Modulus of a Curve Family 1

Julian Weigt

Mar 28, 2019

1. outer measure on the set of curves

Let X, d be a metric space. A map $\gamma : [a, b] \to X$ from an interval to the space is called a *curve* if it is continuous.

Basics

Let X, d be a metric space. A map $\gamma : [a, b] \to X$ from an interval to the space is called a *curve* if it is continuous.

Let X, d be a metric space. A map $\gamma : [a, b] \to X$ from an interval to the space is called a *curve* if it is continuous. The curve is called *rectifiable* if it has finite length, i.e.

$$\ell(\gamma) = \sup \left\{ \sum_{k=1}^n d[\gamma(t_k), \gamma(t_{k-1})] \mid a \leq t_1 \leq \ldots \leq t_n \leq b \right\} < \infty.$$

Basics

Let X, d be a metric space. A map $\gamma: [a, b] \to X$ from an interval to the space is called a *curve* if it is continuous. The curve is called *rectifiable* if it has finite length, i.e.

$$\ell(\gamma) = \sup \Bigl\{ \sum_{k=1}^n d[\gamma(t_k), \gamma(t_{k-1})] \ \bigg| \ a \leq t_1 \leq \ldots \leq t_n \leq b \Bigr\} < \infty.$$

Let X,d be a metric space. A map $\gamma:[a,b]\to X$ from an interval to the space is called a *curve* if it is continuous. The curve is called *rectifiable* if it has finite length, i.e.

$$\ell(\gamma) = \sup \left\{ \sum_{k=1}^n d[\gamma(t_k), \gamma(t_{k-1})] \mid a \leq t_1 \leq \ldots \leq t_n \leq b \right\} < \infty.$$

For $t \in [a, b]$ denote by $s_{\gamma}(t)$ the length of the curve γ restricted to [a, t].

Proposition

Every rectifiable curve γ has an arc-length parametrization $\tilde{\gamma}:[0,\ell(\gamma)]\to X$ with

$$\gamma = \tilde{\gamma} \circ s_{\gamma}$$
.

For all $t \in [0, \ell(\gamma)]$ we have $\ell(\tilde{\gamma}, t) = t$.

- 1. We do not care about how fast the point moves along the curve thats why we introduce the arc-length parametrization.
- 2. s_{γ} is increasing, continuous $[a,b] \rightarrow [0,\ell(\gamma)]$. However the inverse is not necessarily well defined. But if s_{γ} is constant then so is γ , i.e. it does not matter which inverse image we take.
- 3. But we do not only care about the image of γ , it makes a difference if we move back and forth along the curve.

Let X, d be a metric space. A map $\gamma:[a,b]\to X$ from an interval to the space is called a *curve* if it is continuous. The curve is called *rectifiable* if it has finite length, i.e.

$$\ell(\gamma) = \sup \left\{ \sum_{k=1}^n d[\gamma(t_k), \gamma(t_{k-1})] \mid a \leq t_1 \leq \ldots \leq t_n \leq b \right\} < \infty.$$

For $t \in [a, b]$ denote by $s_{\gamma}(t)$ the length of the curve γ restricted to [a, t].

Proposition

Every rectifiable curve γ has an arc-length parametrization $\tilde{\gamma}:[0,\ell(\gamma)]\to X$ with

$$\gamma = \tilde{\gamma} \circ s_{\gamma}.$$

For all $t \in [0, \ell(\gamma)]$ we have $\ell(\tilde{\gamma}, t) = t$.

From now on all curves are assumed arc-length parametrized.

- 1. We do not care about how fast the point moves along the curve thats why we introduce the arc-length parametrization.
- 2. s_{γ} is increasing, continuous $[a,b] \to [0,\ell(\gamma)]$. However the inverse is not necessarily well defined. But if s_{γ} is constant then so is γ , i.e. it does not matter which inverse image we take.
- 3. But we do not only care about the image of γ , it makes a difference if we move back and forth along the curve.

$$\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) \, \mathrm{d}t.$$

Let $\gamma:I\to\mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define $\int_{\gamma}\rho=\int_{I}\rho(\gamma(t))\,\mathrm{d}t.$

1. ρ being Borel makes sure that $\rho\circ\gamma$ is measurable.

$$\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) \, \mathrm{d}t.$$

Let μ be a Borel measure on (X, d).

1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.

$$\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) \, \mathrm{d}t.$$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$\mathsf{Mod}_p(\mathsf{\Gamma}) = \mathsf{inf} \Big\{ \int \rho^p \, \mathrm{d}\mu \; \bigg| \; \forall \gamma \in \mathsf{\Gamma} \; \int_{\gamma} \rho \geq 1 \Big\}.$$

Such ρ are called *admissible* for Γ .

Let $\gamma:I \to \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define $\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) \, \mathrm{d}t.$ Let μ be a Borel measure on (X,d). For a family Γ of curves

Let μ be a Borel measure on (X, d). For a family I of curves define

$$\operatorname{\mathsf{Mod}}_{\rho}(\Gamma) = \inf \left\{ \int \rho^{\rho} d\mu \; \middle| \; \forall \gamma \in \Gamma \; \int_{\gamma} \rho \geq 1 \right\}.$$

Such ρ are called admissible for Γ .

- 1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.
- 2. $\rho \ge 0 \text{ or } |\rho|^p$.

 $\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) \, \mathrm{d}t.$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$\mathsf{Mod}_{p}(\Gamma) = \mathsf{inf} \bigg\{ \int \rho^{p} \, \mathrm{d}\mu \; \bigg| \; \forall \gamma \in \Gamma \; \int_{\gamma} \rho \geq 1 \bigg\}.$$

Such ρ are called *admissible* for Γ . The modulus is nonnegative, subadditive

$$\mathsf{Mod}_pigg(\bigcup_i \mathsf{\Gamma}_iigg) \leq \sum_i \mathsf{Mod}_p(\mathsf{\Gamma}_i)$$

and monotone, $\mathsf{Mod}_p(\Gamma) \leq \mathsf{Mod}_p(\Gamma \cup \Phi)$. I.e. Mod_p is an outer measure.

Let $\gamma:I\to\mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define $\int_{\gamma}\rho=\int_{I}\rho(\gamma(t))\,\mathrm{d}t.$ Let μ be a Borel measure on (X,d). For a family Γ of curves define $\mathrm{Mod}_{\rho}(\Gamma)=\inf\left\{\int_{\Gamma}\rho^{\rho}\,\mathrm{d}\mu\ \Big|\ \forall\gamma\in\Gamma\ \int_{\gamma}\rho\geq1\right\}.$ Such ρ are called amissible for Γ . The modulus is nonnegative, subadditive $\mathrm{Mod}_{\rho}\Big(\bigcup_{i}\Gamma_{i}\Big)\leq\sum_{i}\mathrm{Mod}_{\rho}(\Gamma_{i})$ and monotone, $\mathrm{Mod}_{\rho}(\Gamma)\leq\mathrm{Mod}_{\rho}(\Gamma\cup\Phi).$ Le. Mod_{ρ} is an outer measure.

- 1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.
- 2. $\rho > 0$ or $|\rho|^p$.
- 3. For the proof of subadditivity just take the $(\ell^p$ -)sum of the $(\rho_k)_k$.
- 4. $\operatorname{\mathsf{Mod}}_\rho$ is not a measure on a reasonable σ -algebra though: For a measure we want $\operatorname{\mathsf{Mod}}_\rho(\Gamma\cup) = \operatorname{\mathsf{Mod}}_\rho(\Gamma) + \operatorname{\mathsf{Mod}}_\rho()$ if they are disjoint. But if Γ is a set of curves, and Γ_{-1} the set of curves that go the other way, then $\Gamma\cup\Gamma_{-1}$ can be disjoint however $\operatorname{\mathsf{Mod}}_\rho(\Gamma\cup\Gamma_{-1}) = \operatorname{\mathsf{Mod}}_\rho(\Gamma) = \operatorname{\mathsf{Mod}}_\rho(\Gamma_{-1})$. So this may only be if $\operatorname{\mathsf{Mod}}_\rho(\Gamma) \in \{0,\infty\}$.

 $\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) \, \mathrm{d}t.$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$\mathsf{Mod}_{p}(\Gamma) = \mathsf{inf} \Big\{ \int \rho^{p} \, \mathrm{d}\mu \; \bigg| \; \forall \gamma \in \Gamma \; \int_{\gamma} \rho \geq 1 \Big\}.$$

Such ρ are called *admissible* for Γ . The modulus is nonnegative, subadditive

$$\mathsf{Mod}_pigg(\bigcup_i \mathsf{\Gamma}_iigg) \leq \sum_i \mathsf{Mod}_p(\mathsf{\Gamma}_i)$$

and monotone, $\operatorname{Mod}_p(\Gamma) \leq \operatorname{Mod}_p(\Gamma \cup \Phi)$. I.e. Mod_p is an outer measure. A family Γ is called *p-exceptional* if $\operatorname{Mod}_p(\Gamma) = 0$. We say a property holds *p-almost everywhere* if the family of curves where it does not hold is *p-exceptional*.

Let $\gamma:I o\mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define

$$\int_{\gamma} \rho = \int_{I} \rho(\gamma(t)) dt.$$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$\operatorname{\mathsf{Mod}}_{\rho}(\Gamma) = \inf \left\{ \int \rho^{\rho} d\mu \ \middle| \ \forall \gamma \in \Gamma \ \int_{\gamma} \rho \geq 1 \right\}.$$

Such ρ are called *admissible* for Γ . The modulus is nonnegative,

$$\mathsf{Mod}_p\Big(\bigcup \Gamma_i\Big) \leq \sum \mathsf{Mod}_p(\Gamma_i)$$

and monotone, $\mathrm{Mod}_\rho(\Gamma) \leq \mathrm{Mod}_\rho(\Gamma \cup \Phi)$. I.e. Mod_ρ is an outer measure. A family Γ is called p-exceptional if $\mathrm{Mod}_\rho(\Gamma) = 0$. We say a property holds p-alos p-exceptional. Where it does not hold in p-alos p-exceptional.

- 1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.
- 2. $\rho > 0$ or $|\rho|^p$.
- 3. For the proof of subadditivity just take the $(\ell^p$ -)sum of the $(\rho_k)_k$.
- 4. $\operatorname{\mathsf{Mod}}_{\rho}$ is not a measure on a reasonable σ -algebra though: For a measure we want $\operatorname{\mathsf{Mod}}_{\rho}(\Gamma \cup) = \operatorname{\mathsf{Mod}}_{\rho}(\Gamma) + \operatorname{\mathsf{Mod}}_{\rho}()$ if they are disjoint. But if Γ is a set of curves, and Γ_{-1} the set of curves that go the other way, then $\Gamma \cup \Gamma_{-1}$ can be disjoint however $\operatorname{\mathsf{Mod}}_{\rho}(\Gamma \cup \Gamma_{-1}) = \operatorname{\mathsf{Mod}}_{\rho}(\Gamma) = \operatorname{\mathsf{Mod}}_{\rho}(\Gamma_{-1})$. So this may only be if $\operatorname{\mathsf{Mod}}_{\rho}(\Gamma) \in \{0,\infty\}$.
- 5. In the lecture we only cared about if sets are exceptional or not. Here we will also prove some quantitative estimates.

From the lecture

Proposition (Fuglede)

Let $(g_i)_i$ be Borel, converging to a Borel g in $L^p(X,\mu)$. Then there is a subsequence $(g_{i_k})_k$ s.t. for p-a.e. curve γ we have

$$\int_{\gamma} |g_{i_k} - g| \to 0.$$

From the lecture $\frac{\text{Proposition (Fuglede)}}{\text{Let }(g_i)\text{, be Borel, converging to a Borel }g\text{ in }L^p(X,\mu).\text{ Then there is a subsequence }(g_{b_i})_k$ s.t. for p-a.e. curve γ we have $\int_{\gamma}|g_{i_k}-g|\to 0.$

From the lecture

Proposition (Fuglede)

Let $(g_i)_i$ be Borel, converging to a Borel g in $L^p(X,\mu)$. Then there is a subsequence $(g_{i_k})_k$ s.t. for p-a.e. curve γ we have

$$\int_{\gamma} |g_{i_k} - g| o 0.$$

Example

Let γ be a constant curve. Then $\mathsf{Mod}_p(\{\gamma\}) = \infty$.

1. This is because for each ρ we have $\int_{\gamma} \rho = 0$.

Let $E \subset X$ Borel, $\mu(E) = 0$. Then for a.e. curve $\gamma: I \to X$ the set

$$\{t \mid \gamma(t) \in E\}$$

has zero measure; the length of γ in E is zero.

Proposition

Let $E\subset X$ Borel, $\mu(E)=0$. Then for a.e. curve $\gamma:I\to X$ the set $\{t\mid \gamma(t)\in E\}$

has zero measure; the length of γ in E is zero.

Let $E \subset X$ Borel, $\mu(E) = 0$. Then for a.e. curve $\gamma : I \to X$ the set

$$\{t \mid \gamma(t) \in E\}$$

has zero measure; the length of γ in E is zero.

Proof: The function $\infty \cdot 1_E$ is admissible for all functions which have positive length in E and $\int (\infty \cdot 1_E)^p = 0$.

1. This is because

$$\int_{\gamma} \infty \cdot 1_{E} = \int_{I} \infty \cdot 1_{\{t \mid \gamma(t) \in E\}} = \int_{\{t \mid \gamma(t) \in E\}} \infty \in \{0, \infty\}.$$

2. This means that $\mu(E) = 0$ is also recognized by the curves. At least almost all of them.

Let Γ be a set of curves that all have length at least L in a set A. Then

$$\operatorname{\mathsf{Mod}}_p(\Gamma) \leq \mu(A) L^{-p}.$$

1. Recall that constant (i.e. very short) curves have modulus ∞ . This says that long curves have little modulus.

Let Γ be a set of curves that all have length at least L in a set A. Then

$$\operatorname{\mathsf{Mod}}_p(\Gamma) \leq \mu(A) L^{-p}$$
.

Proof: The function $\frac{1}{L}1_A$ is admissible and $\int (\frac{1}{L}1_A)^p = \mu(A)L^{-p}$.

1. Recall that constant (i.e. very short) curves have modulus ∞ . This says that long curves have little modulus.

Let p > 1 and $(\Gamma_i)_i$ be an increasing family of paths. Then

$$\lim_{i \to \infty} \mathsf{Mod}_p(\Gamma_i) = \mathsf{Mod}_p\bigg(\bigcup_i \Gamma_i\bigg).$$

1. First observe that \leq is obvious because $\Gamma_k \subset \bigcup_i \Gamma_i$. However it is not clear if the right hand side is maybe strictly larger.

Let p > 1 and $(\Gamma_i)_i$ be an increasing family of paths. Then

$$\lim_{i \to \infty} \mathsf{Mod}_p(\Gamma_i) = \mathsf{Mod}_p\bigg(\bigcup_i \Gamma_i\bigg).$$

Proof: Let $(\rho_i)_i$ be a corresponding sequence of admissible functions with $\int \rho_i^p \leq \operatorname{Mod}_p(\Gamma_i) + \frac{1}{i}$. It is bounded and hence has a weakly convergent subsequence. Its weak limit ρ can be written as a strong limit of convex combinations of the $(\rho_i)_i$ with arbitrarily large indeces i. Since $(\Gamma_i)_i$ are increasing, these convex combinations are again admissible functions.

- 1. First observe that \leq is obvious because $\Gamma_k \subset \bigcup_i \Gamma_i$. However it is not clear if the right hand side is maybe strictly larger.
- 2. Let $\gamma \in \Gamma_i$. Then for each $k \geq i$ also $\gamma \in \Gamma_k$. Thus

$$\int_{\gamma} \sum_{k \geq i} c_k \rho_k = \sum_{k \geq i} c_k \int_{\gamma} \rho_k \geq \sum_{k \geq i} c_k = 1.$$

Let p > 1 and $(\Gamma_i)_i$ be an increasing family of paths. Then

$$\lim_{i \to \infty} \mathsf{Mod}_p(\Gamma_i) = \mathsf{Mod}_pigg(\bigcup_i \Gamma_iigg).$$

Proof: Let $(\rho_i)_i$ be a corresponding sequence of admissible functions with $\int \rho_i^p \leq \operatorname{Mod}_p(\Gamma_i) + \frac{1}{i}$. It is bounded and hence has a weakly convergent subsequence. Its weak limit ρ can be written as a strong limit of convex combinations of the $(\rho_i)_i$ with arbitrarily large indeces i. Since $(\Gamma_i)_i$ are increasing, these convex combinations are again admissible functions. By Fuglede so is their L^p -limit.

Proposition

Let p > 1 and $(\Gamma_i)_i$ be an increasing family of paths. Then

$$\lim_{i\to\infty} \operatorname{Mod}_p(\Gamma_i) = \operatorname{Mod}_p(\bigcup \Gamma_i).$$

Proof. Let (ρ_i) , be a corresponding sequence of admissible functions with $\int \rho_i^p \leq \operatorname{Mod}_p(\Gamma_i) + \frac{1}{r}$. It is bounded and hence has a weakly convergent subsequence. Its weak limit ρ can be written as a strong limit of convex combinations of the $(\rho_i)_i$, with arbitrarily large indeces i. Since $(\Gamma_i)_i$ are increasing, these convex combinations are again admissible functions. By Fuglede so is their L^p -limit.

- 1. First observe that \leq is obvious because $\Gamma_k \subset \bigcup_i \Gamma_i$. However it is not clear if the right hand side is maybe strictly larger.
- 2. Let $\gamma \in \Gamma_i$. Then for each $k \geq i$ also $\gamma \in \Gamma_k$. Thus

$$\int_{\gamma} \sum_{k>i} c_k \rho_k = \sum_{k>i} c_k \int_{\gamma} \rho_k \ge \sum_{k>i} c_k = 1.$$

3. We have

$$\lim_{i \to \infty} \sum_{k > i} c_k^i \rho_k = \rho \qquad \text{in } L^p$$

By Fuglede this gives for all i and a.e. $\gamma \in \Gamma_i$ that

$$\int_{\gamma} \rho = \lim_{i \to \infty} \int_{\gamma} \sum_{k > i} c_k^i \rho_k \ge 1.$$

It fails for p = 1:

Curves connecting two sets It fails for p = 1:

It fails for p = 1: For two sets $A, B \subset X$ denote by $\mathsf{Mod}_p(A, B)$ the modulus of the collection of curves that start in A and end in B.

Curves connecting two sets

It fails for p = 1: For two sets $A, B \subset X$ denote by $Mod_p(A, B)$ the modulus of the collection of curves that start in A and end in B.

It fails for p = 1: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_p(A, B)$ the modulus of the collection of curves that start in A and end in B.

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus B_{1+\varepsilon}\Big]\lesssim 1$$
 (1)

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus\overline{B_1}\Big]=\infty$$
 (2)

Curves connecting two sets

It fails for p = 1: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_p(A, B)$ the modulus of the collection of curves that start in A and end in B.

$$\mathsf{Mod}_1\left[\overline{B_1}, \mathbb{R}^n \setminus B_{1+\varepsilon}\right] \lesssim 1$$
 (1

$$\mathsf{Mod}_1\left[\overline{B_1}, \mathbb{R}^n \setminus \overline{B_1}\right] = \infty$$
 (2)

1. Take Γ_i to be the curves going from $\overline{B_1}$ to $\mathbb{R}^n \setminus B_{1+\frac{1}{i}}$. Draw a picture.

It fails for p = 1: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_p(A, B)$ the modulus of the collection of curves that start in A and end in B.

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus B_{1+arepsilon}\Big]\lesssim 1$$
 (1)

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus\overline{B_1}\Big]=\infty \tag{2}$$

The function $\rho_{\varepsilon} = \frac{1}{\varepsilon} \mathbf{1}_{\{x:1 \le |x| \le 1 + \varepsilon\}}$ is admissible for (1) and $\int \rho_{\varepsilon} = \frac{1}{\varepsilon} \omega_n [(1 + \varepsilon)^n - 1^n] \to \omega_{n-1}.$

Curves connecting two sets

It fails for p=1: For two sets $A,B\subset X$ denote by $\operatorname{Mod}_p(A,B)$ the modulus of the collection of curves that start in A and end in B.

$$\mathsf{Mod}_1\left[\overline{B_1}, \mathbb{R}^n \setminus B_{1+\varepsilon}\right] \lesssim 1$$
 (1)

$$\mathsf{Mod}_1\left[\overline{B_1}, \mathbb{R}^n \setminus \overline{B_1}\right] = \infty$$
 (2)

The function $\rho_{\varepsilon} = \frac{1}{\varepsilon} \mathbf{1}_{\{x:1 \leq |x| \leq 1 + \varepsilon\}}$ is admissible for (1) and $\int \rho_{\varepsilon} = \frac{1}{\varepsilon} \omega_n [(1 + \varepsilon)^n - 1^n] \rightarrow \omega_{n-1}.$

- 1. Take Γ_i to be the curves going from $\overline{B_1}$ to $\mathbb{R}^n \setminus B_{1+\frac{1}{i}}$. Draw a picture.
- 2. Draw a picture.

It fails for p = 1: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_p(A, B)$ the modulus of the collection of curves that start in A and end in B.

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus B_{1+arepsilon}\Big]\lesssim 1$$
 (1)

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus\overline{B_1}\Big]=\infty\tag{2}$$

The function $\rho_{\varepsilon} = \frac{1}{\varepsilon} 1_{\{x:1 \le |x| \le 1 + \varepsilon\}}$ is admissible for (1) and $\int \rho_{\varepsilon} = \frac{1}{\varepsilon} \omega_n [(1 + \varepsilon)^n - 1^n] \to \omega_{n-1}.$

However if ρ is admissible for (2) then for each ε and each unit vector e we must have

$$\int_{1}^{1+\varepsilon} \rho(te) \, \mathrm{d}t \geq 1.$$

This requires $\int_1^2 \rho(te) dt = \infty$ and by integration over e thus $\int \rho = \infty$.

Curves connecting two sets

It fails for p = 1: For two sets $A, B \subset X$ denote by $Mod_p(A, B)$ the modulus of the collection of curves that start in A and end in B

$$\mathsf{Mod}_1\left[\overline{B_1}, \mathbb{R}^n \setminus B_{1+\varepsilon}\right] \lesssim 1$$
 (1

$$\mathsf{Mod}_1\Big[\overline{B_1},\mathbb{R}^n\setminus\overline{B_1}\Big]=\infty$$
 (2)

The function $\rho_{\varepsilon} = \frac{1}{\varepsilon} I_{(x-1 \le |x| \le 1+\varepsilon)}$ is admissible for (1) and $\int \rho_{\varepsilon} = \frac{1}{\varepsilon} \omega_n [(1+\varepsilon)^n - 1^n] \to \omega_{n-1}$. However if ρ is admissible for (2) then for each ε and each unit vector e we must have

$$\int_{1}^{1+\varepsilon} \rho(te) dt \ge 1.$$

This requires $\int_1^2 \rho(te) dt = \infty$ and by integration over e thus $\int \rho = \infty$

- 1. Take Γ_i to be the curves going from $\overline{B_1}$ to $\mathbb{R}^n \setminus B_{1+\frac{1}{i}}$. Draw a picture.
- 2. Draw a picture.
- 3. Draw a picture
- 4. So is this counterexample a bug? It could be fixed by also allowing measures and not only L^1 -functions. Except it's maybe not clear how to integrate a measure along a curve? Or is it? Idk.

Bound on $\operatorname{Mod}_p\left[\overline{B(x,r)},X\setminus B(x,R)\right]$

Proposition

Let $x \in X$ and $n \ge 1$. If for all $0 < r < R_0$ we have

$$\mu(B(x,r)) \lesssim r^n$$

then for all $0 < 2r < R < R_0$ we have

$$\mathsf{Mod}_{p}\Big[\overline{B(x,r)}, X \setminus B(x,R)\Big] \lesssim_{p,n} \left(\log \frac{R}{r}\right)^{-p} \begin{cases} \log \frac{R}{r} & p = n, \\ r^{n-p} & p > n, \\ R^{n-p} & p < n. \end{cases}$$

- 1. Upper bounds tend to be easier because it suffices to provide an admissible function.
- 2. In \mathbb{R}^n :

$$\sim \begin{cases} \log\left(\frac{R}{r}\right)^{1-p} & p = n \\ \frac{1}{\left|R^{\frac{p-n}{p-1}} - r^{\frac{p-n}{p-1}}\right|^{p-1}} & p \neq n \end{cases}$$

Coincidence for n = p, about a $\log()^{-p}$ too much for $p \neq n$.

3. Note that in case p=n it only depends on $\frac{R}{r}$. That means here the modulus is scaling invariant. In \mathbb{R}^n this corresponds to p=n. Maybe keep that in mind, it will appear again in the second talk on this topic in a few weeks.

Bound on $\mathsf{Mod}_p\Big[\overline{B(x,r)},X\setminus B(x,R)\Big]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{\mathsf{d}(x,y)}.$$

Bound on $\operatorname{Mod}_{\rho}\Big[\overline{B(x,r)}, X\setminus B(x,R)\Big]$ Proof: Take the smallest s.t. $2^kr\geq R$ i.e. $k\approx \log\frac{R}{r}$. On $B(x,R)\setminus B(x,r)$ set $\rho(y)=\frac{2}{k}\frac{1}{d(x,y)}.$

1. Draw graph of ρ

Bound on $\operatorname{Mod}_p\left[\overline{B(x,r)},X\setminus B(x,R)\right]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{\mathsf{d}(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x, 2^{j+1}r) \setminus B(x, 2^j r)$ has length at least $2^j r$, if $0 \le j \le k-1$.

Bound on $\operatorname{Mod}_p\left[\overline{B(x,r)},X\setminus B(x,R)\right]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{d(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x,2^{j+1}r)\setminus B(x,2^jr)$ has length at least 2^jr , if $0\leq j\leq k-1$.

- 1. Draw graph of ρ
- 2. Image of concentric balls with doubling radius here.

Bound on $\operatorname{Mod}_p\left[\overline{B(x,r)},X\setminus B(x,R)\right]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{\mathsf{d}(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x, 2^{j+1}r) \setminus B(x, 2^j r)$ has length at least $2^j r$, if $0 \le j \le k-1$. Thus

$$\int_{\gamma} \rho \ge \sum_{i=0}^{k-1} \int_{\gamma_j} \rho \ge \sum_{i=0}^{k-1} 2^j r \frac{2}{k} \frac{1}{2^{j+1} r} = 1$$

Bound on $\operatorname{Mod}_p\left[\overline{B(x,r)}, X \setminus B(x,R)\right]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{d(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x,2^{j+1}r)\setminus B(x,2^jr)$ has length at least 2^jr , if $0\leq j\leq k-1$. Thus

$$\int_{\gamma} \rho \ge \sum_{j=0}^{k-1} \int_{\gamma_j} \rho \ge \sum_{j=0}^{k-1} 2^j r \frac{2}{k} \frac{1}{2^{j+1} r} = 1$$

- 1. Draw graph of ρ
- 2. Image of concentric balls with doubling radius here.

Bound on $\mathsf{Mod}_p\Big[\overline{B(x,r)},X\setminus B(x,R)\Big]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{\mathsf{d}(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x, 2^{j+1}r) \setminus B(x, 2^j r)$ has length at least $2^j r$, if $0 \le j \le k-1$. Thus

$$\int_{\gamma} \rho \ge \sum_{j=0}^{k-1} \int_{\gamma_j} \rho \ge \sum_{j=0}^{k-1} 2^j r \frac{2}{k} \frac{1}{2^{j+1} r} = 1$$

$$\int \rho^{p} = \sum_{j=0}^{k-1} \int_{B(x,2^{j+1}r)\setminus B(x,2^{j}r)} \rho \le \sum_{j=0}^{k-1} \mu(B(x,2^{j+1}r)) \left(\frac{2}{k} \frac{1}{2^{j}r}\right)^{p}$$

- 1. Draw graph of ρ
- 2. Image of concentric balls with doubling radius here.

Bound on $\mathsf{Mod}_p\Big[\overline{B(x,r)},X\setminus B(x,R)\Big]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{\mathsf{d}(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x, 2^{j+1}r) \setminus B(x, 2^j r)$ has length at least $2^j r$, if $0 \le j \le k-1$. Thus

$$\int_{\gamma} \rho \ge \sum_{j=0}^{k-1} \int_{\gamma_j} \rho \ge \sum_{j=0}^{k-1} 2^j r \frac{2}{k} \frac{1}{2^{j+1} r} = 1$$

$$\int \rho^{p} = \sum_{j=0}^{k-1} \int_{B(x,2^{j+1}r)\setminus B(x,2^{j}r)} \rho \leq \sum_{j=0}^{k-1} \underbrace{\mu(B(x,2^{j+1}r))}_{\leq (2^{j+1}r)^{n}} \left(\frac{2}{k} \frac{1}{2^{j}r}\right)^{p}$$

- 1. Draw graph of ρ
- 2. Image of concentric balls with doubling radius here.

Bound on $\mathsf{Mod}_p\left[\overline{B(x,r)},X\setminus B(x,R)\right]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x,R) \setminus B(x,r)$ set

$$\rho(y) = \frac{2}{k} \frac{1}{\mathsf{d}(x, y)}.$$

Then for each curve γ its subcurve γ_j in $B(x, 2^{j+1}r) \setminus B(x, 2^j r)$ has length at least $2^j r$, if $0 \le j \le k-1$. Thus

$$\int_{\gamma} \rho \ge \sum_{i=0}^{k-1} \int_{\gamma_j} \rho \ge \sum_{i=0}^{k-1} 2^j r \frac{2}{k} \frac{1}{2^{j+1} r} = 1$$

$$\int \rho^{p} = \sum_{j=0}^{k-1} \int_{B(x,2^{j+1}r)\setminus B(x,2^{j}r)} \rho \le \sum_{j=0}^{k-1} \underbrace{\mu(B(x,2^{j+1}r))}_{\lesssim (2^{j+1}r)^{n}} \left(\frac{2}{k} \frac{1}{2^{j}r}\right)^{p}$$
$$= \frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p)j}$$

Bound on $\operatorname{Mod}_p\left[\overline{B(x,r)}, X\setminus B(x,R)\right]$

Proof: Take the smallest s.t. $2^k r \ge R$ i.e. $k \approx \log \frac{R}{r}$. On

$$\rho(y)$$

 $B(x,R) \setminus B(x,r)$ set

Then for each curve γ its subcurve γ_j in $B(x,2^{j+1}r)\setminus B(x,2^{j}r)$ has length at least $2^{j}r$, if $0\leq j\leq k-1$. Thus

$$\begin{split} \int_{\gamma} \rho & \geq \sum_{j=0}^{k-1} \int_{\gamma_j} \rho \geq \sum_{j=0}^{k-1} 2^{j} r \frac{1}{k^2 t^{j+1} r} = 1 \\ & \int \rho^{\rho} = \sum_{j=0}^{k-1} \int_{B(s,2^{j+1}r), B(s,2^{j}r)} \rho \leq \sum_{j=0}^{k-1} \frac{\mu(B(s,2^{j+1}r))}{\lesssim (2^{j+1}r)^2} \left(\frac{1}{k} \frac{1}{2^{j}r}\right)^{\rho} \\ & = \frac{1}{k^{\rho}} r^{\rho} r^{\frac{k-1}{2}} 2^{(\rho-\rho)j} \end{split}$$

- 1. Draw graph of ρ
- 2. Image of concentric balls with doubling radius here.

$$\frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\left\{ \right.$$

$$\frac{1}{k^{\rho}}r^{n-\rho}\sum_{j=0}^{k-1}2^{(n-\rho)j}\lesssim_{n,\rho}\frac{1}{k^{\rho}}\left\{$$

$$\frac{1}{k^p}r^{n-p}\sum_{i=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^p}\begin{cases}k & n=p\\ & \end{cases}$$

$$\frac{1}{k^{p}}t^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\left\{k\qquad n=p,\right.$$

$$\frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\begin{cases} k & n=p,\\ r^{n-p} & n< p, \end{cases}$$

$$\frac{1}{k^p} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p)j} \lesssim_{n,p} \frac{1}{k^p} \begin{cases} k & n=p, \\ r^{n-p} & n < p, \end{cases}$$

$$\frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\begin{cases} k & n=p,\\ r^{n-p} & n< p,\\ R^{n-p} & n>p. \end{cases}$$

$$\frac{1}{k^{p}}r^{\alpha-p}\sum_{j=0}^{k-1}2^{(\alpha-p)j}\lesssim_{\alpha,p}\frac{1}{k^{p}}\begin{cases} k & n=p,\\ r^{\alpha-p} & np. \end{cases}$$

$$\frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\begin{cases}k&n=p,\\r^{n-p}&n< p,\\R^{n-p}&n>p.\end{cases}$$

$$\mathsf{Mod}_{p}\Big[\overline{B(x,r)},X\setminus B(x,R)\Big]\lesssim_{p,n}\left(\log\frac{R}{r}\right)^{-p}\begin{cases}\log\frac{R}{r}&n=p,\\r^{n-p}&n< p,\\R^{n-p}&n>p.\end{cases}$$

$$\begin{split} \frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j} \lesssim_{n,p} \frac{1}{k^{p}} \begin{cases} k & n=p,\\ r^{n-p} & n<\rho, \end{cases} \\ R^{n-p} & n>p. \end{cases} \\ \mathsf{Mod}_{p}\left[\overline{B(x,r)}, X \setminus B(x,R)\right] \lesssim_{p,n} \left(\log \frac{R}{r}\right)^{-p} \begin{cases} \log \frac{R}{r} & n=p,\\ r^{n-p} & n<\rho, \end{cases} \\ R^{n-p} & n>p. \end{cases}$$

$$\frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\begin{cases} k & n=p,\\ r^{n-p} & n< p,\\ R^{n-p} & n>p. \end{cases}$$

$$\mathsf{Mod}_{\rho}\Big[\overline{B(x,r)}, X \setminus B(x,R)\Big] \lesssim_{\rho,n} \left(\log \frac{R}{r}\right)^{-\rho} \begin{cases} \log \frac{R}{r} & n = \rho, \\ r^{n-\rho} & n < \rho, \\ R^{n-\rho} & n > \rho. \end{cases}$$

Corollary

If there is a n > p or $n \ge p, p > 1$ s.t. for small r we have

$$\mu(B(x,r)) \lesssim r^n$$

then the set of all nonconstant curves through x has 0 modulus.

$$\frac{1}{k^{p}}r^{n-p}\sum_{j=0}^{k-1}2^{(n-p)j}\lesssim_{n,p}\frac{1}{k^{p}}\begin{cases} k & n=p,\\ r^{n-p} & n< p,\\ R^{n-p} & n>p. \end{cases}$$

$$\mathsf{Mod}_{p}\Big[\overline{B(x,r)},X\setminus B(x,R)\Big]\lesssim_{p,n}\left(\log\frac{R}{r}\right)^{-p}\begin{cases}\log\frac{R}{r} & n=p,\\ r^{n-p} & n< p,\\ R^{n-p} & n>p.\end{cases}$$

Corollary

If there is a n > p or $n \ge p, p > 1$ s.t. for small r we have

$$\mu(B(x,r)) \lesssim r^n$$

then the set of all nonconstant curves through x has 0 modulus.

Proof: Letting $r \to 0$ shows that all curves that go through x and B(x,R) have zero modulus. Summing over all $R_n = \frac{1}{n}$ proves the Corollary.

- Geometric sums with nonzero exponent are always bounded by their largest summand.
- 2. Actually only those that start in x, but every curve that goes through x has a subcurve that starts in x and it suffices to estimate the modulus of subcurves because an admissible function for a subcurve is an admissible function for the curve.

Modulus and Capacity

For two sets A, B define

$$\mathsf{Cap}_p(A,B) = \mathsf{inf} igg\{ \int g_u^p \ \bigg| \ u \mid_A = 0, \ u \mid_B = 1 igg\}.$$

Modulus and Capacity

For two sets A, B define

$$\operatorname{Cap}_p(A,B) = \inf \left\{ \int g_u^p \mid u \mid_{A} = 0, u \mid_{B} = 1 \right\}.$$

Modulus and Capacity

For two sets A, B define

$$\operatorname{\mathsf{Cap}}_p(A,B) = \inf \left\{ \int g_u^p \; \middle| \; u \mid_A = 0, \; u \mid_B = 1 \right\}.$$

Proposition

$$Cap_p(A, B) = Mod_p(A, B).$$

Modulus and Capacity

For two sets A, B define

$$\operatorname{\mathsf{Cap}}_p(A,B) = \inf \left\{ \int g_u^p \; \middle| \; u \mid_A = 0, \; u \mid_B = 1 \right\}.$$

Proposition

$$Cap_p(A, B) = Mod_p(A, B).$$

Proof of \geq : Let u be an admissible function for the capacity and γ a curve from $x_0 \in A$ to $x_1 \in B$. Then

$$\int_{\gamma} g_u \geq u(x_1) - u(x_0) = 1,$$

 g_u is admissible for $Cap_p(A, B)$.

Modulus and Capacity

For two sets A, B define

$$\operatorname{\mathsf{Cap}}_p(A,B) = \inf \left\{ \int g_u^p \mid u \mid_{A} = 0, \ u \mid_{B} = 1 \right\}.$$

Pro

$$Cap_p(A, B) = Mod_p(A, B).$$

Proof of \geq : Let u be an admissible function for the capacity and γ a curve from $x_0 \in A$ to $x_1 \in B$. Then

$$\int_{\gamma} g_u \ge u(x_1) - u(x_0) = 1,$$

 g_u is admissible for $Cap_p(A, B)$.

 \leq : let ρ be an admissible function for the modulus. Define

$$u(x) = \inf \left\{ \int_{\gamma} \rho \mid \gamma(0) \in A, \ \gamma(a) = x \right\}$$

Then cap u at 1.

 \leq : let ho be an admissible function for the modulus. Define

$$u(x) = \inf \left\{ \int_{\gamma} \rho \mid \gamma(0) \in A, \ \gamma(a) = x \right\}$$

Then cap u at 1.

1.
$$\gamma:[0,a]\to X$$
 curve

 \leq : let ρ be an admissible function for the modulus. Define

$$u(x) = \inf \left\{ \int_{\gamma} \rho \mid \gamma(0) \in A, \ \gamma(a) = x \right\}$$

Then cap u at 1. If $x \in A$ then u(x) = 0. If $x \in B$ then u(x) = 1. We have to show that ρ is an upper gradient for u. Let γ be a curve connecting $x, y \in X$. Let γ_x and γ_y be curves that begin in $x_0, y_0 \in A$ and where the infimum is almost attained. Then

$$u(y) - u(x) \leq \int_{\gamma_y} \rho - \int_{\gamma_x} \rho + \varepsilon \leq \int_{\gamma_x \cup \gamma} \rho - \int_{\gamma_x} \rho + \varepsilon = \int_{\gamma} \rho + \varepsilon.$$

 \leq : let ρ be an admissible function for the modulus. Define

$$u(x) = \inf \left\{ \int_{\gamma} \rho \mid \gamma(0) \in A, \ \gamma(a) = x \right\}$$

Then cap u at 1. If $x \in A$ then u(x) = 0. If $x \in B$ then u(x) = 1. We have to show that ρ is an upper gradient for u. Let γ be a curve connecting $x,y \in X$. Let γ_x and γ_y be curves that begin in $x_0,y_0 \in A$ and where the infimum is almost attained. Then

$$u(y)-u(x) \leq \int_{\gamma_y} \rho - \int_{\gamma_x} \rho + \varepsilon \leq \int_{\gamma_x \cup \gamma} \rho - \int_{\gamma_x} \rho + \varepsilon = \int_{\gamma} \rho + \varepsilon.$$

1.
$$\gamma:[0,a]\to X$$
 curve

Thanks!

Thanks!