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Today

• Lecture: Geographically weighted models and 

regression

– Introduction

– Global models: Theory and examples

– Local models: Theory and examples

• Geographically weighted regression

• On Monday: Computer class exercise at 10:15 in Maari-

E in Maarintalo



Learning goals

• After this lecture, you are able to

– Discuss problems with global statistical models

– Explain how geographically weighted models are

created

– List and explain the required steps in geographically

weighted regression



Geographically Weighted 

Regression (GWR)
• Most of this lecture is based on materials found in the book 

(not available in libraries)

– A. S. Fotheringham, C. Brunsdon, M. Charlton: Geographically 

weighted regression – the analysis of spatially varying 

relationships, Wiley 2002

• See also Chapter 7 in Discovering Spatio-Temporal 

Relationships: A Case Study of Risk Modelling of Domestic 

Fires by Olga Špatenková, 2009, 

http://lib.tkk.fi/Diss/2009/isbn9789522482334/ or Chapter 3.1 

(theory), 6.1 and 6.2 (example) in Error propagation in 

geographically weighted regression by Jaakko Madetoja, 

2018, https://aaltodoc.aalto.fi/handle/123456789/29575

http://lib.tkk.fi/Diss/2009/isbn9789522482334/
https://aaltodoc.aalto.fi/handle/123456789/29575


The big picture



Problem

• Imagine reading a book on climate of United States

• If book contained info on data averaged across whole 

country 

– E.g

• Mean averaged sunshine

• Mean average temperature

• Mean average rainfall

• How could we tell anything about the climate in any 

particular location of the United States

• Global rather than Local observations



Problem

• Now imagine a model were we are trying to explain 

house prices by a list of variables such as 
• Size of house

• Number of bedrooms

• Age of house

• In a standard regression (I will explain later) the 

resulting parameter estimates are average relationships 

across study area

• E.g in Rural areas age of house may have different 

impact on house prices than in Urban Areas

• Global rather than Local statistics



• This is caused by the processes generating the sampled data we 

are studying exhibiting non-stationarity.

• This basically means that the processes generating the observed 

attributes might vary over space rather than being constant as is 

assumed in the use of most traditional types of statistical analysis.

• The global models is usually an average of local models

• Simpson’s paradox

Spatial heterogeneity



• Mean:

• The data: temperature

• Global value: -4.6

Global model example: Mean



• If our usual formula for a linear regression equation is.

• 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜀

• y = dependent variable – i.e. one we are trying to explain

• x = explanatory variable

• 𝛽 = parameter indicating the influence of x on y

• 𝜀 = error term

• Goal

• To estimate the values of the parameters
• To provide some diagnostics on reliability of parameters

• Important note on the symbology: y and x are variables; not coordinates!

Global model example: Regression



Regression coefficients

• The most important part of the results of regression: 

Estimates for the coefficients 𝛽1, 𝛽2, …

• How to explain them: Looking at the formula, we can 

see that if an independent variable x1 increases by 

one, the dependent variable y increases by 𝛽1

assuming that all other independent variables remain 

the same.

• Note that this is slightly different from correlation



• If our usual formula for a linear regression equation is.

• 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜀

• This equation implies that for each relationship between y and an x 

variable, a single parameter is estimated which is assumed to be 

constant across the study region.

• Consequently if there is spatial nonstationarity the resulting single 

parameter estimate would then represent and average of the 

different processes operating over space.

• This is the problem of spatial heterogeneity.

Regression



Example



Example

y: house price

x: attributes of a house



Example



Goodness of fit

• How well the model fits the data; the higher the value 

the better the model

• R2 value

– Percentage of variance in the y variable accounted for by the 

variance in the model

– In this case 60% of the variations in house prices are explained 

by the model

– This lead 40% unexplained



Example



T-values

• Problem of zero valued parameters

• Standard error - a measure of uncertainty  of a 

parameter estimate

• Dividing each parameter estimate by its standard error –

T-value



Statistical significance test

• Null hypothesis: the value of a parameter is zero

• Calculate of t-value

• Compare with 1.96

• If T > 1.96 or T < -1.96, reject the null hypothesis and 

conclude that the parameter value is significantly 

different from zero

• Also usually p-values – much easier to interpret as they 

tell you % significance 

– E.g 0.01 means the estimate is significant at 1%



Residuals and spatial autocorrelation

• Residuals: Difference between the observed and predicted 

values

– Positive – underestimation

– Negative – overestimation

• Residuals are not randomly distributed, but they are spatially 

autocorrelated

• Assumption in regression: Residuals should be randomly 

distributed; if they are not, there’s a problem with the model. 

Locals models can be a solution to the problem.



Example



Local models

• So how can we account for these non-stationary 

relationships?

• We want to look at methods that will reveal individual 

parameters for locations across the study area to see if 

they vary significantly

• Simplest way is to run a regression for many subareas



• Mean for every region

Example: Mean



Example: Regression



Results



Results



What is wrong with this approach?



Problems with subareas approach

• The division is artificial, not based on the phenomenon.

• MAUP (Modifiable Areal Unit Problem): Different division 

yields different results

• Objects on different sides of a border belong to different 

models



Moving window approach

• A moving window would overcome the problem that the 

area boundaries are not necessarily the boundaries of 

the underlying spatial process

• Methods works by

– Creating a grid of points

– Creating an area(square or circular) around each grid point

– Create a separate model for each point on just the data that falls 

inside the area of selection

– Map the results



Moving window mean



Moving window mean

• Mean in the area of 10 x 10 pixels (100 km x 100 km)



Moving window regression



Example



What is wrong with this approach?



Problems with moving window approach

• The division is not artificial anymore, but the problem 

with the border remains



Geographically weighted models

• Removes the problem with the border: utilize gradual weights 
for points

• Geographically weighted model: Create a statistical model for 
each point so that nearby points are given a bigger weight 
than faraway points.

• Can be applied to every (?) statistical method that has a 
weighted version
– Ready tool for at least the following: Descriptive statistics (mean, 

median, variance, covariance, correlation), different regression 
models (linear, Poisson, logistic, heteroscedastic, robust), 
discriminant analysis, principal component analysis (PCA; next 
lecture), parallel coordinate plot (PCP)

• Software: R, GWR4, ArcGIS, QGIS



Geographically weighted mean



• The geographic weighted version of the regression 

equation is.

• 𝑦𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑥1𝑖 + 𝛽2𝑖𝑥2𝑖 +⋯+ 𝛽𝑛𝑖𝑥𝑛𝑖 + 𝜀𝑖

• Where i refers to the location at which data on y and x 

are measured and at which local estimates of the 

parameters are obtained.

• The regression equation is now influenced by a 

spatial weights matrix where observations nearer to i

are given more weight than observations further 

away.

Geographic Weighted Regression 

(GWR)



GWR

• 𝑦𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑥1𝑖 + 𝛽2𝑖𝑥2𝑖 +⋯+ 𝛽𝑛𝑖𝑥𝑛𝑖 + 𝜀𝑖
• Parameters 𝛽𝑛𝑖 are not constant

• Parameters are function of location

• Weights – closer observations influence the regression 

more than distant ones

• Weighting can be done using a Gaussian or similar 

decreasing function

• For example: 𝑤𝑖𝑗 = 1 − ( Τ𝑑𝑖𝑗 𝑏)2
2
𝑖𝑓 𝑑𝑖𝑗 < 𝑏



Spatial Weighting Function

From Fotheringham et al., 2002



Weighting Schemes

• Fixed

• Spatially adaptive

From Fotheringham et al., 2002



Choice of weighting function

• Results of GWR are relatively insensitive to the choice 
of weighting function

• Results are sensitive to the bandwidth or the number of 
the nearest neighbours
– Too small – large variance in the estimates

– Too large – large bias

• Bandwidth size is optimized using either
– Crossvalidation score or

• CV = i [yi - y i* (h)]2

– Akaike Information Criterion

• AICc = Deviance + 2k [n/(n-k-1)]



Example



Example



Conclusion: General flow of GWR 

analysis
(0. Data preprocessing and descriptive analysis)

1. Run global regression model; for example Ordinary Least 
Squares (OLS) regression

2. Analyze the results; coefficients, R-squared, residuals
– Run Moran’s Index for the residuals; if they are autocorrelated, 

GWR might be a solution

3. Run the same GWR model

4. Analyze the results; local coefficients, local R-squared, 
model R-squared, residuals
– Run Moran’s Index for the residuals; did the level of 

autocorrelation decrease?

5. Compare OLS and GWR results: which model is better, are 
the results conflicting?



Concluding Remarks

• Information on spatial non-stationarity in relationships

• Residuals from GWR are generally lower compared to 
global models

• Residuals from GWR are generally less spatially 
autocorrelated

• ‘Spatial Microscope’ – observing relationships on 
various scales, i.e. using different bandwidth sizes



Example: Building fires in Helsinki 

(slides from Olga Špatenková)
• Incident data from Fire and Rescue authorities in 

Helsinki (2005-2007)

– geocoded by addresses and coordinates

– attributes (incident type, response time, etc.)

• Census data from Statistics Finland (2006)

– aggregated to 250 x 250 m grid

– plenty of socio-economic figures



Data preparation

• Kernel density for incidents data

• Cells with no data excluded from analysis

• Map overlay according to census grids



Data selection for the model

• Dependent variable
– building fire density (kernel density)

• Independent variables
– building age
– building type (?)
– population density (count/cell)
– workplace density (count/cell)
– households with kids (ratio)
– households with adults only (ratio)
– households with pensioners (ratio)
– average income (€)
– education
– unemployment (ratio)



Global Model

• Moran’s index for residuals missing



GWR Model

• Moran’s index for residuals missing



Local R-squared



Local coefficients for population density



Local coefficients for workplace density

Grey= non-

significant

areas



Local coefficients for unemployment

Note: This studies

the relationship

between

unemployment and 

building fires

assuming that the 

income (and other

attributes) stays the 

same!



Conclusions

• Quantification of the relations between studied 

variables; coefficients!

• Spatial variations in the relations!

• Necessary interpretation of parameter values and t-

values at the same time



Regression as a prediction model

• The method presented this far shows how to use GWR 

in its main functionality: explaining relationships 

between variables (explanatory analysis) using the 

coefficient parameter estimates

• You can also use GWR in prediction (statistical 

inference): First, create a regression model with a data 

set.
𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛

Then, you can calculate an unknown y using known x’s



PROS x CONS

• Well established statistical 
method

• Multivariate analysis

• Suitable for spatial data

• Good connection of the 
results to a map

• Visualization of the results

• Spatial incorporation; a true 
spatial model

• Can be used for describing 
the relationships as well as 
prediction

• Pre-processing can be 

time consuming

• Tedious temporal analysis

• Ongoing discussion on 

exact statistical viability



The big picture



Thank you!


