Modulus of a Curve Family 1

Julian Weigt

1. outer measure on the set of curves

Mar 28, 2019

Basics

```
Basis
```

Let X, d be a metric space. A map $\gamma:[a, b] \rightarrow X$ from an interval to the space is called a curve if it is continuous.

Basics

Let X, d be a metric space. A map $\gamma:[a, b] \rightarrow X$ from an interval to the space is called a curve if it is continuous. The curve is called rectifiable if it has finite length, i.e.

$$
\ell(\gamma)=\sup \left\{\sum_{k=1}^{n} d\left[\gamma\left(t_{k}\right), \gamma\left(t_{k-1}\right)\right] \mid a \leq t_{1} \leq \ldots \leq t_{n} \leq b\right\}<\infty
$$

Let X, d be a metric space. A map $\gamma:[a, b] \rightarrow X$ from an interval
to the space is called a curve if it is continuous. The curve is called to the space is called a curve if it is continuous. The curve is calle
rectifizale if it has finite lengh ie rectifiable if it has finite length, i.e.

Let X, d be a metric space. A map $\gamma:[a, b] \rightarrow X$ from an interval to the space is called a curve if it is continuous. The curve is called rectifiable if it has finite length, i.e.

$$
\ell(\gamma)=\sup \left\{\sum_{k=1}^{n} d\left[\gamma\left(t_{k}\right), \gamma\left(t_{k-1}\right)\right] \mid a \leq t_{1} \leq \ldots \leq t_{n} \leq b\right\}<\infty
$$

For $t \in[a, b]$ denote by $s_{\gamma}(t)$ the length of the curve γ restricted to $[a, t]$.

Proposition

Every rectifiable curve γ has an arc-length parametrization $\tilde{\gamma}:[0, \ell(\gamma)] \rightarrow X$ with

$$
\gamma=\tilde{\gamma} \circ s_{\gamma} .
$$

For all $t \in[0, \ell(\gamma)]$ we have $\ell(\tilde{\gamma}, t)=t$.
Let X, d be a metric space. A map $\gamma:[a, b] \rightarrow X$ from an interval
to the space is called a curve if it is continuous. The curve is called rectifizable if it has finite length, i.e.
$\left.\ell(\gamma)=\sup \left\{\sum_{k=1}^{n} d \gamma\left(t_{k}\right), \gamma\left(t_{k-1}\right)\right) \mid a \leq t_{1} \leq \ldots \leq t_{n} \leq b\right\}<\infty$.
For $t \in[a, b]$ denote by $s_{\gamma}(t)$ the length of the curve γ restricted
to $[a, t]$.
For $t \in[a$,
to $[a, t]$.

Every rectifable curve \gamma has an arc-length parametrization
Every rectifable curve \gamma has an arc-length parametrization
\, \gamma=\tilde{%}\circs
\, \gamma=\tilde{%}\circs

1. We do not care about how fast the point moves along the curve thats why we introduce the arc-length parametrization.
2. s_{γ} is increasing, continuous $[a, b] \rightarrow[0, \ell(\gamma)]$. However the inverse is not necessarily well defined. But if s_{γ} is constant then so is γ, i.e. it does not matter which inverse image we take.
3. But we do not only care about the image of γ, it makes a difference if we move back and forth along the curve.
Let X, d be a metric space. A map $\gamma:[a, b] \rightarrow X$ from an interval
to the space is called a curve if it is continuous. The curve is called to the spaca is cater a
$\left.\ell(\gamma)=\sup \left\{\sum_{k=1}^{n} d \gamma\left(t_{k}\right), \gamma\left(t_{k-1}\right)\right) \mid a \leq t_{1} \leq \ldots \leq t_{n} \leq b\right\}<\infty$.
For $t \in[a, b]$ denote by $s_{\gamma}(t)$ the length of the curve γ restricted
to $[a, t]$. to $[a, t)$.
\
\
\tilde{z}:[0,\ell(\gamma)]}->X\mathrm{ with
\tilde{z}:[0,\ell(\gamma)]}->X\mathrm{ with
For all }t\in[0,\ell(\gamma)]\mathrm{ we have }\ell(\tilde{~},t)
For all }t\in[0,\ell(\gamma)]\mathrm{ we have }\ell(\tilde{~},t)
From now on all curves are assumed arc-length parametrized
From now on all curves are assumed arc-length parametrized
4. We do not care about how fast the point moves along the curve thats why we introduce the arc-length parametrization.
5. s_{γ} is increasing, continuous $[a, b] \rightarrow[0, \ell(\gamma)]$. However the inverse is not necessarily well defined. But if s_{γ} is constant then so is γ, i.e. it does not matter which inverse image we take.
6. But we do not only care about the image of γ, it makes a difference if we move back and forth along the curve.

For all $t \in[0, \ell(\gamma)]$ we have $\ell(\tilde{\gamma}, t)=t$.
From now on all curves are assumed arc-length parametrized.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define

$$
\int_{\gamma} \rho=\int_{I} \rho(\gamma(t)) \mathrm{d} t
$$

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X
we can define
$\int_{\gamma} \rho=\int_{1} \rho(\gamma(t)) d t$.

1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define

$$
\int_{\gamma} \rho=\int_{I} \rho(\gamma(t)) \mathrm{d} t .
$$

Let μ be a Borel measure on (X, d).

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X
we can define
Let μ be Bear $\int_{\gamma} \rho=\int_{1} \rho(\gamma(t)$
Let μ be a Borel measure on (X, d).

1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define

$$
\int_{\gamma} \rho=\int_{l} \rho(\gamma(t)) \mathrm{d} t .
$$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$
\operatorname{Mod}_{p}(\Gamma)=\inf \left\{\int \rho^{p} \mathrm{~d} \mu \mid \forall \gamma \in \Gamma \int_{\gamma} \rho \geq 1\right\} .
$$

Such ρ are called admissible for Γ.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X
we can define $\int \rho=\int_{\rho} \rho(\gamma(t)) \mathrm{d} t$.
Let μ be a Borel measure on (X, d). For a family Γ of curves define $\operatorname{Mod}_{\rho}(\Gamma)=\inf \left\{\int_{\rho^{\rho} \mathrm{d} \mu} \mid \forall \gamma \in \Gamma \int_{\gamma} \rho \geq 1\right\}$.
Such ρ are called admissible for Γ.

1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.
2. $\rho \geq 0$ or $|\rho|^{p}$.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define

$$
\int_{\gamma} \rho=\int_{I} \rho(\gamma(t)) \mathrm{d} t .
$$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$
\operatorname{Mod}_{p}(\Gamma)=\inf \left\{\int \rho^{p} \mathrm{~d} \mu \mid \forall \gamma \in \Gamma \int_{\gamma} \rho \geq 1\right\} .
$$

Such ρ are called admissible for Γ. The modulus is nonnegative, subadditive

$$
\operatorname{Mod}_{p}\left(\bigcup_{i} \Gamma_{i}\right) \leq \sum_{i} \operatorname{Mod}_{p}\left(\Gamma_{i}\right)
$$

and monotone, $\operatorname{Mod}_{p}(\Gamma) \leq \operatorname{Mod}_{p}(\Gamma \cup \Phi)$. I.e. Mod_{p} is an outer measure.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X
we can define
$\int_{\gamma} \rho=\int_{1} \rho(\gamma(t)) d t$.
Let μ be a Borel measure on (X, d). For a family Γ of curves
$\operatorname{Mod}_{\rho}(\Gamma)=\inf \left\{\int \rho^{\rho} \mathrm{d} \mu \mid \forall \gamma \in \Gamma \int_{\gamma} \rho \geq 1\right\}$.
Such ρ are called admissible for r. The modulus is nonnegative.
subadditive $\quad \operatorname{Mod}_{p}\left(U r_{i}\right) \leq \sum \operatorname{Mod}_{p}\left(\Gamma_{i}\right)$
and monotone, $\operatorname{Mod}_{p}(\Gamma) \leq \operatorname{Mod}_{p}(\Gamma \cup \Phi)$. I.e. Mod $_{p}$ is an outer
measure.

1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.
2. $\rho \geq 0$ or $|\rho|^{p}$.
3. For the proof of subadditivity just take the $\left(\ell^{p_{-}}\right)$sum of the $\left(\rho_{k}\right)_{k}$.
4. Mod_{p} is not a measure on a reasonable σ-algebra though: For a measure we want $\operatorname{Mod}_{p}(\Gamma \cup)=\operatorname{Mod}_{p}(\Gamma)+\operatorname{Mod}_{p}()$ if they are disjoint. But if Γ is a set of curves, and Γ_{-1} the set of curves that go the other way, then $\Gamma \cup \Gamma_{-1}$ can be disjoint however $\operatorname{Mod}_{p}\left(\Gamma \cup \Gamma_{-1}\right)=\operatorname{Mod}_{p}(\Gamma)=\operatorname{Mod}_{p}\left(\Gamma_{-1}\right)$. So this may only be if $\operatorname{Mod}_{p}(\Gamma) \in\{0, \infty\}$.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X we can define

$$
\int_{\gamma} \rho=\int_{I} \rho(\gamma(t)) \mathrm{d} t .
$$

Let μ be a Borel measure on (X, d). For a family Γ of curves define

$$
\operatorname{Mod}_{p}(\Gamma)=\inf \left\{\int \rho^{p} \mathrm{~d} \mu \mid \forall \gamma \in \Gamma \int_{\gamma} \rho \geq 1\right\}
$$

Such ρ are called admissible for Γ. The modulus is nonnegative, subadditive

$$
\operatorname{Mod}_{p}\left(\bigcup_{i} \Gamma_{i}\right) \leq \sum_{i} \operatorname{Mod}_{p}\left(\Gamma_{i}\right)
$$

and monotone, $\operatorname{Mod}_{p}(\Gamma) \leq \operatorname{Mod}_{p}(\Gamma \cup \Phi)$. I.e. Mod_{p} is an outer measure. A family Γ is called p-exceptional if $\operatorname{Mod}_{p}(\Gamma)=0$. We say a property holds p-almost everywhere if the family of curves where it does not hold is p-exceptional.

Let $\gamma: I \rightarrow \mathbb{R}$ be a curve. For a nonnegative Borel function ρ on X
we can define
$\int_{\gamma} \rho=\int_{1} \rho(\gamma(t)) d t$.

$$
\operatorname{Mod}_{p}(\Gamma)=\inf \left\{\int \rho^{\rho} \mathrm{d} \mu \mid \forall \gamma \in \Gamma \int_{\gamma} \rho \geq 1\right\} .
$$

Such ρ are called admissible for Γ. The modulus is nonnegative. subadditive $\quad \operatorname{Mod}_{p}\left(U \Gamma_{i}\right) \leq \sum \operatorname{Mod}_{p}\left(\Gamma_{i}\right)$
and monotone, $\operatorname{Mod}_{p}(\Gamma) \leq \operatorname{Mod}_{p}(\Gamma \cup \Phi)$. I.e. Mod p is an outer measure. A family Γ is called p-exceptiona if $\operatorname{Mod}_{0}(\Gamma)=0$. We
say a property holds p-almost evernwhere if the family of curves say a property holds p-almost evervwher
where it does not hold is p-exceptional.

1. ρ being Borel makes sure that $\rho \circ \gamma$ is measurable.
2. $\rho \geq 0$ or $|\rho|^{p}$.
3. For the proof of subadditivity just take the ($\ell^{P_{-}}$)sum of the $\left(\rho_{k}\right)_{k}$.
4. Mod_{p} is not a measure on a reasonable σ-algebra though: For a measure we want $\operatorname{Mod}_{p}(\Gamma \cup)=\operatorname{Mod}_{p}(\Gamma)+\operatorname{Mod}_{p}()$ if they are disjoint. But if Γ is a set of curves, and Γ_{-1} the set of curves that go the other way, then $\Gamma \cup \Gamma_{-1}$ can be disjoint however $\operatorname{Mod}_{p}\left(\Gamma \cup \Gamma_{-1}\right)=\operatorname{Mod}_{p}(\Gamma)=\operatorname{Mod}_{p}\left(\Gamma_{-1}\right)$. So this may only be if $\operatorname{Mod}_{p}(\Gamma) \in\{0, \infty\}$.
5. In the lecture we only cared about if sets are exceptional or not. Here we will also prove some quantitative estimates.

Proposition (Fuglede)

Let $\left(g_{i}\right)_{i}$ be Borel, converging to a Borel g in $L^{p}(X, \mu)$. Then there is a subsequence $\left(g_{i_{k}}\right)_{k}$ s.t. for p-a.e. curve γ we have

$$
\int_{\gamma}\left|g_{i k}-g\right| \rightarrow 0
$$

From the lecture

Proposition (Fuglede)

Let $\left(g_{i}\right)_{i}$ be Borel, converging to a Borel g in $L^{p}(X, \mu)$. Then there is a subsequence $\left(g_{i_{k}}\right)_{k}$ s.t. for p-a.e. curve γ we have

$$
\int_{\gamma}\left|g_{i_{k}}-g\right| \rightarrow 0 .
$$

Example

Let γ be a constant curve. Then $^{\operatorname{Mod}}{ }_{\rho}(\{\gamma\})=\infty$.

Proposition

Let $E \subset X$ Borel, $\mu(E)=0$. Then for a.e. curve $\gamma: I \rightarrow X$ the set $\{t \mid \gamma(t) \in E\}$
has zero measure; the length of γ in E is zero.

Proposition

Let $E \subset X$ Borel, $\mu(E)=0$. Then for a.e. curve $\gamma: I \rightarrow X$ the set

$$
\{t \mid \gamma(t) \in E\}
$$

has zero measure; the length of γ in E is zero.
Proof: The function $\infty \cdot 1_{E}$ is admissible for all functions which have positive length in E and $\int\left(\infty \cdot 1_{E}\right)^{p}=0$.

1. This is because

$$
\int_{\gamma} \infty \cdot 1_{E}=\int_{I} \infty \cdot 1_{\{t \mid \gamma(t) \in E\}}=\int_{\{t \mid \gamma(t) \in E\}} \infty \in\{0, \infty\} .
$$

2. This means that $\mu(E)=0$ is also recognized by the curves. At least almost all of them.

Proposition

Let Γ be a set of curves that all have length at least L in a set A. Then

$$
\operatorname{Mod}_{p}(\Gamma) \leq \mu(A) L^{-p} .
$$

1. Recall that constant (i.e. very short) curves have modulus ∞. This says that long curves have little modulus.

Proposition

Let Γ be a set of curves that all have length at least L in a set A. Then

$$
\operatorname{Mod}_{p}(\Gamma) \leq \mu(A) L^{-p} .
$$

Proof: The function $\frac{1}{L} 1_{A}$ is admissible and $\int\left(\frac{1}{L} 1_{A}\right)^{p}=\mu(A) L^{-p}$.

Proposition

Let $p>1$ and $\left(\Gamma_{i}\right)_{i}$ be an increasing family of paths. Then

$$
\lim _{i \rightarrow \infty} \operatorname{Mod}_{p}\left(\Gamma_{i}\right)=\operatorname{Mod}_{p}\left(\bigcup_{i} \Gamma_{i}\right)
$$

1. First observe that \leq is obvious because $\Gamma_{k} \subset \bigcup_{i} \Gamma_{i}$. However it is not clear if the right hand side is maybe strictly larger.

Proposition

Let $p>1$ and $\left(\Gamma_{i}\right)_{i}$ be an increasing family of paths. Then

$$
\lim _{i \rightarrow \infty} \operatorname{Mod}_{p}\left(\Gamma_{i}\right)=\operatorname{Mod}_{p}\left(\bigcup_{i} \Gamma_{i}\right)
$$

Proof: Let $\left(\rho_{i}\right)_{i}$ be a corresponding sequence of admissible functions with $\int \rho_{i}^{p} \leq \operatorname{Mod}_{p}\left(\Gamma_{i}\right)+\frac{1}{i}$. It is bounded and hence has a weakly convergent subsequence. Its weak limit ρ can be written as a strong limit of convex combinations of the $\left(\rho_{i}\right)_{i}$ with arbitrarily large indeces i. Since $\left(\Gamma_{i}\right)_{i}$ are increasing, these convex combinations are again admissible functions.

1. First observe that \leq is obvious because $\Gamma_{k} \subset \bigcup_{i} \Gamma_{i}$. However it is not clear if the right hand side is maybe strictly larger.
2. Let $\gamma \in \Gamma_{i}$. Then for each $k \geq i$ also $\gamma \in \Gamma_{k}$. Thus

$$
\int_{\gamma} \sum_{k \geq i} c_{k} \rho_{k}=\sum_{k \geq i} c_{k} \int_{\gamma} \rho_{k} \geq \sum_{k \geq i} c_{k}=1 .
$$

Proposition

Let $p>1$ and $\left(\Gamma_{i}\right)_{i}$ be an increasing family of paths. Then

$$
\lim _{i \rightarrow \infty} \operatorname{Mod}_{p}\left(\Gamma_{i}\right)=\operatorname{Mod}_{p}\left(\bigcup_{i} \Gamma_{i}\right)
$$

Proof: Let $\left(\rho_{i}\right)_{i}$ be a corresponding sequence of admissible functions with $\int \rho_{i}^{p} \leq \operatorname{Mod}_{p}\left(\Gamma_{i}\right)+\frac{1}{i}$. It is bounded and hence has a weakly convergent subsequence. Its weak limit ρ can be written as a strong limit of convex combinations of the $\left(\rho_{i}\right)_{i}$ with arbitrarily large indeces i. Since $\left(\Gamma_{i}\right)_{i}$ are increasing, these convex combinations are again admissible functions. By Fuglede so is their L^{p}-limit.

1. First observe that \leq is obvious because $\Gamma_{k} \subset \bigcup_{i} \Gamma_{i}$. However it is not clear if the right hand side is maybe strictly larger.
2. Let $\gamma \in \Gamma_{i}$. Then for each $k \geq i$ also $\gamma \in \Gamma_{k}$. Thus

$$
\int_{\gamma} \sum_{k \geq i} c_{k} \rho_{k}=\sum_{k \geq i} c_{k} \int_{\gamma} \rho_{k} \geq \sum_{k \geq i} c_{k}=1 .
$$

3. We have

$$
\lim _{i \rightarrow \infty} \sum_{k \geq i} c_{k}^{i} \rho_{k}=\rho \quad \text { in } L^{p}
$$

By Fuglede this gives for all i and a.e. $\gamma \in \Gamma_{i}$ that

$$
\int_{\gamma} \rho=\lim _{i \rightarrow \infty} \int_{\gamma} \sum_{k \geq i} c_{k}^{i} \rho_{k} \geq 1 .
$$

Curves connecting two sets

It fails for $p=1$:

It fails for $p=1$: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_{p}(A, B)$ the modulus of the collection of curves that start in A and end in B.

It fails for $p=1$: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_{p}(A, B)$ the modulus of the collection of curves that start in A and end in B.

$$
\begin{align*}
& \operatorname{Mod}_{1}\left[\overline{B_{1}}, \mathbb{R}^{n} \backslash B_{1+\varepsilon}\right] \lesssim 1 \tag{1}\\
& \operatorname{Mod}_{1}\left[\overline{B_{1}}, \mathbb{R}^{n} \backslash \overline{B_{1}}\right]=\infty \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Mod}_{1}\left[\overline{B_{1}}, \mathbb{R}^{n} \backslash B_{1+\varepsilon}\right] \lesssim 1 \tag{1}\\
& \operatorname{Mod}_{1}\left[\overline{B_{1}}, \mathbb{R}^{n} \backslash \overline{B_{1}}\right]=\infty \tag{2}
\end{align*}
$$

The function $\rho_{\varepsilon}=\frac{1}{\varepsilon} 1_{\{x: 1 \leq|x| \leq 1+\varepsilon\}}$ is admissible for (1) and $\int \rho_{\varepsilon}=\frac{1}{\varepsilon} \omega_{n}\left[(1+\varepsilon)^{n}-1^{n}\right] \rightarrow \omega_{n-1}$.

It fails for $p=1$: For two sets $A, B \subset X$ denote by $\operatorname{Mod}_{p}(A, B)$ the modulus of the collection of curves that start in A and end in B.

The function $\rho_{s}=\frac{1}{\varepsilon} 1_{(\times x+1 \leq x \mid \leq 1+\varepsilon)}$ is admissible for (1) and
$\int \rho_{\varepsilon}=\frac{1}{\varepsilon} \omega_{n}\left[(1+\varepsilon)^{n}-1^{n}\right] \rightarrow \omega_{n-1}$.
vector e we must have

$$
\begin{align*}
& \operatorname{Mod}_{1}\left[\overline{B_{1}}, \mathbb{R}^{n} \backslash B_{1+\varepsilon}\right] \lesssim 1 \tag{1}\\
& \operatorname{Mod}_{1}\left[\overline{B_{1}}, \mathbb{R}^{n} \backslash \overline{B_{1}}\right]=\infty \tag{2}
\end{align*}
$$

The function $\rho_{\varepsilon}=\frac{1}{\varepsilon} 1_{\{x: 1 \leq|x| \leq 1+\varepsilon\}}$ is admissible for (1) and $\int \rho_{\varepsilon}=\frac{1}{\varepsilon} \omega_{n}\left[(1+\varepsilon)^{n}-1^{n}\right] \rightarrow \omega_{n-1}$.
However if ρ is admissible for (2) then for each ε and each unit vector e we must have

$$
\int_{1}^{1+\varepsilon} \rho(t e) \mathrm{d} t \geq 1
$$

This requires $\int_{1}^{2} \rho(t e) \mathrm{d} t=\infty$ and by integration over e thus $\int \rho=\infty$.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$

Proposition
Let $x \in X$ and $n \geq 1$. If for all $0<r<R_{0}$ we have

$$
\mu(B(x, r)) \lesssim r^{n}
$$

then for all $0<2 r<R<R_{0}$ we have

$$
\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)] \lesssim_{p, n}\left(\log \frac{R}{r}\right)^{-p} \begin{cases}\log \frac{R}{r} & p=n \\ r^{n-p} & p>n \\ R^{n-p} & p<n\end{cases}
$$

1. Upper bounds tend to be easier because it suffices to provide an admissible function.
2. In \mathbb{R}^{n} :

$$
\sim \begin{cases}\log \left(\frac{R}{r}\right)^{1-p} & p=n \\ \frac{1}{\left|R^{\frac{p-n}{p-1}}-r^{\frac{p-n}{p-1}}\right|^{p-1}} & p \neq n\end{cases}
$$

Coincidence for $n=p$, about a $\log ()^{-p}$ too much for $p \neq n$.
3. Note that in case $p=n$ it only depends on $\frac{R}{r}$. That means here the modulus is scaling invariant. In \mathbb{R}^{n} this corresponds to $p=n$. Maybe keep that in mind, it will appear again in the second talk on this topic in a few weeks.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)$

Proof: Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x, R) \backslash B(x, r)$ set

$$
\rho(y)=\frac{2}{k} \frac{1}{\mathrm{~d}(x, y)} .
$$

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$

1. Draw graph of ρ

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)$

Proof: Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x, R) \backslash B(x, r)$ set

$$
\rho(y)=\frac{2}{k} \frac{1}{\mathrm{~d}(x, y)} .
$$

Then for each curve γ its subcurve γ_{j} in $B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{j} r\right)$ has length at least $2^{j} r$, if $0 \leq j \leq k-1$.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$
Proof. Take the smallest 5 .t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{T}$. On
$B(x, R) \backslash B(x, r)$ set
$\rho(y)=\frac{2}{k} \frac{1}{d(x, y)}$.
Then for each curve γ its subcurve γ_{y} in $B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{j} r\right)$
Then for each curve γ its subcurve
has length at least $2 r$, if $0 \leq j \leq k$

1. Draw graph of ρ
2. Image of concentric balls with doubling radius here.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)$

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$
Proof. Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{T}$. On
Proof: Take the smalet
$B(x, R) \backslash B(x, r)$ set
Proof: Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x, R) \backslash B(x, r)$ set

$$
\rho(y)=\frac{2}{k} \frac{1}{\mathrm{~d}(x, y)} .
$$

Then for each curve γ its subcurve γ_{j} in $B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{j} r\right)$ has length at least $2^{j} r$, if $0 \leq j \leq k-1$. Thus

$$
\int_{\gamma} \rho \geq \sum_{j=0}^{k-1} \int_{\gamma_{j}} \rho \geq \sum_{j=0}^{k-1} 2^{j} r \frac{2}{k} \frac{1}{2^{j+1} r}=1
$$

1. Draw graph of ρ
2. Image of concentric balls with doubling radius here.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)$

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$
Proof: Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{T}$. On
$B(x, R) \backslash B(x, r)$ set
Then for each curve γ its subcurve $e_{j, ~ i n)} B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{i} r\right)$
has length at least $2 r$, if $0 \leq j \leq k-1$. Thus
$\int_{\gamma} \rho \geq \sum_{j=0}^{k-1} \int_{\gamma j} \rho \geq \sum_{j=0}^{k-1} 2^{j} r_{k}^{2} \frac{1}{22^{j+1} r}=1$
$\int \rho^{p}=\sum_{j=0}^{k-1} \int_{B(x, 2+1+r) B(x, 2 r)} \rho \leq \sum_{j=0}^{k-1} \mu\left(B\left(x, 2^{j+1} r\right)\left(\frac{2}{k} \frac{1}{2 r}\right)^{p}\right.$

1. Draw graph of ρ
2. Image of concentric balls with doubling radius here.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)$

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$
Proof: Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{T}$. On
$B(x, R) \backslash B(x, r)$ set
Then for each curve γ its subcurve $e_{j, ~ i n)} B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{i} r\right)$
has length at least $2^{j} r$, if $0 \leq j \leq k-1$. Thus
$\int_{\gamma} \rho \geq \sum_{j=0}^{k-1} \int_{\gamma} \rho \geq \sum_{j=0}^{k-1} \sum^{j} r_{k}^{2} \frac{1}{k 2^{j+1} r}=1$

1. Draw graph of ρ
2. Image of concentric balls with doubling radius here.

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)$

Proof: Take the smallest s.t. $2^{k} r \geq R$ i.e. $k \approx \log \frac{R}{r}$. On $B(x, R) \backslash B(x, r)$ set

$$
\rho(y)=\frac{2}{k} \frac{1}{\mathrm{~d}(x, y)} .
$$

Then for each curve γ its subcurve γ_{j} in $B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{j} r\right)$ has length at least $2^{j} r$, if $0 \leq j \leq k-1$. Thus

$$
\begin{gathered}
\int_{\gamma} \rho \geq \sum_{j=0}^{k-1} \int_{\gamma_{j}} \rho \geq \sum_{j=0}^{k-1} 2^{j} r \frac{2}{k} \frac{1}{2^{j+1} r}=1 \\
\int \rho^{p}=\sum_{j=0}^{k-1} \int_{B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{j r}\right)} \rho \leq \sum_{j=0}^{k-1} \underbrace{\mu\left(B\left(x, 2^{j+1} r\right)\right)}_{\lesssim\left(2^{j+1} r\right)^{n}}\left(\frac{2}{k} \frac{1}{2^{j} r}\right)^{p} \\
=\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j}
\end{gathered}
$$

Bound on $\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)]$
$\begin{aligned} & \text { Proof. Take the smallest s.t. } 2^{k} r \geq R \text { i.e. } \\ & B(x, R) \backslash B(x, r) \text { set }\end{aligned}$
$\quad \rho(y)=\frac{2}{k} \frac{1}{d(x, y)}$

has length at least $2 r$, if $0 \leq j \leq k-1$. Thus
$\int_{\gamma} \rho \geq \sum_{j=0}^{k-1} \int_{\gamma j} \rho \geq \sum_{j=0}^{k-1} z^{j} r_{\frac{2}{k}}^{2} \frac{1}{22^{j+1} r}=1$

 $=\frac{1}{k r^{r}} \sum^{n-p} \sum^{k-1} 2^{(n-p) j}$

1. Draw graph of ρ
2. Image of concentric balls with doubling radius here.

$$
\frac{1}{4}-x_{x}^{2}
$$

$$
\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j} \lesssim n, p \frac{1}{k^{p}} \begin{cases}k & n=p, \\ \end{cases}
$$

$$
\frac{1}{k^{\rho^{n}-n}} \sum_{j=0}^{k-1} \sum^{(n-p) j} \leq n, \frac{1}{k^{p}}\left\{^{k} \quad n=p,\right.
$$

1. Geometric sums with nonzero exponent are always bounded by their largest summand.

$$
\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j} \lesssim_{n, p} \frac{1}{k^{p}} \begin{cases}k & n=p, \\ r^{n-p} & n<p,\end{cases}
$$

1. Geometric sums with nonzero exponent are always bounded by their largest summand.

$$
\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j} \lesssim_{n, p} \frac{1}{k^{p}} \begin{cases}k & n=p \\ r^{n-p} & n<p \\ R^{n-p} & n>p\end{cases}
$$

1. Geometric sums with nonzero exponent are always bounded by their largest summand.

$$
\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j} \lesssim_{n, p} \frac{1}{k^{p}} \begin{cases}k & n=p \\ r^{n-p} & n<p \\ R^{n-p} & n>p\end{cases}
$$

$\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)] \lesssim_{p, n}\left(\log \frac{R}{r}\right)^{-p} \begin{cases}\log \frac{R}{r} & n=p, \\ r^{n-p} & n<p, \\ R^{n-p} & n>p .\end{cases}$

1. Geometric sums with nonzero exponent are always bounded by their largest summand.

$$
\begin{gathered}
\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j} \lesssim_{n, p} \frac{1}{k^{p}} \begin{cases}k & n=p \\
r^{n-p} & n<p \\
R^{n-p} & n>p\end{cases} \\
\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)] \lesssim_{p, n}\left(\log \frac{R}{r}\right)^{-p} \begin{cases}\log \frac{R}{r} & n=p \\
r^{n-p} & n<p \\
R^{n-p} & n>p\end{cases}
\end{gathered}
$$

Corollary

If there is a $n>p$ or $n \geq p, p>1$ s.t. for small r we have

$$
\mu(B(x, r)) \lesssim r^{n}
$$

then the set of all nonconstant curves through x has 0 modulus.

1. Geometric sums with nonzero exponent are always bounded by their largest summand.

$$
\begin{gathered}
\frac{1}{k^{p}} r^{n-p} \sum_{j=0}^{k-1} 2^{(n-p) j} \lesssim_{n, p} \frac{1}{k^{p}} \begin{cases}k & n=p \\
r^{n-p} & n<p \\
R^{n-p} & n>p\end{cases} \\
\operatorname{Mod}_{p}[\overline{B(x, r)}, X \backslash B(x, R)] \lesssim_{p, n}\left(\log \frac{R}{r}\right)^{-p} \begin{cases}\log \frac{R}{r} & n=p \\
r^{n-p} & n<p \\
R^{n-p} & n>p\end{cases}
\end{gathered}
$$

Corollary

If there is a $n>p$ or $n \geq p, p>1$ s.t. for small r we have

$$
\mu(B(x, r)) \lesssim r^{n}
$$

then the set of all nonconstant curves through x has 0 modulus.
Proof: Letting $r \rightarrow 0$ shows that all curves that go through x and $B(x, R)$ have zero modulus. Summing over all $R_{n}=\frac{1}{n}$ proves the Corollary.

$\frac{1}{k^{p} r^{n-p}} \sum_{j=0}^{k-1} 2^{(n-p) j} \leq n, p \frac{1}{k^{p}} \begin{cases}k & \begin{array}{l}n=p, \\ k^{n-p} \\ R^{n-p} \\ n>p, \\ n>p .\end{array}\end{cases}$
 $\operatorname{Mod}_{\rho}\left[\overline{B(x, r), X \backslash B(x, R)]}<p . n\left(\log \frac{R}{r}\right)^{-p} \begin{cases}\log \frac{R}{r} & n=p, \\ r^{n-p} & n<p, \\ R^{n-p} & n>p .\end{cases}\right.$

If there is a $n>p$ or $n \geq p, p>1$ s.t. for small r we have

$\mu(B(x, r)) \leqslant r^{n}$
then the set of all nonconstant curves through x has 0 modulus.
Proof: Letting $r \rightarrow 0$ shows that all curves that go through x and
$B(x, R)$ have zero modulus. Summing over all $R_{n}=\frac{1}{n}$ proves the

1. Geometric sums with nonzero exponent are always bounded by their largest summand.
2. Actually only those that start in x, but every curve that goes through x has a subcurve that starts in x and it suffices to estimate the modulus of subcurves because an admissible function for a subcurve is an admissible function for the curve.

$$
\begin{aligned}
& \text { Modulus and Capacity } \\
& \text { For two sets } A, B \text { define } \\
& \qquad \operatorname{Cap}_{p}(A, B)=\inf \left\{\int g_{u}^{g}|u|_{A}=0,\left.u\right|_{B}=1\right\} .
\end{aligned}
$$

\square
\square
\square
\square

Modulus and Capacity
 \section*{\section*{Modulus and Capacity
 \section*{\section*{Modulus and Capacity

 Modulus and Capa}

 Modulus and Capa}

For two sets A, B define

$$
\operatorname{Cap}_{p}(A, B)=\inf \left\{\int g_{u}^{p}|u|_{A}=0,\left.u\right|_{B}=1\right\} .
$$

Proposition

$$
\operatorname{Cap}_{p}(A, B)=\operatorname{Mod}_{p}(A, B)
$$

\qquad
-
 . \square

Modulus and Capacity

For two sets A, B define

$$
\operatorname{Cap}_{p}(A, B)=\inf \left\{\int g_{u}^{p}|u|_{A}=0,\left.u\right|_{B}=1\right\} .
$$

Proposition

$$
\operatorname{Cap}_{p}(A, B)=\operatorname{Mod}_{p}(A, B) .
$$

Proof of \geq : Let u be an admissible function for the capacity and γ a curve from $x_{0} \in A$ to $x_{1} \in B$. Then

$$
\int_{\gamma} g_{u} \geq u\left(x_{1}\right)-u\left(x_{0}\right)=1
$$

g_{u} is admissible for $\operatorname{Cap}_{p}(A, B)$.
\leq : let ρ be an admissible function for the modulus. Define

$$
u(x)=\inf \left\{\int_{\gamma} \rho \mid \gamma(0) \in A, \gamma(a)=x\right\}
$$

Then cap u at 1 .
<: let ρ be an admissible function for the modulus. Define $u(x)=\inf \left\{\int_{\gamma} \rho \mid \gamma(0) \in A, \gamma(a)=x\right\}$
\qquad

1. $\gamma:[0, a] \rightarrow X$ curve
\leq : let ρ be an admissible function for the modulus. Define

$$
u(x)=\inf \left\{\int_{\gamma} \rho \mid \gamma(0) \in A, \gamma(a)=x\right\}
$$

Then cap u at 1. If $x \in A$ then $u(x)=0$. If $x \in B$ then $u(x)=1$. We have to show that ρ is an upper gradient for u. Let γ be a curve connecting $x, y \in X$. Let γ_{x} and γ_{y} be curves that begin in $x_{0}, y_{0} \in A$ and where the infimum is almost attained. Then

$$
u(y)-u(x) \leq \int_{\gamma_{y}} \rho-\int_{\gamma_{x}} \rho+\varepsilon \leq \int_{\gamma_{x} \cup \gamma} \rho-\int_{\gamma_{x}} \rho+\varepsilon=\int_{\gamma} \rho+\varepsilon .
$$

S: let ρ be an admissible function for the modulus. Define $u(x)=\inf \left\{\int_{\gamma} \rho \mid \gamma(0) \in A, \gamma(a)=x\right\}$
Then cap u at 1. If $x \in A$ then $u(x)=0$. If $x \in B$ then $u(x)=1$ Wurve connecting $x, y \in X$. Let γ_{x} and γ_{y} be curves that begin in $x_{x_{0}, y_{0} \in A \text { and where the infimum is almost attained. Then }}$
$u(y)-u(x) \leq \int_{\gamma \gamma} \rho-\int_{\gamma \alpha} \rho+\varepsilon \leq \int_{\gamma \nu \nu \gamma} \rho-\int_{\gamma \gamma} \rho+\varepsilon=\int_{\gamma} \rho+\varepsilon$.

1. $\gamma:[0, a] \rightarrow X$ curve

Thanks!

