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1. outer measure on the set of curves



Basics

Let X , d be a metric space. A map γ : [a, b]→ X from an interval
to the space is called a curve if it is continuous.

The curve is called
rectifiable if it has finite length, i.e.

`(γ) = sup

{ n∑
k=1

d [γ(tk), γ(tk−1)]

∣∣∣∣ a ≤ t1 ≤ . . . ≤ tn ≤ b

}
<∞.

For t ∈ [a, b] denote by sγ(t) the length of the curve γ restricted
to [a, t].

Proposition

Every rectifiable curve γ has an arc-length parametrization
γ̃ : [0, `(γ)]→ X with

γ = γ̃ ◦ sγ .

For all t ∈ [0, `(γ)] we have `(γ̃, t) = t.

From now on all curves are assumed arc-length parametrized.
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From now on all curves are assumed arc-length parametrized.

1. We do not care about how fast the point moves along the curve
thats why we introduce the arc-length parametrization.

2. sγ is increasing, continuous [a, b]→ [0, `(γ)]. However the inverse is
not necessarily well defined. But if sγ is constant then so is γ, i.e. it
does not matter which inverse image we take.

3. But we do not only care about the image of γ, it makes a difference
if we move back and forth along the curve.
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Let γ : I → R be a curve. For a nonnegative Borel function ρ on X
we can define ˆ

γ
ρ =

ˆ
I
ρ(γ(t))dt.

Let µ be a Borel measure on (X , d). For a family Γ of curves
define

Modp(Γ) = inf

{ˆ
ρp dµ

∣∣∣∣ ∀γ ∈ Γ

ˆ
γ
ρ ≥ 1

}
.

Such ρ are called admissible for Γ. The modulus is nonnegative,
subadditive

Modp

(⋃
i

Γi

)
≤
∑
i

Modp(Γi )

and monotone, Modp(Γ) ≤ Modp(Γ ∪ Φ). I.e. Modp is an outer
measure. A family Γ is called p-exceptional if Modp(Γ) = 0. We
say a property holds p-almost everywhere if the family of curves
where it does not hold is p-exceptional.
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2. ρ ≥ 0 or |ρ|p.
3. For the proof of subadditivity just take the (`p-)sum of the (ρk)k .
4. Modp is not a measure on a reasonable σ-algebra though: For a

measure we want Modp(Γ ∪ ) = Modp(Γ) + Modp() if they are
disjoint. But if Γ is a set of curves, and Γ−1 the set of curves that
go the other way, then Γ ∪ Γ−1 can be disjoint however
Modp(Γ ∪ Γ−1) = Modp(Γ) = Modp(Γ−1). So this may only be if
Modp(Γ) ∈ {0,∞}.
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5. In the lecture we only cared about if sets are exceptional or not.
Here we will also prove some quantitative estimates.



From the lecture

Proposition (Fuglede)

Let (gi )i be Borel, converging to a Borel g in Lp(X , µ). Then
there is a subsequence (gik )k s.t. for p-a.e. curve γ we have

ˆ
γ
|gik − g | → 0.

Example

Let γ be a constant curve. Then Modp({γ}) =∞.
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there is a subsequence (gik )k s.t. for p-a.e. curve γ we have

ˆ
γ
|gik − g | → 0.

Example

Let γ be a constant curve. Then Modp({γ}) =∞.

1. This is because for each ρ we have
´
γ
ρ = 0.



Proposition

Let E ⊂ X Borel, µ(E ) = 0. Then for a.e. curve γ : I → X the set

{t | γ(t) ∈ E}

has zero measure; the length of γ in E is zero.

Proof: The function ∞ · 1E is admissible for all functions which
have positive length in E and

´
(∞ · 1E )p = 0.
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1. This is becauseˆ
γ

∞ · 1E =

ˆ
I

∞ · 1{t|γ(t)∈E} =

ˆ
{t|γ(t)∈E}

∞ ∈ {0,∞}.

2. This means that µ(E ) = 0 is also recognized by the curves. At least
almost all of them.



Proposition

Let Γ be a set of curves that all have length at least L in a set A.
Then

Modp(Γ) ≤ µ(A)L−p.

Proof: The function 1
L1A is admissible and

´
( 1L1A)p = µ(A)L−p.
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says that long curves have little modulus.
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Let p > 1 and (Γi )i be an increasing family of paths. Then

lim
i→∞

Modp(Γi ) = Modp

(⋃
i

Γi

)
.

Proof: Let (ρi )i be a corresponding sequence of admissible
functions with

´
ρpi ≤ Modp(Γi ) + 1

i . It is bounded and hence has
a weakly convergent subsequence. Its weak limit ρ can be written
as a strong limit of convex combinations of the (ρi )i with
arbitrarily large indeces i . Since (Γi )i are increasing, these convex
combinations are again admissible functions. By Fuglede so is
their Lp-limit.
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i Γi . However it is
not clear if the right hand side is maybe strictly larger.

2. Let γ ∈ Γi . Then for each k ≥ i also γ ∈ Γk . Thusˆ
γ

∑
k≥i

ckρk =
∑
k≥i

ck

ˆ
γ

ρk ≥
∑
k≥i

ck = 1.

3. We have
lim
i→∞

∑
k≥i

c i
kρk = ρ in Lp

By Fuglede this gives for all i and a.e. γ ∈ Γi thatˆ
γ

ρ = lim
i→∞

ˆ
γ

∑
k≥i

c i
kρk ≥ 1.



Curves connecting two sets

It fails for p = 1:

For two sets A,B ⊂ X denote by Modp(A,B) the
modulus of the collection of curves that start in A and end in B.

Mod1

[
B1,Rn \ B1+ε

]
. 1 (1)

Mod1

[
B1,Rn \ B1

]
=∞ (2)

The function ρε = 1
ε1{x :1≤|x |≤1+ε} is admissible for (1) and´

ρε = 1
εωn[(1 + ε)n − 1n]→ ωn−1.

However if ρ is admissible for (2) then for each ε and each unit
vector e we must have

ˆ 1+ε

1
ρ(te)dt ≥ 1.

This requires
´ 2
1 ρ(te)dt =∞ and by integration over e thus´

ρ =∞.
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1. Take Γi to be the curves going from B1 to Rn \ B1+ 1
i
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picture.
2. Draw a picture.
3. Draw a picture
4. So is this counterexample a bug? It could be fixed by also allowing

measures and not only L1-functions. Except it’s maybe not clear
how to integrate a measure along a curve? Or is it? Idk.



Bound on Modp

[
B(x , r),X \ B(x ,R)

]

Proposition

Let x ∈ X and n ≥ 1. If for all 0 < r < R0 we have

µ(B(x , r)) . rn

then for all 0 < 2r < R < R0 we have

Modp

[
B(x , r),X \ B(x ,R)

]
.p,n

(
log

R

r

)−p
log R

r p = n,

rn−p p > n,

Rn−p p < n.
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Modp

[
B(x , r),X \ B(x ,R)

]
.p,n

(
log

R

r

)−p
log R

r p = n,

rn−p p > n,

Rn−p p < n.

1. Upper bounds tend to be easier because it suffices to provide an
admissible function.

2. In Rn:

∼

log
(
R
r

)1−p
p = n

1∣∣R p−n
p−1−r

p−n
p−1

∣∣p−1 p 6= n

Coincidence for n = p, about a log()−p too much for p 6= n.
3. Note that in case p = n it only depends on R

r . That means here the
modulus is scaling invariant. In Rn this corresponds to p = n.
Maybe keep that in mind, it will appear again in the second talk on
this topic in a few weeks.



Bound on Modp

[
B(x , r),X \ B(x ,R)

]
Proof: Take the smallest s.t. 2k r ≥ R i.e. k ≈ log R

r . On
B(x ,R) \ B(x , r) set

ρ(y) =
2

k

1

d(x , y)
.

Then for each curve γ its subcurve γj in B(x , 2j+1r) \ B(x , 2j r)
has length at least 2j r , if 0 ≤ j ≤ k − 1. Thus

ˆ
γ
ρ ≥

k−1∑
j=0

ˆ
γj

ρ ≥
k−1∑
j=0

2j r
2

k

1

2j+1r
= 1

ˆ
ρp =

k−1∑
j=0

ˆ
B(x ,2j+1r)\B(x ,2j r)

ρ ≤
k−1∑
j=0

µ(B(x , 2j+1r))︸ ︷︷ ︸
.(2j+1r)n

(
2

k

1

2j r

)p

=
1

kp
rn−p

k−1∑
j=0

2(n−p)j
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1

kp
rn−p

k−1∑
j=0

2(n−p)j .n,p
1

kp



k n = p,

rn−p n < p,

Rn−p n > p.

Modp

[
B(x , r),X \ B(x ,R)

]
.p,n

(
log

R

r

)−p
log R

r n = p,

rn−p n < p,

Rn−p n > p.

Corollary

If there is a n > p or n ≥ p, p > 1 s.t. for small r we have

µ(B(x , r)) . rn

then the set of all nonconstant curves through x has 0 modulus.

Proof: Letting r → 0 shows that all curves that go through x and
B(x ,R) have zero modulus. Summing over all Rn = 1

n proves the
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2. Actually only those that start in x , but every curve that goes
through x has a subcurve that starts in x and it suffices to estimate
the modulus of subcurves because an admissible function for a
subcurve is an admissible function for the curve.



Modulus and Capacity

For two sets A,B define

Capp(A,B) = inf

{ˆ
gp
u

∣∣∣∣ u |A= 0, u |B= 1

}
.

Proposition

Capp(A,B) = Modp(A,B).

Proof of ≥: Let u be an admissible function for the capacity and γ
a curve from x0 ∈ A to x1 ∈ B. Then

ˆ
γ

gu ≥ u(x1)− u(x0) = 1,

gu is admissible for Capp(A,B).
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≤: let ρ be an admissible function for the modulus. Define

u(x) = inf

{ˆ
γ
ρ

∣∣∣∣ γ(0) ∈ A, γ(a) = x

}
Then cap u at 1.

If x ∈ A then u(x) = 0. If x ∈ B then u(x) = 1.
We have to show that ρ is an upper gradient for u. Let γ be a
curve connecting x , y ∈ X . Let γx and γy be curves that begin in
x0, y0 ∈ A and where the infimum is almost attained. Then

u(y)− u(x) ≤
ˆ
γy

ρ−
ˆ
γx

ρ+ ε ≤
ˆ
γx∪γ

ρ−
ˆ
γx

ρ+ ε =

ˆ
γ
ρ+ ε.
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