}{\ln \left(\frac{1}{\tau}\right)} r_{k}^{\alpha-1} \leq r_{k}^{\alpha-1} \tag{10}
\end{equation*}
$$

if τ is small enough, for example $\tau<1 / 2$ works.

Assouad Embedding Theorem, proof (9), choose vectors v_{j}

- We want to choose the vectors $v_{j}, j \in J_{k}$ so that the differences $\left|F_{k}^{\xi}(x)-F_{k}^{\xi}(y)\right|$, will be as large as possible in order to allow us to prove that the inverse $\left(F_{k}^{\xi}\right)^{-1}$ is Lipschitz.
- Fix $k \geq k_{0}$, suppose that the F_{k-1} were already constructed, and fix a color $\xi \in$.
- Put any order $<$ on the finite set $J_{k}(\xi)$.
- We will choose the v_{j} for F_{k}^{ξ} in Lemma 3 using the order $<$.
- We will use the reverse order for \widetilde{F}_{k}^{ξ}.

Assouad Embedding Theorem, proof (10), choose v_{j}

Recall that we defined

$$
\begin{equation*}
F_{k}^{\xi}(y)=F_{k-1}^{\xi}+r_{k}^{\alpha} f_{k}^{\xi}(y)=F_{k-1}^{\xi}+r_{k}^{\alpha} \sum_{i \in J_{k}(\xi)} v_{i} \varphi_{i}(y) . \tag{11}
\end{equation*}
$$

For each $j \in J_{k}(\xi)$, we shall also consider the partial sum $G_{k, j}^{\xi}$ defined by

$$
\begin{equation*}
G_{k, j}^{\xi}(y)=F_{k-1}^{\xi}(y)+r_{k}^{\alpha} \sum_{i \in J_{k}: i<j} v_{i} \varphi_{i}(y), \tag{12}
\end{equation*}
$$

which we therefore assume to be known before we choose v_{j}.

Assouad Embedding Theorem, proof (11), choose v_{j}

Lemma (3)

For each $j \in J_{k}(\xi)$, we can choose $v_{j} \in B\left(0, \tau^{2}\right)$ so that

$$
\begin{equation*}
\left|F_{k}^{\xi}(x)-G_{k, j}^{\xi}(y)\right| \geq \tau^{3} r_{k}^{\alpha} \tag{13}
\end{equation*}
$$

for $x \in B_{j}$ and $y \in B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j}$.
For $x \in B_{j}$, we have $\varphi_{j}(x)=1$ and $\varphi_{i}(x)=0$ for all the other indices $i \neq j \in J_{k}(\xi)$. Thus

$$
\begin{equation*}
F_{k}^{\xi}(x)=F_{k-1} \xi(x)+r_{k}^{\alpha} \xi_{k}^{\xi}(x)=F_{k-1}^{\xi}(x)+r_{k}^{\alpha} v_{j} \tag{14}
\end{equation*}
$$

by definitions of the functions (7) and (8).

Assouad Embedding Theorem, proof (12):

We use \| $\cdot \|_{\text {lip }}$ bounds to work with discrete sets
By the Lipschitz bound for F_{k}^{ξ} (10), and its proof we have that

$$
\left\|F_{k}^{\xi}\right\|_{\text {lip }} \leq r_{k}^{\alpha-1} \text { and also }\left\|G_{k, j}^{\xi}\right\| \|_{i p} \leq r_{k}^{\alpha-1}
$$

since we just add fewer terms.

- We use this to replace B_{j} and $B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j}$ with discrete sets.
- Set $\eta=\tau^{3} r_{k}$, and pick an η-dense set X in B_{j} and an η-dense set Y in $B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j}$
- We shall prove that we can choose the vectors v_{j} so that

$$
\begin{equation*}
\left|F_{k}^{\xi}(x)-G_{k, j}^{\xi}(y)\right| \geq 3 \tau^{3} r_{k}^{\alpha} \tag{15}
\end{equation*}
$$

for $x^{\prime} \in X$ and $y^{\prime} \in Y$.

- We check next that the lemma will follow.

Assouad Embedding Theorem, proof (13):

Proof of Lemma 3 assuming that the discrete bound holds

For $x \in B_{j}$, we can find $x^{\prime} \in X$ such that

$$
\left|F_{k}^{\xi}\left(x^{\prime}\right)-F_{k}^{\xi}(x)\right| \leq\left\|F_{k}^{\xi}\right\|_{\text {lip }} \eta \leq r_{k}^{\alpha-1} \cdot \tau^{3} r_{k}=\tau^{3} r_{k}^{\alpha}
$$

Similarly, for $y \in B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j}$ we can find y^{\prime} in Y such that

$$
\left|G_{k, j}^{\xi}(y)-G_{k, j}^{\xi}\left(y^{\prime}\right)\right| \leq\left\|G_{k, j}^{\xi}\right\| \|_{i p} \eta \leq \tau^{3} r_{k}^{\alpha} .
$$

Then (13) follows. In other words, we can find a vector v_{j} such that the points considered map to points sufficiently far away from each other.

Assouad Embedding Theorem, proof (14):

 The discrete sets X and Y are small.
Remark 1.

In a doubling metric space, for $\lambda>0$, every ball of radius λr can be covered by $C_{0} \lambda^{N_{0}}$ balls of radius r, where $N_{0}=\log _{2} C_{0}$. To see this replace λ by the next power of 2 .

- First we bound $|X|$, the number of elements in X.
- Here we can use the doubling property, as above.
- Thus, we can cover $B_{j}=B\left(x_{j}, r_{k}\right)$ by $C_{0}\left(2 \tau^{-3}\right)^{N_{0}}$ balls of radius $\eta / 2$, since $\eta=\tau^{3} r_{k}$.
- We keep those that meet B_{j}, pick an element of B_{j} in each such ball and get an η-dense net X, with $|X| \leq C_{0}\left(2 \tau^{-3}\right)^{N_{0}}$ balls of radius $\eta / 2$.

Assouad Embedding Theorem, proof (15): The discrete sets X and Y are small.

- Similarly, we can find a discrete η-dense net Y such that

$$
|Y| \leq C_{0}\left(2 \frac{10 \tau^{-2} r_{k}}{\eta}\right)^{N_{0}}=C_{0}\left(\frac{20 \tau^{-2} r_{k}}{\tau^{3} r_{k}}\right)^{N_{0}}=C_{0}\left(20 \tau^{-5}\right)^{N_{0}}
$$

- The total number of pairs $\left(x^{\prime}, y^{\prime}\right)$ for which we have to check that discrete points map far (15), is thus

$$
|X||Y| \leq C_{0}^{2}\left(40 \tau^{-8}\right)^{N_{0}}
$$

Assouad Embedding Theorem, proof (16):

A ball $B\left(0, \tau^{2}\right) \subset \mathbb{R}^{M}$ for sufficiently large M contains a bigger $(|V|>|X||Y|)$, maximal finite set V with points separated by at least $7 \tau^{3}$.

- Pick such a set.
- For each pair $\left(x^{\prime}, y^{\prime}\right)$, the different choices of $v_{j} \in V$ yield the same value of $G_{k, j}^{\xi}\left(y^{\prime}\right)$
- The values of $F_{k}^{\xi}\left(x^{\prime}\right)$ differ by at least $7 \tau^{3} r_{k}^{\alpha}$, because the only $F_{k}^{\xi}\left(x^{\prime}\right)$ changes by precisely v_{j}.
- Thus the discrete bound (15) cannot for this pair (x^{\prime}, y^{\prime}) can fail for at most one choice of $v_{j} \in V$.
- Thus it is enough to show that V has more than $|X||Y|$ elements.
- Take C_{M} to be the doubling constant of \mathbb{R}^{M}.
- Remark 1 implies that $|V| \geq C_{M}\left(\frac{1}{7 \tau}\right)^{\log _{2} C_{M}}$.
- This is larger than $|X \| Y|$ if $C_{M}>C_{0}^{8}$ and τ is small enough, depending on M. Lemma 3 follows.

Assouad Embedding Theorem, proof (17): Define F.

- For each color ξ, choose the vectors v_{j}, and hence the mapping F_{k}^{ξ}, as in Lemma (3).
- Also define a second version \widetilde{F}_{k}^{ξ} using the opposite order on $J_{k}(\xi)$.
- By (9), $F^{\xi}: E \rightarrow \mathbb{R}^{M}$ is the limit $F^{\xi}=\lim _{k \rightarrow \infty} F_{k}^{\xi}$.
- We are ready to check that F, the tensor product of the maps $\left\{F^{\xi}, \widetilde{F}^{\xi}: \xi \in \Xi\right\}$, is bilipschitz from the snowflaked space $\left(E, d^{\alpha}\right)$.

Assouad Embedding Theorem, proof (18): Lemma 4.

Lemma (4)

We have that

$$
\frac{\tau^{2}}{8} d(x, y)^{\alpha} \leq|F(x)-F(y)| \leq 5 N \tau^{-2(1-\alpha)} d(x, y)^{\alpha} \text { for } x, y \in E
$$

Proof.

Let $x, y \in E$ be given. We may assume that $x \neq y$. Let k be such that

$$
\begin{equation*}
4 r_{k} \leq d(x, y) \leq 4 r_{k-1}=4 \tau^{-2} r_{k} \tag{16}
\end{equation*}
$$

Then $r_{k} \leq 4 r_{k} \leq d(x, y) \leq \operatorname{diam}(E) \leq r_{k_{0}}$ by our definition of k_{0} and so $k \geq k_{0}$.

Assouad Embedding Theorem, proof (19): Lemma 4, proof. Upper bound.

By the choice of r_{k} as above (16) and the Lipschitz bound (10), we get that

$$
\begin{equation*}
\left|F_{k}^{\xi}(x)-F_{k}^{\xi}(y)\right| \leq| | F_{k}^{\xi} \|_{\text {lip }} d(x, y) \leq r_{k}^{\alpha-1} d(x, y) \leq\left(\frac{d(x, y)}{4 \tau^{-2}}\right)^{\alpha-1} d(x, y) \tag{17}
\end{equation*}
$$

But by the estimate (9) we get for sufficiently small τ, that

$$
\begin{align*}
\left\|F^{\xi}(x)-F^{\xi}(y)|-| F_{k}^{\xi}(x)-F_{k}^{\xi}(y)\right\| & \leq 2\left\|F^{\xi}-F_{k}^{\xi}\right\|_{\infty} \\
& \leq 4 \tau^{2} r_{k+1}^{\alpha} \\
& =4 \tau^{2} \tau^{2 \alpha} r_{k} \\
& \leq 2 \tau^{2} d(x, y)^{\alpha} . \tag{18}
\end{align*}
$$

These inequalities give the upper bound in Lemma (4). Similarly, for \widetilde{F}_{k}^{ξ}.

Assouad Embedding Theorem, proof (20): Lemma 4,

 proof. Lower bound.- For the lower bound, consider the same fixed $x, y \in E$.
- Since we have a covering, by (2), we can find $j \in J_{k}$ such that $x \in B_{j}$.
- Let $\xi \in \equiv$ be the color such that $j \in J_{k}(\xi)$, i.e. the color of the ball B_{j}.
- consider two cases separately:

1. $y \in 2 B_{i}$ for some $i \in J_{k}(\xi)$. Then we need to be able to choose the v_{j} 's as in Lemma (3).
2. $y \notin 2 B_{i}$ for all $i \in J_{k}(\xi)$. Then all the terms $\varphi_{i}(x)$ vanish.

- Note that now we have

$$
\begin{equation*}
y \in B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j} \tag{19}
\end{equation*}
$$

- $y \in B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j}$, follows from our choice of scale (16), because $d\left(x, x_{j}\right) \leq r_{k}$, since $x \in B_{j}$.
- Moreover, $y \notin 2 B_{j}$, since if $y \in 2 B_{j}$, then $d(x, y) \leq d\left(x, x_{j}\right)+d\left(x_{j}, y\right) \leq 3 r_{k}$, which would contradict our choice of scale (16).

Assouad Embedding Theorem, proof (21): Lemma 4,

 proof. Lower bound, case $y \in 2 B_{i}$ for some $i \in J_{k}(\xi)$.- We have $i \neq j$, by (19).
- Let us assume that $i<j$. Otherwise, we would use \widetilde{F}_{k}^{ξ} instead of F_{k}^{ξ}.
- All the $\varphi_{I}(y), I \neq i$, are equal to 0 , by the definition of φ_{I} and the coloring $J_{k}(\xi)$.
- Then

$$
F_{k}^{\xi}(y)=F_{k-1}^{\xi}(y)+r_{k}^{\alpha} v_{i} \varphi_{i}(y)=G_{k, j}^{\xi}(y)
$$

with $F_{k-1}^{\xi}(y)=0$ if $k=k_{0}$.

- Now we can apply Lemma (3), because of the fact that $y \in B\left(x_{j}, 10 \tau^{-2} r_{k}\right) \backslash 2 B_{j}$. Thus

$$
\left|F_{k}^{\xi}(x)-F_{k}^{\xi}(y)\right|=\left|F_{k}^{\xi}(x)-G_{k, j}(y)\right| \geq \tau^{3} r_{k}^{\alpha} .
$$

Assouad Embedding Theorem, proof (22): Lemma 4, proof. Lower bound, case $y \in 2 B_{i}$ for some $i \in J_{k}(\xi)$.

- We combine this with (18) and get that

$$
\begin{aligned}
\left|F^{\xi}(x)-F^{\xi}(y)\right| & \geq\left|F_{k}^{\xi}(x)-F_{k}^{\xi}(y)\right|-4 \tau^{2} \tau^{2 \alpha} r_{k}^{\alpha} \\
& \geq \tau^{3} r_{k}^{\alpha}-4 \tau^{2} r_{k+1}^{\alpha}=\tau^{3} r_{k}^{\alpha}\left(1-4 \tau^{-1} \tau^{2 \alpha}\right) \geq \frac{\tau^{3} r_{k}^{\alpha}}{2}
\end{aligned}
$$

since by definition, $r_{k}=\tau^{2 k}$ and because we can take $\alpha>2 / 3$ and τ small.

- When $1 / 2 \leq \alpha \leq 2 / 3$ we could simply use the standard Assouad proof.
- Now

$$
\begin{aligned}
|F(x)-F(y)| \geq\left|F^{\xi}(x)-F^{\xi}(y)\right| & \geq \frac{\tau^{3} r_{k}^{\alpha}}{2} \\
& \geq \frac{\tau^{3}}{2}\left(\frac{d(x, y)}{4 \tau^{-2}}\right)^{\alpha} \\
& \geq \frac{\tau^{5}}{8} d(x, y)^{\alpha}
\end{aligned}
$$

Assouad Embedding Theorem, proof (23): Lemma 4, proof. Conclusion.

- This proves the lemma when $y \in 2 B_{i}$ for some $i \in J_{k}(\xi)$.
- Thus $F_{k}^{\xi}(y)=G_{k, j}^{\xi}(y)=F_{k-1}^{\xi}(y)$ for all j by the definition of the functions F_{k}^{ξ} and $G_{k, j}^{\xi}$.
- In the other case, all the $\varphi_{i}(x)$ vanish by the definition of the functions φ_{i}.
- Thus $F_{k}^{\xi}(y)=G_{k, j}^{\xi}(y)=F_{k-1}^{\xi}(y)$ as in the first case and we can continue similarly.
- This proves Lemma(4).

Assouad Embedding Theorem, proof (24): E unbounded.

- Now suppose E is an unbounded metric space with doubling constant C_{0}.
- Fix an origin x_{0}.
- Apply the construction above to sets $E_{m}=E \cap B\left(x_{0}, 2^{m}\right)$.
- The set E_{m} is itself a doubling metric space with constant C_{0}^{2}.
- Why? If $x \in E_{m}$ and $r>0$, we can cover the set $E_{m} \cap B(x, 2 r)$ with C_{0}^{2} balls of radius $r / 2$ which, when they meet E_{m}, we can replace with balls of radius r whose centers are in E_{m}.
- From the proof above, we get a mapping F_{m} such that

$$
C^{-1} d(x, y)^{\alpha} \leq\left|F_{m}(x)-F_{m}(y)\right| \leq C d(x, y)^{\alpha}
$$

for $x, y \in E_{m}$, where C depends only on C_{0} and α, but not on m.

- We may assume hat $F_{m}\left(x_{0}\right)=0$, after possibly adding a constant, which would not destroy the bilipshitz estimate above.

Assouad Embedding Theorem, proof (25): E unbounded. Conclusion.

- Define for each $k \in \mathbb{Z}$, a maximal collection $\left\{x_{j}\right\} \subset E, j \in J_{k}$, with $d\left(x_{i}, x_{j}\right) \geq r_{k}$ for $i \neq j$. This is still at most countable.
- For each x_{j}, the sequence $\left\{F_{m}\left(x_{j}\right)\right\}$ is bounded. Hence we can extract a subsequence, so that the sequence $F_{m_{j}}$ converges for each x_{j}.
- The convergence is uniform on each bounded subset of E and thus the bilipschitz estimate above passes to the limit.
- This completes our proof of the Assouad Embedding Theorem.

References

P. Assouad, Plongements lipschitziens dans \mathbb{R}^{n}, Bull. Soc. Math.

France, 111(4), 429-447, 1983.
J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, 2001.
G. David, M. Snipes, A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension, Analysis and Geomery in Metric Spaces, 2013, 36-41.
S. Semmes, Calculus, fractals, and analysis on metric spaces.
R. Korte, Metrisen avaruuden upottaminen avaruuteen \mathbb{R}^{n}, Matematiikan erikoistyö, 2003.
G. Glaeser, Étude de quelques algebres Tayloriennes, 1944,

