Assouad Embedding Theorem, MS-E1991
Calculus of Variations, Project work

Valter Lillberg

March 27, 2019



Theorem (Assouad embedding theorem, N independent of «)

For each Cy > 1, there is an integer N and, for 1/2 < a <1, a
constant C = C(Cy, «) such that if (E, d) is a metric space hat
admits the metric doubling constant Cy, we can find an injection
F : E — RN such that

Cld(x,y)* < |F(x) = F(y)| < Cd(x,y)

for x,y € E.



The embedding problem for metric spaces
An embedding is a map that is a homeomorphism onto its image.

An embedding f : X — Y is called:
» quasisymmetric if there is a homeomorphism
7 :[0,00) — [0, 00) so that

|x — a] < t|x — b| implies |f(x) — f(a)| < n(t)|f(x) — f(b)|

for all triples a, b, x of points in X, and for all t > 0.
Quasisymmetric maps distort relative distances by a bounded
amount.

» bi-Lipschitz if both f and 1 are Lipschitz.
bi-Lipschitz maps distort absolute distances by a bounded
amount, a much stricter condition.

» The snowflaking identity map (X, |x — y|) — (X, |x — y|%) is
t*-quasisymmetric. C-bi-Lipschitz maps are
C?t-quasisymmetric.

» Thus, Assouad'’s snowflaked bi-Lipshitz embedding is
quasisymmetric.



When is a metric space bi-Lipshitz embeddable to R"?

A necessary condition is that the space is doubling.
But this is not sufficient. Common counterexamples include:

1. The Heisenberg group with its Carnot metric (Py Pansu’s thm:
every lipschitz map is differentiable a.e., would get an algebra
homomorphism, incompatible with the Abelian structure of
R". Because of non-commutativity of the Heisenberg group
has necessarily a kernel, but bilipschitzness implies injectivity).

2. Laakso spaces ([0, 1] x K, where K is a Cantor set with
identification of points through wormholes).

3. Bourdon-Pajot spaces (related to certain hyperbolic buildings).

However, if we alter our metric slightly by mapping the metric
space (M.d(x,y)) with an identity mapping to the metric space
(M, d(x,y)*),0 < o < 1, we obtain the desired embedding into an
Euclidean space R" for some n € N. This modification of the
metric is called snowflaking.



Assouad implies quasisymmetric embeddings

Which metric spaces are quasisymmetrically equivalent? Difficult.
Which spaces can be quasisymmetrically embedded in some
Euclidean space? Easier:

Theorem (Quasisymmetric embeddability)

A metric space is quasisymmetrically embeddable in some
Euclidean space if and only if it is doubling, quantitatively.

Necessity follows from the following

Theorem (Conservation of the doubling property)

A quasisymmetric image of a doubling space is doubling,
quantitatively.

Sufficiency is implied by the Assouad embedding theorem as
snowflaking is t“-quasisymmetric.

Theorem (Assouad Embedding Theorem)

Each snowflaked version of a doubling metric space admits a
bi-Lipschitz embedding in some Euclidean space.



Assouad Embedding Theorem

Theorem (Assouad embedding theorem, original)

Let (E,d(x,y)) be a doubling metric space. Then for every
a € (0,1) there exist N,C > 0 and F : E — RN such that

Cld(x,y)* < |F(x) = F(y)| < Cd(x,y)*
for all x,y € M.

We prove a version with dimension independent of snowflaking.

Theorem (Assouad embedding theorem, N independent of «)

For each Cy > 1, there is an integer N and, for 1/2 < a <1, a
constant C = C(Cy, «) such that if (E, d) is a metric space hat
admits the metric doubling constant Cy, we can find an injection
F : E — RN such that

Cld(x,y)* < |F(x) = F(y)| < Cd(x,y)

forx,y € E.



Snowflake spaces

Definition

Let (M, d(x,y)) be a metric space. Its snowlaked version is a
metric space (M, d(x,y)%),0 < a < 1.

The name stems from the fact that (R, [x — y|*),1/2 < a <1
admits a bi-Lipschitz embedding in R?, and the image resembles
the boundary of a snowflake.

(P. Assouad, Plongements lipschitziens dans R")

- la troisitme méthode utilise des courbes de Von KOCH
généralisées (de fait cette méthode étend I'observation,
due a GLAESER [5] p. 57, que la courbe classique de
H. Von KOCH [7] réalise un plongement Lipschitzien de
I'espace ([0, 1], || - ||'°83/1°6%) dans (R, || - |])).

La construction que nous allons écrire généralise, comme
on le verra, celle de la courbe de Von Koch classique [7];
c'est ce qui justifie notre terminologie.



Figure: Glaeser: Koch curve is a bi-Lipschitz image of ([0, 1], | - |'&3/1°g4)
on (R%,[[ - [1))-

Un exemple plus élémentaire est fourni par la célébre courbe de von

Koch ([1]).
Exemple 8.
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On sait que cewte courbe C n'est pas reciifable ; mais on peut définir
sur © ume mesare: sa “pseudo-longuenr” (Cf Bouligand [1] p. 218)
possédant ™exposant de similitude” o= logdflog3. Cela veut dire que =i
I'on soumet ¢ @ une similimde de rapport £, sa psendo-longuenr est
muhipliée par &°.



Figure: Glaeser: Koch curve is a bi-Lipschitz image of ([0,1], | - |'983/'og4)
on (R2,[-])).

On sait goe ceme courbe est localement semblable 4 elle-méme,
Lemme. Il existe deux constantes K et K relles que, pour toot
couple de points M N &€C, on ait:
O< K, |MN|®< pseudo-longuenr de I'arc MN S K. |MN|=.
L'existence des coostantes est wivialement assurée si 'on se bome i
envisager des couples M, N satisfaisant 2 [|MNI 2 1/9 (si loe prend
= || AE| posr unié de longueur).

Remamquens alors qui si TMN| = 1fs, Dac MY est entitrement
incériear & lun des wois arc suivanss: AT, TJ, ou BC (cf. fig). Il en
sésulte qu'il exisie une similiade de rappore F3 ou 3 (suivant le cas)
qui transiorme 1'arc MN en un auwre arc de C.

Ced post, quels que solens M et N, il exisee un enver % cel que
'-.'rﬂ"f;}l'“ = PN = ',,:r{l-'r_;}'. Tant que B4, la remarque précédente
perme: des substiwe: 3 arc MN up arc plus grand semblable aun premier.

long MN .
Dans une telle similitade, le rapporc JETM—?"‘— n'eit pas modifil.

On peut donc toujours se ramener av cas od |MNE Z 1/9. Le lemme et
ainsi éabli.



Glaeser: Koch curve is a bi-Lipschitz image of
log3/log4 2
([071]7‘ ‘og /log )On (R 7’|))
Lemma (Glaeser, 1958)
For each point x,y € C, there exist constants K and K’ such that

0 < K'|x—y|* < pseudo-length of arc xy < K|x—y|% a = log3/log4

Proof.

> If [x — y| > 1/9, existence of constants K, K’ is easy to see.
> If [x — y| <1/9, then the arc Xy is entirely within one of the
following segments of the curve (cf. figure) AC, IJ or BC.

» Depending on the case, there exists a similarity mapping of
ratio v/3 or 3 between the segment xy and another arc of C.

» Thus, there exist a k € N, 1/(\/§)"+1 <|Ix—yl < 1/(\/§)k

» For k > 4 we can substitute the arc with a bigger similar arc

without changing %’W. Can reduce to [x —y| > 1/9.



Snowflake space is a metric space

» If (M,d(x,y)) is any metric space and 0 < a < 1, then
d(x,y)* also defines a metric on M.

> We need to check that the triangle inequality still holds.
If a, b are nonnegative real numbers and 0 < a < 1, then

(a+b)* <a” + b™.
Observe, that
max(a, b) < (a® 4 b)Y/,
Then
a+ b < (a® + b*)max(a, b)! ™ < (a% + b)Y/,

» The snowflaked metric d(x,y)“ still generates the same
topology as d(x, y).



Snowflaking turns all continuous paths of finite length
unrectifiable.

» Let (E,d(x,y)) be a metric space and x,y € E,x # y.

» Let v:[0,1] — E be a rectifiable path joining x and y.

» Then, for every € > 0, there exists a partition
0=ty <ty <ty <t,=1of the interval [0, 1] such that
d(v(t),v(ti—1)) <eforalliel,....n

» For length /() of the path «y in the snowflaked metric
d(x,y)%, 0 < a < 1, the following holds:

1(7)(E,de) = Zd Y(ti-1))"

> Z d(y(t;), (ti-1)) €7
i=1

> e d(x,y) 2 coase— 0



Snowflaked spaces have plenty of nonconstant functions
with " gradient” 0

» Suppose that f is a Lipschitz function on M with respect to
d(x,y).
m e )~ (o)
. x)—f(p
/Imp_»( = W =0.
» Thus there are plenty of nonconstant functions with

"gradient” 0 with respect to the snowflaked distance. Every
Lipschitz function with respect to the original meric will do.

> See Semmes, " Calculus, fractals, and analysis on metric
spaces”, for more.



Problems with the original proof

For values of o bounded away from both 0 and 1 we can use the
standard Assouad proof to show that the resulting snowflake
spaces can all be embedded in a fixed dimensional Euclidean space.
For « close to 0, the dimension independence fails necessarily.
Even when E = R with the usual distance, we need many
dimensions to construct an a-snowflake. However, for a close to 1,
we can get dimension independence, but the standard proof does
not give it. In fact N — oo, as a — 1, by the standard proof of
Assouad’s theorem.



Assouad with dimension independent of snowflaking

A probabilistic proof of the following theorem was given by Naor
and Neiman. Their proof constructs a random embedding to RV
with a limited dependency structure of events and proves that the
desired bi-Lipschitz embedding exists with positive probability
using a generalized version of Lovasz Local Lemma.

We present a simpler non-probabilistic proof by David and Snipes
(2012) that modifies the standard proof. We use an adaptive
argument and work at small relative scales to use the fact that
there is a lot of space in R". A very sparse collection of scales
helps control the residual terms.



Assouad Embedding Theorem, dimension independent of
snowflaking, statement

Definition

A metric space (E, d) is metrically doubling if there is an integer
Co > 1 such that for every r > 0, every (closed) ball of radius 2r in
E can be covered with no more than Cy balls of radius r. We call
Co a metric doubling constant for (E, d).

Theorem (Naor,Neiman(2012), David,Snipes(2012))

For each Cyp > 1, there is an integer N and, for1/2 < a <1, a
constant C = C(Co, ), such that if (E,d) is a metric space that
admits the metric doubling constant Cy, we can find an injection
F : E — RN such that

CHd(x,y)* < |F(x) = Fy)| < Cd(x, )"

for x,y € E.



Assouad Embedding Theorem, dimension independent of
snowflaking, proof

Proof.(David,Snipes(2012))

We need to consider only a very close to 1. We use a small
parameter 7 > 0, with 7 < 1 — «, and work at the scales

ro =1k k e Z. (1)

Suppose first that E has finite diameter. Then we can choose an
initial scale k = ko such that ry, > diam E. Our construction and
main constants will not depend on this choice.

For each k > ko, select a maximal collection {x;}, € Jk, of points
of E, with d(x;, x;) > ri for i # j. Thus, by maximality

Ec | B(x, ). (2)

J€Jk



Assouad Embedding Theorem, dimension independent of
snowflaking, proof (2)

Let N(x) denote the number of indices j € Ji such that
d(xj,x) < 10rk. Then

N(x) < G for x € E. (3)

This holds, since we can cover B(x, 10ry) with fewer than CJ balls
Dy of radius r/3.

Each D, contains at most one x;, because d(x;, x;) > ry for i # j.

All the x; that lie in B(x, 10r,) are contained in some D, so (3)
follows.

From (3) and the assumption that E is bounded, we get that Jj is
finite.



Assouad Embedding Theorem, proof (3)
Set =={1,2,..., G5} (a set of colors).
Enumerate Ji, and for j € Ji let £(j) be the first color not taken
by an earlier close neighbor, i.e. earlier i € Ji such that
d(xi,xj) < 10r. By construction
E(7) # &) for i, j € Ji with i # j and d(x;, x;) < 10r.

For each color £ € =, define the set Ji(§) :={j € Jk : £(j) = &}
Thus
d(xi,xj) > 10ry for i,j € Ji(§) such that i # j. (4)
For each j € Jk, set pj(x) = max{0,1 — r_ 'dist(x, B;)}. This
makes sure that
0 <pj(x) < 1 everywhere,
@j(x) =1 for x € B,
@j(x) =0 for x € E'\ 2B;. (5)
and
¢; is Lipschitz, with [|o;]|ip < ri . (6)



Assouad Embedding Theorem, proof (4)

For each color £ € =, we will construct two mappings:

F¢: E — RM and a slightly modified version F¢ : E — RM. Here
M is a very large integer depending only on the metric doubling
constant.

Our final mapping will be the tensor product of these 2C3
mappings. Thus the dimension N is 2Cgl\/l. The mapping F¢ will

be of the form:
FE() = > e (x),
k> ko

where
)= > vigi(x), (7)

Jj€d (&)

with vectors v; € RM that will be carefully chosen later.



Assouad Embedding Theorem, proof (5)

The extra room in RM will be used to give lots of different choices
of v;.

The other mapping F€ will have the same form, but with a
different choice of the vectors {v;}.

For both functions we will choose the v; inductively, and so that
v € B(0,7%) c RM,

with the same very small 7 > 0 as in the definition of the scales
re = 72%. 7 will be chosen later. (7 <1— « will do, as we'll see.)

With this choice, we see that
18 ]]oo < 72

because the ¢}, j € Jk(§) have disjoint supports by (4) and(5).
Hence, the series in (7) converges.



Assouad Embedding Theorem, proof (6)

Moreover, if we set

Fe= > (),

ko<t<k

we get that

'3 a 2 .« 2 20c 2 «a
|’F€—Fk’|oo§2fz7' = T ZT <27
0>k >0

because r, = 72 and 72% < 1/2 when 7 is small.



Assouad Embedding Theorem, proof (7), bound || - ||

The Lipschitz norm of f,f is
1l < 72r "

by (6) and because the ¢; are supported on disjoint balls. Thus

IFEllip <D ré 11 i
1<k

<y
1<k
_ 7_2,,?—1 Z 7_2(£—k)(o¢—1)
1<k
_ 7_ZrEz—l(l - 7_2(1—04))—1



Assouad Embedding Theorem, proof (8), bound || - ||/

Now, take 7 <1 — «. Then

In(721=)) = 2(1 — ) In(7) = —2(1 — @) In(%) < —2Tln(%).

By exponentiating, we get that

r2(1-a) < e—27In(3) <1 —Tln(l)

-
if 7 is small enough, hence
1
1— 72172 > 7n(2),
.
and thus -
1Felle < et <! (10)

(%)™

if 7 is small enough, for example 7 < 1/2 works.



Assouad Embedding Theorem, proof (9), choose vectors v;

» We want to choose the vectors vj,j € Ji so that the
differences |Ff(x) - Ff(y)] will be as large as possible in order
to allow us to prove that the inverse (FE)_1 is Lipschitz.

> Fix k > kg, suppose that the F,_; were already constructed,
and fix a color £ € =.

» Put any order < on the finite set Ji(§).

» We will choose the v; for FE in Lemma 3 using the order <.

» We will use the reverse order for ﬁf



Assouad Embedding Theorem, proof (10), choose v;

Recall that we defined

Fr(y)=F i +refi(y) = Fe o+ D vigily).  (11)
i€k (&)

For each j € Jk(&), we shall also consider the partial sum GEJ
defined by

Gej0) = F )+ Y viwily), (12)
i€dyi<j

which we therefore assume to be known before we choose v;.



Assouad Embedding Theorem, proof (11), choose v;

Lemma (3)
For each j € Ji(&), we can choose v; € B(0,72) so that

Fe(x) = G () = 7 (13)

for x € Bj and y € B(x;,10772r) \ 2B;.
For x € Bj, we have ¢;(x) =1 and ¢;(x) = 0 for all the other
indices i # j € Jk(§). Thus

F(x) = Fro1€(x) + rff(x) = Fo_ (x) + rd'y; (14)

by definitions of the functions (7) and (8).



Assouad Embedding Theorem, proof (12):
We use || - ||, bounds to work with discrete sets

By the Lipschitz bound for Fj; (10), and its proof we have that
||F[§||/ip < r,?fl and also HGE,J'Hlip < r,f‘*l

since we just add fewer terms.

> We use this to replace B; and B(x;, 1072r,) \ 2B; with
discrete sets.

» Set n = 73r;, and pick an 7-dense set X in B; and an 7)-dense
set Y in B(xj,10772r) \ 2B;
» We shall prove that we can choose the vectors v; so that

Fe(x) = Ge ()] = 37°r (15)

forxX € Xand y' €Y.

» We check next that the lemma will follow.



Assouad Embedding Theorem, proof (13):
Proof of Lemma 3 assuming that the discrete bound holds

For x € Bj, we can find x’ € X such that
IFEO) = FECOL < 1Rl < r ™" 2nc = .
Similarly, for y € B(x;,10r72r) \ 2B; we can find y’inY such that
1Gij () = GO < 11GE i < 71

Then (13) follows. In other words, we can find a vector v; such
that the points considered map to points sufficiently far away from
each other.



Assouad Embedding Theorem, proof (14):
The discrete sets X and Y are small.

Remark 1.

In a doubling metric space, for A > 0, every ball of radius Ar can
be covered by CoAMo balls of radius r, where Ny = logy Co. To see
this replace A by the next power of 2.

| 2
| 2
>

First we bound |X|, the number of elements in X.

Here we can use the doubling property, as above.

Thus, we can cover B; = B(x;, rk) by Co(273)Ne balls of
radius /2, since n = 73r.

We keep those that meet B;, pick an element of B; in each
such ball and get an 7-dense net X, with |X| < Go(2r—3)MN
balls of radius 7/2.



Assouad Embedding Theorem, proof (15): The discrete
sets X and Y are small.

» Similarly, we can find a discrete n-dense net Y such that

1 -2 No 2 —2 No
Y] < G <2 - rk) = Co< 073 rk) = Co(2077°)"".
n T Ik

» The total number of pairs (x',y") for which we have to check
that discrete points map far (15), is thus

IXI|Y| < CF(40r8)"



Assouad Embedding Theorem, proof (16):

A ball B(0,72) c RM for sufficiently large M contains a
bigger (|V| > |X||Y]|), maximal finite set V with points
separated by at least 773,

>
>

| 2

v

Pick such a set.
For each pair (x’,y’), the different choices of v; € V vyield the

same value of G,fd.(y’)

The values of F,f(x’) differ by at least 773r, because the only
FE(X’) changes by precisely v;.

Thus the discrete bound (15) cannot for this pair (x,y’) can
fail for at most one choice of v; € V.

Thus it is enough to show that V has more than |X||Y|
elements.

Take Cp to be the doubling constant of RM.

Remark 1 implies that |V| > Cp(2)/"82Cm,

This is larger than |X||Y] if Cyy > C8 and 7 is small enough,
depending on M. Lemma 3 follows.



Assouad Embedding Theorem, proof (17): Define F.

» For each color &, choose the vectors v;, and hence the
mapping F¢, asin Lemma (3).

» Also define a second version I?f using the opposite order on
Ik ()

> By (9), F¢: E — RM is the limit F& = limy_,o F-.

> We are ready to check that F, the tensor product of the maps
{F&, F¢ : ¢ € =}, is bilipschitz from the snowflaked space
(E,d*).



Assouad Embedding Theorem, proof (18): Lemma 4.

Lemma (4)
We have that

2
S d(x,y)" < |F(x) = F(y) < 5Nr=20-d(x, y)" for x,y € E.

Proof.
Let x,y € E be given. We may assume that x # y. Let k be such

that
4re < d(x,y) < 4rq =47 %n,. (16)

Then re < 4r, < d(x,y) < diam(E) < ry, by our definition of kg
and so k > kg.



Assouad Embedding Theorem, proof (19): Lemma 4,
proof. Upper bound.

By the choice of rx as above (16) and the Lipschitz bound (10),
we get that

d(x,y)
472

a—1
) d(x,y)
(17)

But by the estimate (9) we get for sufficiently small 7, that

\%@%%UNSW&WM&MSflﬂ&MS(

1FE(x) — FE(y)| — |FE(x) — FEOD)II < 2/1FS — FEllo
< 4T2r;(1+1
_47_2 20é

< 2T2d(X, y)“. (18)

These inequalities give the upper bound in Lemma (4). Similarly,
=3
for F.



Assouad Embedding Theorem, proof (20): Lemma 4,

proof.

>
>

>

Lower bound.

For the lower bound, consider the same fixed x,y € E.

Since we have a covering, by (2), we can find j € Ji such that
X € Bj.

Let £ € = be the color such that j € Jk(&), i.e. the color of

the ball B;.
consider two cases separately:
1. y € 2B; for some i € Ji(&). Then we need to be able to
choose the v;'s as in Lemma (3).
2. y ¢ 2B; for all i € Jk(§). Then all the terms ¢;(x) vanish.

Note that now we have

y € B(x,10772r) \ 2B;. (19)
y € B(x;,10772r) \ 2B;, follows from our choice of scale
(16), because d(x, x;) < r, since x € B;.
Moreover, y ¢ 2B;, since if y € 2B;, then
d(x,y) < d(x,x;) + d(xj,y) < 3rk, which would contradict
our choice of scale (16).



Assouad Embedding Theorem, proof (21): Lemma 4,

proof.

>
>

Lower bound, case y € 2B; for some i € Ji(&).

We have i # j, by (19).
Let us assume that / < j. Otherwise, we would use ﬁf instead
of FE.
All the ¢/(y), ! # i, are equal to 0, by the definition of ¢; and
the coloring Ji(§).
Then
Fiy) = Feoa ) + riviei(y) = Giy(v)
with Ff_,(y) = 0if k = ko.

Now we can apply Lemma (3), because of the fact that
y € B(x;,10772r,) \ 2B;. Thus

Fe(x) = Fe)l = |Fe(x) = Gij(y) = 73r.



Assouad Embedding Theorem, proof (22): Lemma 4,
proof. Lower bound, case y € 2B; for some i € Ji(§). (2)
» We combine this with (18) and get that

[FE0) = FE )l = |FE() = Fely)| = 4rrorg

3«
’Trk

> 73 — 472r,f‘+1 =321 — 47172 > 5
since by definition, r, = 72k and because we can take
a >2/3 and 7 small.

» When 1/2 < a < 2/3 we could simply use the standard
Assouad proof.

> Now

[F(x) = F)I 2 [Fo(x) = FE(y)| =

v

3 ,\,‘\1
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X
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Assouad Embedding Theorem, proof (23): Lemma 4,
proof. Conclusion.

» This proves the lemma when y € 2B; for some i € Ji(§).
> Thus F(y) = Gj ;(y) = Fi_1(y) for all j by the definition of
the functions FE and G,f’j.

» In the other case, all the ¢;(x) vanish by the definition of the
functions ;.

» Thus F,f(y) = G,fj(y) = Ff_l(y) as in the first case and we
can continue similarly.

» This proves Lemma(4).



Assouad Embedding Theorem, proof (24): E unbounded.

| 4

vvyyy

Now suppose E is an unbounded metric space with doubling
constant (.

Fix an origin xg.

Apply the construction above to sets E,, = E N B(xp,2™).
The set E,, is itself a doubling metric space with constant COZ.
Why? If x € E;; and r > 0, we can cover the set

Em N B(x,2r) with CZ balls of radius r/2 which, when they
meet E,,, we can replace with balls of radius r whose centers
are in E,,.

From the proof above, we get a mapping F,, such that

Cld(x,¥)* < |Fin(x) = Fanly)| < Cdl(x, y)*

for x,y € E,, where C depends only on (p and «, but not on
m.

We may assume hat Fp,(x0) = 0, after possibly adding a
constant, which would not destroy the bilipshitz estimate
above.



Assouad Embedding Theorem, proof (25): E unbounded.
Conclusion.

» Define for each k € Z, a maximal collection {x;} C E,j € J,
with d(x;, x;) > ri for i # j. This is still at most countable.

» For each x;, the sequence {Fn(x;)} is bounded. Hence we can
extract a subsequence, so that the sequence Fp,, converges for
each x;.

» The convergence is uniform on each bounded subset of E and
thus the bilipschitz estimate above passes to the limit.

» This completes our proof of the Assouad Embedding Theorem.
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