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Theorem (Assouad embedding theorem, N independent of α)

For each C0 ≥ 1, there is an integer N and, for 1/2 < α < 1, a
constant C = C (C0, α) such that if (E , d) is a metric space hat
admits the metric doubling constant C0, we can find an injection
F : E → RN such that

C−1d(x , y)α ≤ |F (x)− F (y)| ≤ Cd(x , y)α

for x , y ∈ E .



The embedding problem for metric spaces
An embedding is a map that is a homeomorphism onto its image.

An embedding f : X → Y is called:
I quasisymmetric if there is a homeomorphism
η : [0,∞)→ [0,∞) so that

|x − a| ≤ t|x − b| implies |f (x)− f (a)| ≤ η(t)|f (x)− f (b)|

for all triples a, b, x of points in X , and for all t > 0.
Quasisymmetric maps distort relative distances by a bounded
amount.

I bi-Lipschitz if both f and f −1 are Lipschitz.
bi-Lipschitz maps distort absolute distances by a bounded
amount, a much stricter condition.

I The snowflaking identity map (X , |x − y |)→ (X , |x − y |α) is
tα-quasisymmetric. C-bi-Lipschitz maps are
C 2t-quasisymmetric.

I Thus, Assouad’s snowflaked bi-Lipshitz embedding is
quasisymmetric.



When is a metric space bi-Lipshitz embeddable to Rn?

A necessary condition is that the space is doubling.
But this is not sufficient. Common counterexamples include:

1. The Heisenberg group with its Carnot metric (Py Pansu’s thm:
every lipschitz map is differentiable a.e., would get an algebra
homomorphism, incompatible with the Abelian structure of
Rn. Because of non-commutativity of the Heisenberg group
has necessarily a kernel, but bilipschitzness implies injectivity).

2. Laakso spaces ([0, 1]× K , where K is a Cantor set with
identification of points through wormholes).

3. Bourdon-Pajot spaces (related to certain hyperbolic buildings).

However, if we alter our metric slightly by mapping the metric
space (M.d(x , y)) with an identity mapping to the metric space
(M, d(x , y)α), 0 < α < 1, we obtain the desired embedding into an
Euclidean space Rn for some n ∈ N. This modification of the
metric is called snowflaking.



Assouad implies quasisymmetric embeddings
Which metric spaces are quasisymmetrically equivalent? Difficult.
Which spaces can be quasisymmetrically embedded in some
Euclidean space? Easier:

Theorem (Quasisymmetric embeddability)

A metric space is quasisymmetrically embeddable in some
Euclidean space if and only if it is doubling, quantitatively.

Necessity follows from the following

Theorem (Conservation of the doubling property)

A quasisymmetric image of a doubling space is doubling,
quantitatively.

Sufficiency is implied by the Assouad embedding theorem as
snowflaking is tα-quasisymmetric.

Theorem (Assouad Embedding Theorem)

Each snowflaked version of a doubling metric space admits a
bi-Lipschitz embedding in some Euclidean space.



Assouad Embedding Theorem

Theorem (Assouad embedding theorem, original)

Let (E , d(x , y)) be a doubling metric space. Then for every
α ∈ (0, 1) there exist N,C > 0 and F : E → RN such that

C−1d(x , y)α ≤ |F (x)− F (y)| ≤ Cd(x , y)α

for all x , y ∈ M.

We prove a version with dimension independent of snowflaking.

Theorem (Assouad embedding theorem, N independent of α)

For each C0 ≥ 1, there is an integer N and, for 1/2 < α < 1, a
constant C = C (C0, α) such that if (E , d) is a metric space hat
admits the metric doubling constant C0, we can find an injection
F : E → RN such that

C−1d(x , y)α ≤ |F (x)− F (y)| ≤ Cd(x , y)α

for x , y ∈ E .



Snowflake spaces

Definition
Let (M, d(x , y)) be a metric space. Its snowlaked version is a
metric space (M, d(x , y)α), 0 < α < 1.

The name stems from the fact that (R, |x − y |α), 1/2 < α < 1
admits a bi-Lipschitz embedding in R2, and the image resembles
the boundary of a snowflake.

(P. Assouad, Plongements lipschitziens dans Rn)
- la troisième méthode utilise des courbes de Von KOCH
généralisées (de fait cette méthode étend l’observation,
due à GLAESER [5] p. 57, que la courbe classique de
H. Von KOCH [7] réalise un plongement Lipschitzien de
l’espace ([0, 1], || · ||log 3/ log 4) dans (R2, || · ||)).
. . .
La construction que nous allons écrire généralise, comme
on le verra, celle de la courbe de Von Koch classique [7];
c’est ce qui justifie notre terminologie.



Figure: Glaeser: Koch curve is a bi-Lipschitz image of ([0, 1], | · |log 3/ log 4)
on (R2, || · ||)).



Figure: Glaeser: Koch curve is a bi-Lipschitz image of ([0, 1], | · |log 3/ log 4)
on (R2, | · |)).



Glaeser: Koch curve is a bi-Lipschitz image of

([0, 1], | · |log 3/ log 4) on (R2, | · |)).

Lemma (Glaeser, 1958)

For each point x , y ∈ C , there exist constants K and K ′ such that

0 ≤ K ′|x−y |α ≤ pseudo-length of arc x̂y ≤ K |x−y |α, α = log 3/ log 4

Proof.

I If |x − y | ≥ 1/9, existence of constants K ,K ′ is easy to see.

I If |x − y | ≤ 1/9, then the arc x̂y is entirely within one of the

following segments of the curve (cf. figure) ÂC , ÎJ or B̂C .

I Depending on the case, there exists a similarity mapping of
ratio

√
3 or 3 between the segment x̂y and another arc of C .

I Thus, there exist a k ∈ N, 1/(
√

3)k+1 ≤ |x − y | ≤ 1/(
√

3)k .

I For k ≥ 4 we can substitute the arc with a bigger similar arc

without changing pseudolength(x̂y)
|x−y |α . Can reduce to |x − y | ≥ 1/9.



Snowflake space is a metric space

I If (M, d(x , y)) is any metric space and 0 < α < 1, then
d(x , y)α also defines a metric on M.

I We need to check that the triangle inequality still holds.
If a, b are nonnegative real numbers and 0 < α < 1, then

(a + b)α ≤ aα + bα.

Observe, that

max(a, b) ≤ (aα + bα)1/α.

Then

a + b ≤ (aα + bα) max(a, b)1−α ≤ (aα + bα)1/α.

I The snowflaked metric d(x , y)α still generates the same
topology as d(x , y).



Snowflaking turns all continuous paths of finite length
unrectifiable.

I Let (E , d(x , y)) be a metric space and x , y ∈ E , x 6= y .

I Let γ : [0, 1]→ E be a rectifiable path joining x and y .

I Then, for every ε > 0, there exists a partition
0 = t0 < t1 < t2 · · · ≤ tn = 1 of the interval [0, 1] such that
d(γ(ti ), γ(ti−1)) ≤ ε for all i ∈ 1, . . . , n.

I For length l(γ) of the path γ in the snowflaked metric
d(x , y)α, 0 < α < 1, the following holds:

l(γ)(E ,dα) ≥
n∑

i=1

d(γ(ti ), γ(ti−1))α

≥
n∑

i=1

d(γ(ti ), γ(ti−1)) εα−1

≥ εα−1d(x , y)→∞ as ε→ 0



Snowflaked spaces have plenty of nonconstant functions
with ”gradient” 0

I Suppose that f is a Lipschitz function on M with respect to
d(x , y).

I Then

limp→x =
|f (x)− f (p)|

d(x , p)α
= 0.

I Thus there are plenty of nonconstant functions with
”gradient” 0 with respect to the snowflaked distance. Every
Lipschitz function with respect to the original meric will do.

I See Semmes, ”Calculus, fractals, and analysis on metric
spaces”, for more.



Problems with the original proof

For values of α bounded away from both 0 and 1 we can use the
standard Assouad proof to show that the resulting snowflake
spaces can all be embedded in a fixed dimensional Euclidean space.
For α close to 0, the dimension independence fails necessarily.
Even when E = R with the usual distance, we need many
dimensions to construct an α-snowflake. However, for α close to 1,
we can get dimension independence, but the standard proof does
not give it. In fact N →∞, as α→ 1, by the standard proof of
Assouad’s theorem.



Assouad with dimension independent of snowflaking

A probabilistic proof of the following theorem was given by Naor
and Neiman. Their proof constructs a random embedding to RN

with a limited dependency structure of events and proves that the
desired bi-Lipschitz embedding exists with positive probability
using a generalized version of Lovasz Local Lemma.
We present a simpler non-probabilistic proof by David and Snipes
(2012) that modifies the standard proof. We use an adaptive
argument and work at small relative scales to use the fact that
there is a lot of space in Rn. A very sparse collection of scales
helps control the residual terms.



Assouad Embedding Theorem, dimension independent of
snowflaking, statement

Definition
A metric space (E , d) is metrically doubling if there is an integer
C0 ≥ 1 such that for every r > 0, every (closed) ball of radius 2r in
E can be covered with no more than C0 balls of radius r . We call
C0 a metric doubling constant for (E , d).

Theorem (Naor,Neiman(2012), David,Snipes(2012))

For each C0 ≥ 1, there is an integer N and, for 1/2 < α < 1, a
constant C = C (C0, α), such that if (E , d) is a metric space that
admits the metric doubling constant C0, we can find an injection
F : E → RN such that

C−1d(x , y)α ≤ |F (x)− F (y)| ≤ Cd(x , y)α

for x , y ∈ E .



Assouad Embedding Theorem, dimension independent of
snowflaking, proof

Proof.(David,Snipes(2012))

We need to consider only α very close to 1. We use a small
parameter τ > 0, with τ ≤ 1− α, and work at the scales

rk = τ2k , k ∈ Z. (1)

Suppose first that E has finite diameter. Then we can choose an
initial scale k = k0 such that rk0 ≥ diamE . Our construction and
main constants will not depend on this choice.

For each k ≥ k0, select a maximal collection {xj}, j ∈ Jk , of points
of E , with d(xi , xj) ≥ rk for i 6= j . Thus, by maximality

E ⊂
⋃
j∈Jk

B(xj , rk). (2)



Assouad Embedding Theorem, dimension independent of
snowflaking, proof (2)

Let N(x) denote the number of indices j ∈ Jk such that
d(xj , x) ≤ 10rk . Then

N(x) ≤ C 5
0 for x ∈ E . (3)

This holds, since we can cover B(x , 10rk) with fewer than C 5
0 balls

Dl of radius rk/3.

Each Dl contains at most one xj , because d(xi , xj) ≥ rk for i 6= j .

All the xj that lie in B(x , 10rk) are contained in some Dl , so (3)
follows.

From (3) and the assumption that E is bounded, we get that Jk is
finite.



Assouad Embedding Theorem, proof (3)
Set Ξ = {1, 2, . . . ,C 5

0 } (a set of colors).

Enumerate Jk , and for j ∈ Jk let ξ(j) be the first color not taken
by an earlier close neighbor, i.e. earlier i ∈ Jk such that
d(xi , xj) ≤ 10rk . By construction

ξ(i) 6= ξ(j) for i , j ∈ Jk with i 6= j and d(xi , xj) ≤ 10rk .

For each color ξ ∈ Ξ, define the set Jk(ξ) := {j ∈ Jk : ξ(j) = ξ}.
Thus

d(xi , xj) > 10rk for i , j ∈ Jk(ξ) such that i 6= j . (4)

For each j ∈ Jk , set ϕj(x) = max{0, 1− r−1k dist(x ,Bj)}. This
makes sure that

0 ≤ϕj(x) ≤ 1 everywhere,

ϕj(x) = 1 for x ∈ Bj ,

ϕj(x) = 0 for x ∈ E \ 2Bj . (5)

and
ϕj is Lipschitz, with ||ϕj ||lip ≤ r−1k . (6)



Assouad Embedding Theorem, proof (4)

For each color ξ ∈ Ξ, we will construct two mappings:
F ξ : E → RM and a slightly modified version F̃ ξ : E → RM . Here
M is a very large integer depending only on the metric doubling
constant.

Our final mapping will be the tensor product of these 2C 5
0

mappings. Thus the dimension N is 2C 5
0M. The mapping F ξ will

be of the form:
F ξ(x) =

∑
k≥k0

rαk f
ξ
k (x),

where
f ξk (x) =

∑
j∈Jk (ξ)

vjϕj(x), (7)

with vectors vj ∈ RM that will be carefully chosen later.



Assouad Embedding Theorem, proof (5)

The extra room in RM will be used to give lots of different choices
of vj .

The other mapping F̃ ξ will have the same form, but with a
different choice of the vectors {vj}.
For both functions we will choose the vj inductively, and so that

vj ∈ B(0, τ2) ⊂ RM ,

with the same very small τ > 0 as in the definition of the scales
rk = τ2k . τ will be chosen later. (τ ≤ 1− α will do, as we’ll see.)
With this choice, we see that

||f ξk ||∞ ≤ τ
2

because the ϕj , j ∈ Jk(ξ) have disjoint supports by (4) and(5).
Hence, the series in (7) converges.



Assouad Embedding Theorem, proof (6)

Moreover, if we set

F ξk =
∑

k0≤`≤k
rα` f

ξ
` (x), (8)

we get that

||F ξ − F ξk ||∞ ≤
∑
`≥k

rα` τ
2 = rαk+1τ

2
∑
`≥0

τ2`α ≤ 2τ2rαk+1 (9)

because r` = τ2` and τ2α < 1/2 when τ is small.



Assouad Embedding Theorem, proof (7), bound || · ||lip

The Lipschitz norm of f ξk is

||f ξk ||lip ≤ τ
2r−1k

by (6) and because the ϕj are supported on disjoint balls. Thus

||F ξk ||lip ≤
∑
`≤k

rα` ||f
ξ
` ||lip

≤ τ2
∑
`≤k

rα−1`

= τ2rα−1k

∑
`≤k

τ2(`−k)(α−1)

= τ2rα−1k (1− τ2(1−α))−1



Assouad Embedding Theorem, proof (8), bound || · ||lip
Now, take τ ≤ 1− α. Then

ln(τ2(1−α)) = 2(1− α) ln(τ) = −2(1− α) ln(
1

τ
) ≤ −2τ ln(

1

τ
).

By exponentiating, we get that

τ2(1−α) ≤ e−2τ ln(
1
τ
) ≤ 1− τ ln(

1

τ
)

if τ is small enough, hence

1− τ2(1−α) ≥ τ ln(
1

τ
),

and thus
||F ξk ||lip ≤

τ

ln( 1
τ )

rα−1k ≤ rα−1k (10)

if τ is small enough, for example τ < 1/2 works.



Assouad Embedding Theorem, proof (9), choose vectors vj

I We want to choose the vectors vj , j ∈ Jk so that the

differences |F ξk (x)−F ξk (y)|, will be as large as possible in order

to allow us to prove that the inverse (F ξk )−1 is Lipschitz.

I Fix k ≥ k0, suppose that the Fk−1 were already constructed,
and fix a color ξ ∈ Ξ.

I Put any order < on the finite set Jk(ξ).

I We will choose the vj for F ξk in Lemma 3 using the order <.

I We will use the reverse order for F̃ ξk .



Assouad Embedding Theorem, proof (10), choose vj

Recall that we defined

F ξk (y) = F ξk−1 + rαk f
ξ
k (y) = F ξk−1 + rαk

∑
i∈Jk (ξ)

viϕi (y). (11)

For each j ∈ Jk(ξ), we shall also consider the partial sum G ξ
k,j

defined by

G ξ
k,j(y) = F ξk−1(y) + rαk

∑
i∈Jk :i<j

viϕi (y), (12)

which we therefore assume to be known before we choose vj .



Assouad Embedding Theorem, proof (11), choose vj

Lemma (3)

For each j ∈ Jk(ξ), we can choose vj ∈ B(0, τ2) so that

|F ξk (x)− G ξ
k,j(y)| ≥ τ3rαk (13)

for x ∈ Bj and y ∈ B(xj , 10τ−2rk) \ 2Bj .

For x ∈ Bj , we have ϕj(x) = 1 and ϕi (x) = 0 for all the other
indices i 6= j ∈ Jk(ξ). Thus

F ξk (x) = Fk−1ξ(x) + rαk f
ξ
k (x) = F ξk−1(x) + rαk vj (14)

by definitions of the functions (7) and (8).



Assouad Embedding Theorem, proof (12):
We use || · ||lip bounds to work with discrete sets

By the Lipschitz bound for F ξk (10), and its proof we have that

||F ξk ||lip ≤ rα−1k and also ||G ξ
k,j ||lip ≤ rα−1k

since we just add fewer terms.

I We use this to replace Bj and B(xj , 10τ−2rk) \ 2Bj with
discrete sets.

I Set η = τ3rk , and pick an η-dense set X in Bj and an η-dense
set Y in B(xj , 10τ−2rk) \ 2Bj

I We shall prove that we can choose the vectors vj so that

|F ξk (x)− G ξ
k,j(y)| ≥ 3τ3rαk (15)

for x ′ ∈ X and y ′ ∈ Y .

I We check next that the lemma will follow.



Assouad Embedding Theorem, proof (13):
Proof of Lemma 3 assuming that the discrete bound holds

For x ∈ Bj , we can find x ′ ∈ X such that

|F ξk (x ′)− F ξk (x)| ≤ ||F ξk ||lipη ≤ rα−1k · τ3rk = τ3rαk .

Similarly, for y ∈ B(xj , 10τ−2rk) \ 2Bj we can find y ′inY such that

|G ξ
k,j(y)− G ξ

k,j(y
′)| ≤ ||G ξ

k,j ||lipη ≤ τ
3rαk .

Then (13) follows. In other words, we can find a vector vj such
that the points considered map to points sufficiently far away from
each other.



Assouad Embedding Theorem, proof (14):
The discrete sets X and Y are small.

Remark 1.
In a doubling metric space, for λ > 0, every ball of radius λr can
be covered by C0λ

N0 balls of radius r , where N0 = log2 C0. To see
this replace λ by the next power of 2.

I First we bound |X |, the number of elements in X .

I Here we can use the doubling property, as above.

I Thus, we can cover Bj = B(xj , rk) by C0(2τ−3)N0 balls of
radius η/2, since η = τ3rk .

I We keep those that meet Bj , pick an element of Bj in each
such ball and get an η-dense net X , with |X | ≤ C0(2τ−3)N0

balls of radius η/2.



Assouad Embedding Theorem, proof (15): The discrete
sets X and Y are small.

I Similarly, we can find a discrete η-dense net Y such that

|Y | ≤ C0

(
2

10τ−2rk
η

)N0

= C0

(
20τ−2rk
τ3rk

)N0

= C0(20τ−5)N0 .

I The total number of pairs (x ′, y ′) for which we have to check
that discrete points map far (15), is thus

|X ||Y | ≤ C 2
0 (40τ−8)N0



Assouad Embedding Theorem, proof (16):
A ball B(0, τ 2) ⊂ RM for sufficiently large M contains a
bigger (|V | > |X ||Y |), maximal finite set V with points
separated by at least 7τ 3.

I Pick such a set.
I For each pair (x ′, y ′), the different choices of vj ∈ V yield the

same value of G ξ
k,j(y

′)

I The values of F ξk (x ′) differ by at least 7τ3rαk , because the only

F ξk (x ′) changes by precisely vj .
I Thus the discrete bound (15) cannot for this pair (x ′, y ′) can

fail for at most one choice of vj ∈ V .
I Thus it is enough to show that V has more than |X ||Y |

elements.
I Take CM to be the doubling constant of RM .
I Remark 1 implies that |V | ≥ CM( 1

7τ )log2CM .
I This is larger than |X ||Y | if CM > C 8

0 and τ is small enough,
depending on M. Lemma 3 follows.



Assouad Embedding Theorem, proof (17): Define F.

I For each color ξ, choose the vectors vj , and hence the

mapping F ξk , as in Lemma (3).

I Also define a second version F̃ ξk using the opposite order on
Jk(ξ).

I By (9), F ξ : E → RM is the limit F ξ = limk→∞F ξk .

I We are ready to check that F , the tensor product of the maps
{F ξ, F̃ ξ : ξ ∈ Ξ}, is bilipschitz from the snowflaked space
(E , dα).



Assouad Embedding Theorem, proof (18): Lemma 4.

Lemma (4)

We have that

τ2

8
d(x , y)α ≤ |F (x)− F (y)| ≤ 5Nτ−2(1−α)d(x , y)α for x , y ∈ E .

Proof.
Let x , y ∈ E be given. We may assume that x 6= y . Let k be such
that

4rk ≤ d(x , y) ≤ 4rk−1 = 4τ−2rk . (16)

Then rk ≤ 4rk ≤ d(x , y) ≤ diam(E ) ≤ rk0 by our definition of k0
and so k ≥ k0.



Assouad Embedding Theorem, proof (19): Lemma 4,
proof. Upper bound.

By the choice of rk as above (16) and the Lipschitz bound (10),
we get that

|F ξk (x)−F ξk (y)| ≤ ||F ξk ||lipd(x , y) ≤ rα−1k d(x , y) ≤
(
d(x , y)

4τ−2

)α−1
d(x , y) = (4τ−2)1−αd(x , y)alpha.

(17)
But by the estimate (9) we get for sufficiently small τ , that

||F ξ(x)− F ξ(y)| − |F ξk (x)− F ξk (y)|| ≤ 2||F ξ − F ξk ||∞
≤ 4τ2rαk+1

= 4τ2τ2αrk

≤ 2τ2d(x , y)α. (18)

These inequalities give the upper bound in Lemma (4). Similarly,

for F̃ ξk .



Assouad Embedding Theorem, proof (20): Lemma 4,
proof. Lower bound.

I For the lower bound, consider the same fixed x , y ∈ E .
I Since we have a covering, by (2), we can find j ∈ Jk such that

x ∈ Bj .
I Let ξ ∈ Ξ be the color such that j ∈ Jk(ξ), i.e. the color of

the ball Bj .
I consider two cases separately:

1. y ∈ 2Bi for some i ∈ Jk(ξ). Then we need to be able to
choose the vj ’s as in Lemma (3).

2. y /∈ 2Bi for all i ∈ Jk(ξ). Then all the terms ϕi (x) vanish.
I Note that now we have

y ∈ B(xj , 10τ−2rk) \ 2Bj . (19)

I y ∈ B(xj , 10τ−2rk) \ 2Bj , follows from our choice of scale
(16), because d(x , xj) ≤ rk , since x ∈ Bj .

I Moreover, y /∈ 2Bj , since if y ∈ 2Bj , then
d(x , y) ≤ d(x , xj) + d(xj , y) ≤ 3rk , which would contradict
our choice of scale (16).



Assouad Embedding Theorem, proof (21): Lemma 4,
proof. Lower bound, case y ∈ 2Bi for some i ∈ Jk(ξ).

I We have i 6= j , by (19).

I Let us assume that i < j . Otherwise, we would use F̃ ξk instead

of F ξk .

I All the ϕl(y), l 6= i , are equal to 0, by the definition of ϕl and
the coloring Jk(ξ).

I Then
F ξk (y) = F ξk−1(y) + rαk viϕi (y) = G ξ

k,j(y)

with F ξk−1(y) = 0 if k = k0.

I Now we can apply Lemma (3), because of the fact that
y ∈ B(xj , 10τ−2rk) \ 2Bj . Thus

|F ξk (x)− F ξk (y)| = |F ξk (x)− Gk,j(y)| ≥ τ3rαk .



Assouad Embedding Theorem, proof (22): Lemma 4,
proof. Lower bound, case y ∈ 2Bi for some i ∈ Jk(ξ). (2)

I We combine this with (18) and get that

|F ξ(x)− F ξ(y)| ≥ |F ξk (x)− F ξk (y)| − 4τ2τ2αrαk

≥ τ3rαk − 4τ2rαk+1 = τ3rαk (1− 4τ−1τ2α) ≥
τ3rαk

2

since by definition, rk = τ2k and because we can take
α > 2/3 and τ small.

I When 1/2 ≤ α ≤ 2/3 we could simply use the standard
Assouad proof.

I Now

|F (x)− F (y)| ≥ |F ξ(x)− F ξ(y)| ≥
τ3rαk

2

≥ τ3

2

(
d(x , y)

4τ−2

)α
≥ τ5

8
d(x , y)α

by our choice of scale k in (16).



Assouad Embedding Theorem, proof (23): Lemma 4,
proof. Conclusion.

I This proves the lemma when y ∈ 2Bi for some i ∈ Jk(ξ).

I Thus F ξk (y) = G ξ
k,j(y) = F ξk−1(y) for all j by the definition of

the functions F ξk and G ξ
k,j .

I In the other case, all the ϕi (x) vanish by the definition of the
functions ϕi .

I Thus F ξk (y) = G ξ
k,j(y) = F ξk−1(y) as in the first case and we

can continue similarly.

I This proves Lemma(4).



Assouad Embedding Theorem, proof (24): E unbounded.
I Now suppose E is an unbounded metric space with doubling

constant C0.
I Fix an origin x0.
I Apply the construction above to sets Em = E ∩ B(x0, 2

m).
I The set Em is itself a doubling metric space with constant C 2

0 .
I Why? If x ∈ Em and r > 0, we can cover the set

Em ∩ B(x , 2r) with C 2
0 balls of radius r/2 which, when they

meet Em, we can replace with balls of radius r whose centers
are in Em.

I From the proof above, we get a mapping Fm such that

C−1d(x , y)α ≤ |Fm(x)− Fm(y)| ≤ Cd(x , y)α

for x , y ∈ Em, where C depends only on C0 and α, but not on
m.

I We may assume hat Fm(x0) = 0, after possibly adding a
constant, which would not destroy the bilipshitz estimate
above.



Assouad Embedding Theorem, proof (25): E unbounded.
Conclusion.

I Define for each k ∈ Z, a maximal collection {xj} ⊂ E , j ∈ Jk ,
with d(xi , xj) ≥ rk for i 6= j . This is still at most countable.

I For each xj , the sequence {Fm(xj)} is bounded. Hence we can
extract a subsequence, so that the sequence Fmj converges for
each xj .

I The convergence is uniform on each bounded subset of E and
thus the bilipschitz estimate above passes to the limit.

I This completes our proof of the Assouad Embedding Theorem.
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