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« Self-organizing maps:
— Theory
— Example
— Exercise
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« After this lecture, you are able to

— Explain how training an SOM and mapping values to
It works

— Explain how you can use SOM for clustering and
finding correlations in the data set
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Introduction

Multivariate data: wind, precipitation, temperature
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« Simplest possible description: SOM is a method to
organize multivariate data and can be used to visualize
different attributes

« SOM is an artificial neural network capable of
distinguishing similarity patterns

« Itis not a map in a traditional (cartographic) sense

Some background next
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Inspiration from
biological NN

Neurons (processing
elements), connections
Adaptive system — by
weights (strength of
connections)

used to model complex
relationships between
Inputs and outputs or to
find patterns in data
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* Inferring a function from observations

 Classification

« Pattern recognition

« Compression

» Clustering

* Function approximation
* Time series prediction
* etc.
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(subset of) the data

* Unsupervised neural network
(no outputs defined)

« Maps multidimensional data
onto a two-dimensional lattice
of cells: each data object will
be mapped to one cell (also
called neurons)

« Each cell has the same
dimensions as the data
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Topology

« SOM preserves topology and similarity patterns existing in

the original space
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close by data
items are mapped
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opology 3D

Options + Set: Training <~ Mayg

Clusters Ur
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Fectangular lattice

Hexagonal lattice

the most common

A?



* Training
— Map construction based on input sample data

« Mapping

— Automatic classification of a new input
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The training utilizes competitive learning:

1) Initialize the neuron values (called weights)
— can be random or using for example principal component analysis

2) Pick a data (vector) sample and find the closest weight. This
neuron is called Best matching unit (BMU)

3) The weight of the BMU and its neighbors are changed to be
closer to the data sample

4) Pick another data sample and continue from step 2

The neighborhood shrinks with each iteration: at the beginning
more neurons are affected and later only few weights are
changed.
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Formula used in updating the weights (step 3 in previous
slide):

old weight for the neuron data vector (i.e. attribute values)
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* Result of training:

— All neurons (or cells) represent a model of input data (remember
that each neuron has same attribute space as the data)

— Close by neurons have similar attribute values in attribute space
* Mapping:
— New input data is automatically classified to single winning
neuron

— Some data items can mapped to the same neuron and some
neurons can have a situation with no data mapped to them
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« Since the projection to 2D lattice reduces dimensionality,
Information is lost during the process

« Balance between data representation accuracy and data
set topological accuracy

— average quantization error between data vectors and their
BMUs on the map: how well the SOM represents the data

— topological error measure: percentage of data vectors for which
the first- and second-BMUSs are not adjacent units (often called
topographic, which seems incorrect)
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Visual Representation of Clusters

U-matrix D-matrix (colorscale)

U-matrix: distance between a neuron
and its neighbors

D-matrix: average of these distances

How can D-matrix be utilized:

— Small values close to each
other: a cluster D-matrix (marker size) Similarity coloring

— Aline of big values: a border o006 6006060000000+ o0
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However, generally clustering is done
by applying another algorithm (e.g. k- B
means) for the neuron weights
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Visual Representation of Variables
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Visual Representation of Data
Projections
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Histogram tells how many data items have
been classified to a neuron
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Example: Incidents in Helsinki
Metropolitan Area
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* Rescue incidents « Background information

— Day in the year — Distance to the nearest building
— Day of the week — Type of the nearest building

— Hour of the day — Population density

— Type of the incident — Age density

— X coordinate
— Y coordinate

— Type of the five nearest
incidents

A? Aalto University
|



D-matrix
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« Spatio-temporal multivariate data analysis for
— Clustering
— Data characterization
— Correlation hunting
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Mathematical basis e Subjective

Easy visual « Time consuming pre-
Interpretation processing

Treats all attributes at Detalls obscured
the same time (also  « Missing connection

spatial and temporal) between the software
Preserves topology used (SOM toolbox for
and data distribution in ~ Matlab) and a map
the input space » Not a spatial model
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* Your task: Interpret the < Team 2: Characterize

given SOM (from
Spatenkova, 2009)

« Team 1: Describe
clusters
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morning and evening
fires

Team 3: Describe
clusters

Team 4: ldentify
differences between
evening, day and night
fires
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Figure 8.3: Location of the identified clusters in the component planes. The colour

Figure 8.2: Clusters identifled from the distance matrix as light areas delimited by

scale goes from dark blue (low values) through green {medium values) to dark red

(high values).
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Figure 8.2: Clusters identified from the distance matrix as light areas delimited by
darker colours (a) and corresponding data histogram (b) of the SOM for the incident

dataset.

Figure 8.4: Discovering relationships between the sattributes from the component

planes. The green and red colours in the HOUR component plane indicate morning

and evening fires, respectively. The characteristics of these incidents can be found
A’ Aalto University from the remaiming component planes. The colour scale goes from dark blue (low
|

values) through green (medium values) to dark red (high values).
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Figure 8.5: Clusters identified from the distance matrix (a) and corresponding data

histogram (b) of the 3OM for the grid representation of the data.
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Figure 8.6: Location of the identified clusters for the grid representation of the data
in the component planes. The colour scale goes from dark blue (low values) through

green (medium values) to dark red (high values).
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Figure 8.5: Clusters identified from the distance matrix (a) and corresponding data

histogram (b) of the SOM for the grid representation of the data.
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Figure 8.7: Ildentifying differences between e-fires, d-fires, and n-fires in the gnd

representation from the component planes. The colour seale goes from dark blue (low

values) through green (medinm values) to dark red (high values).
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Thank you!
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