MEC-E8001 Finite Element Analysis, week 5/2019

1. The spring force of non-linear spring depends on the dimensionless dis- s —
placement a=u/L according to F =k(a—a’+a’/3). Determine the | L |
dimensionless displacement a =u / L if force F =k /4. DN

u
Answer a= 7 ~0.370

2. Determine the displacement at node 2 of the elastic
bar shown by the large deformation theory. Take in- @ T F @

1 2 3 § X

to account only the transverse displacement uy, % =
(uy,=0). When F =0, the cross-sectional area |

and length of the bar are 4 and L, respectively.

Constitutive equation of the material is S, = CE .,
in which C is constant. Use two elements with linear

shape functions.

FD 43
Answer Uy, = —(——
y2 =—( v C)

3. Consider the bar shown loaded by a point force. Determine the equilibrium

equations in terms of the dimensionless displacement components

ay=uy,/L and a, =uy, /L according to the large displacement bar theo-

ry. Assume that displacement component w=0 and use linear approxima- @
tion to the non-zero components u and v. Without loading, the area of L
cross-section and the length of bar are 4° and L°, respectively. Constitutive
equation of the material is S, = CE,, , in which Cis constant. 2 I @
F
|

1 1 F
Answer (1+al)(a1+5312 +5a%)—ATC=O and az(2a1+a%+a%)=0

4. Determine the equilibrium equation of the elastic bar of

the figure with the large deformation theory. The active @

degree of freedom is uy, and the cross-sectional area
and length of the bar are 4 and L without the point

force F acting on node 2. Constitutive equation of the

material is S\, = CE ., in which C is constant. Use two

XX 2

elements with linear shape functions.

Answer a(l+2a2)—li=0 where a:uX—2
4 AC

L



Consider the structure shown loaded by its own weight. Determine the
equations giving the displacement uy, of the free end according to
large displacement bar theory. Without gravity, cross-sectional area,
length, and density of the bar are A, L, and p, respectively. Consti-
tutive equation of the material is S, = CE,, , in which C is constant.

Use a linear approximation.

Answer (1+42y4x2 o, Mxoy LPE
L L L C

Derive the equilibrium equation of the elastic truss shown with
the large deformation theory. The cross-sectional areas and
length of the bars are 4 and L when F =0 . Constitutive equa-
tion of the material is S,, = CE,, , in which C is constant. As-

sume a planar problem of two elements.

up €4

u u
2()2 304214 F =0
S 125 ;2

A thin triangular slab (assume plane stress conditions)
loaded by a horizontal force is allowed to move horizon-
tally at node 1 and nodes 2 and 3 are fixed. Derive the
equilibrium equation for the structure according to the

large displacement theory. Material parameters C, v and

thickness ¢ at the initial geometry of the slab are con-

stants.

a(—l+a)(—1+%a)—F=0 where azu—)L(1

1 ¢tL
Answer E L

2

A structure, consisting of a thin slab under the plane stress

conditions and a bar, is loaded by a horizontal force F act-

ing on node 1. Material properties are C and v, thickness of
the slab is ¢, and the cross-sectional area of the bar 4 at the
initial unloaded geometry. Determine the equilibrium equa-

tion giving as its solution the displacement component u y

of node 1 according to the large displacement theory.

Answer % a(a2 +1-v)+CA(-1+a)a(—a +%a)+F=O where a =

2

Uxi




9. A long wall having triangular cross-section, and made of homo-
geneous, isotropic, linearly elastic material, is subjected to its
own weight. Determine the equilibrium equation giving as its so-
lution displacement components uy3 according to the large dis-

placement theory. Nodes 1 and 2 are fixed. Use a three-node el-

ement and assume plane stress conditions and symmetry :

uy3 =0. Material properties C, v and the density p of the ini-

tial geometry are constants.

Answer (l+a)a(1+la)+l(l—v2)ﬂ:0 where a=2Y3
2 3 E L

10. Node 4 of a thin rectangular slab, loaded by force F, is

allowed to move horizontally and nodes 1, 2, and 3 are

fixed. Assume plane stress conditions, and derive the
equilibrium equation of the structure according to the
large deformation theory. Use just one bilinear ele-

ment. Material parameters C and v =0. Thickness of

the slab at the initial geometry is .

Answer la+§az +£a3 —i=0 where a =uX—4.
2 8 45 tLC L




The spring force of non-linear spring depends on the dimensionless dis- &

2

placement a =u / L according to F = k(a—a® +a>/3). Determine the dimen- *

sionless displacement a =u/ L if force F =k /4.

Solution
As the equilibrium equation is non-linear, finding the displacement as function of the force by hand
calculations is difficult (but possible for a third order polynomial). Mathematica gives three mathe-

matically correct solution

(fas1- 23] fam1- 22203 fang 1xiva

22,-"'3 2w 22,-"'3 2w 22,-"'3

of which the real valued is obviously the physically correct one. A simple graphical method for

finding one solution to
2,13
R(a)=F —k(a—a +§a )

in a given range a €[a,;,,a 2] USes an iterative refinement of the range so that the sign change of

R(a) is bracketed inside a smaller and smaller range.



Determine the displacement at node 2 of the elastic bar

shown by the large deformation theory. Take into account @ T r @
only the transverse displacement wuy, (uy, =0). When g 3§
1

F =0, the cross-sectional area and length of the bar are A | I I |
and L, respectively. Constitutive equation of the material “ > >l
s S, =CE,., in which C is constant. Use two elements 1.V
with linear shape functions.
Solution
Virtual work density of the non-linear bar model
déu duddu dvdév dwdoéw du 1 duo 1 dvo 1 dwo
B = (T T At — () () ()]

dcx dx dx dx dx dx dx dx

is based on the Green-Lagrange strain definition which is physically correct also when rota-
tions/displacements are large. The expression depends on all displacement components, material
property is denoted by C (constitutive equation S, =CE,, ), and the superscript in the cross-
sectional area 4° (and in other quantities) refers to the initial geometry (strain and stress vanishes).

Otherwise, equilibrium equations follow in the same manner as in the linear case.

For element 1, the non-zero displacement components is u,,, = uy, . As the initial length of the el-

Y
ement 4°= L, linear approximations to the displacement components

u=w=0 andvzium = %:@—0 and @:M,
L dx dx de L
When the approximation is substituted there, virtual work density of the internal forces and thereby

the virtual work expression (density is constant) simplify to

5“Y2 Uyo CA (uYZ)

SWl=_s (uyz
L L 2 L

5 1nt
For element 2, the non-zero displacement component u,, =uy;. As the initial length of the ele-
ment 4° = L, linear approximations to the displacement components

du dw v uy,

X
—w=0 and v=(1-2 - = =-2"_-0 and —=-2Y2
e and v=( L)Uyz dx dx o dx L

When the approximation is substituted there, virtual work density of the internal forces and thereby

the virtual work expression (density is constant) simplifies to

5“Y2 Uyo CA (uYZ)

u
5_—5—Y2
L L 2 L Y(

5 1nt

Virtual work expression of the point force is

5W3 = —F5uY2 .



Virtual work expression of the structure is obtained as the sum of the element contributions

CA u CA u
oW ==-56 _L23+_L23+F'
uyz[z(L) 2(L) ]

Principle of virtual work and the fundamental lemma of variation calculus imply that

3

Uy, 3 F FL 3

LIV 41— =0 = up,=—(—)"7. €
(L) CA r2 (CA)



Consider the bar shown loaded by a point force. Determine the equilibrium

1
equations in terms of the dimensionless displacement components

ay=uy, /L and a, =uy, /L according to the large displacement bar theory.
Assume that displacement component w=0 and use linear approximation to o |

the non-zero components # and v. Without loading, the area of cross-section

and the length of bar are A4° and L°, respectively. Constitutive equation of the

material is S,, = CE,, , in which C is constant.

'11 [\)
2HONING

Solution
Virtual work density of internal forces is

ddu  duddu dvddv  dwddw . odu 1 du

1 dv 1 dw
SE - E
dcx dx dx dx dx dx dx de 2

2
dx 2 dx 2 dx) I

SWSE =—(

Assuming a linear approximation to displacement components with u,, =uy, and u,, =uy,

uziqu, vziuyz,and w=0 = @:u){z, @:M’ dd—w
L° L° de L° dx L°

Virtual work expression is obtained as integral of the density over the domain occupied by the body

(notice that the virtual work density is constant when the approximations are substituted there):

1 1
5W1:_(5”X2 +”on 5“)52 +”Y02 5”22)L0CA0[”X02 +_(”X02)2+_(“L02)2]’
L° L L L° L L 2 L 2 L

SW? =FSuy,.

Virtual work expression of the structure is 6W =6 w'+8W? . In terms of dimensionless displace-

ments a; =uy, /L° and a, =uy, /L° (introduced just to simplify the expressions)
o o 1 2 1 2 °
oW = —(531 +al5al +32532)L CA (al +5a1 +532)+FL 531 R

F
cA°

1 15
T |(l+a;)(a; +—a; +—a5)—
(I+ay)(a S 22)

SW = —CA"{ ! }
532 2

15 1 5
an(a;+—ajy +—a
2 (ay SR 2)

principle of virtual work and the fundamental lemma of variation calculus imply that

1 » 1 . F 1 » 1,
I+a)aj+—aj+—a5)———=0 and a,(a;+—aj+—-a3)=0. €

( 1)(12122)&1O 2(12122)

In this case, the solution can be deduced without numerical calculations: the latter equation implies

that a;, =0 as the other option a; + a% 12+ a% /2 =0 would mean an inconsistency with the first

equation. Knowing this (the real valued solution)



2/3 1/3
alzl[—3—3——3l/3aj where a=(—9f+\/—3+81f2j and f = il

3177 . A



Derive the equilibrium equation of the elastic bar of the fig-

ure with the large deformation theory. The non-zero dis-

placement component is uy, and the cross-sectional area

and length of the bar are 4 and L, when the point force F

acting on node 2 is zero. Constitutive equation of the materi-
al is S = CFE, in which C is constant. Use two elements with

linear shape functions.

Solution
Virtual work density of the non-linear bar model

do du do dvdoév dwdoéw du 1 du, 1 dv 1 dw
Ol = (T S SRS AT 4 () (4 ()]
dcx dx dx dx dx dx dx dx 2 dx 2 dx

is based on the Green-Lagrange strain definition which works also when rotations/displacements are
large. The expression depends on all displacement components, material property is denoted by C
(constitutive equation S,, = CE . ), and the superscript in the cross-sectional area A4° (and in other
quantities) refers to the initial geometry (strain and stress vanishes). Otherwise, equilibrium equa-

tions follow in the same manner as in the linear case.

For element 1, u,, =uy,. As the initial length of the element 4°= L /2, linear approximations to

the displacement components
X
v=w=0 andu=22uX2 = —=2—==,

When the approximation is substituted there, virtual work density of the internal forces and thereby

the virtual work expression (density is constant) simplify to

5 1nt _25MX2(1 2MX2)CA2MX2(1 ; uXZ)

W = —Suy,(1+28X2pcq X2 (1 Yx2y
x2( 3 ) I ( I )

For element 2, u,, =uy,. As the initial length of the element 4°= L /2, linear approximations to

the displacement components
X
v=w=0 and M=(1—22)MX2 = —=-2—==,

When the approximation is substituted there, virtual work density of the internal forces and thereby

the virtual work expression (density is constant) simplify to

Sw lnt_ 2( 5“){2)(1 2MX2)2CA( uXZ)(l uXZ)



SW? = —Suy,(1-22X2ycq8X2 (1 _Hx2,y
x2( 3 ) T ( T )

Virtual work expression of the force is
5W3 = F5MX2 .

Virtual work expression of the structure is obtained as sum over the element contributions

u u u u u u
SW = =Suyo[(1+2-42)2CA—22 (1+4£2) + (1-2-42) 20422 (1-—X2) - F].
x2[( ) =) ) T U==")-F]

Principle of virtual work and the fundamental lemma of variation calculus imply that

“X2[(1+2“X2)(1+“X2)+(1—2”XZ)(l—”)LfZ)]—ng=o =
a(l+2az)—ﬁ=0 in which a:uXTz. &



Consider the structure shown loaded by its own weight. Determine the : 1 g
equations giving the displacement uy, of the free end according to large :

displacement bar theory. Without gravity, cross-sectional area, length, and @
density of the bar are 4, L, and p, respectively. Constitutive equation of |

the material is S,, =CE ., in which C is constant. Use a linear approxi-

mation.

Solution
As v=w=0, virtual work densities of internal and external distributed forces of the non-linear bar
model simplify to

déu du déu du 1 du ext

Sw 1nt:_(_x =2 ca =+ _(—)] and Jowge

=-0 A
dx dx dx 2 “ps

the negative sign of the external part takes into account the direction of gravity with respect to the x-
axis. The non-zero displacement component of the structure is the vertical displacement of node 2
i.e.u,, =uy,. Linear approximation (two-node element) is

X du uy,

Uu=—u = — ===
L X2 dx L

When the approximation is substituted there, virtual work densities simplify to

‘A
ol = ~(Z2 (14 222) A2 102 and st =~ L uyypea.

Virtual work expression is integral of the virtual work density over the domain occupied by the el-

ement at the initial geometry:

CA4

. L
5W1nt :J‘O Sw 1ntdx__5uX2(1+MXZ)T(UX2)(2+MX2)’

L

L
SWt = [ Swiidr= ——L5u yapgA.
Principle of virtual work with S/ = W™ + S and the fundamental lemma of variation calcu-
lus imply that

(1424

(H2)2+ 1242 Lpgd=0 = (rap@+a)+LE-0,a="2. €



Derive the equilibrium equation of the elastic truss shown with the
large deformation theory. The cross-sectional areas and length of
the bars are 4 and L when F =0. Constitutive equation of the
material is S,, =CE

problem of two elements.

» In which C is constant. Assume a planar

Solution
As w=0 and cross-sectional area of the initial geometry is A4, virtual work density of internal
forces of the large displacement bar model simplifies to

dou duddéu dvdov a’_u 1 duo 1 dv

mt un “r av\2
oW (dx +dx dx +dx dx )cA [dx ( ) 2(dx) I

In element 1, linear approximations to the displacement components expressed in terms of uy are
X
u=0 and szqu = —=0 and —=—

When the approximation is substituted there, virtual work density of internal forces and the virtual

work expression take the forms

Swilt = m&ln) 1(”Y1)
L 2 L

sw! j 5w8§dx——5uY1CA (“Yl)

In element 2, linear approximations to the displacement components expressed in terms of uy are

u=—£uY1 and v=0 = du__un and ﬂ=0.
L dx L dx

When the approximation is substituted there, virtual work density of internal forces and thereby the

virtual work expression take the forms

ou u u lu
Sw 1nt Y1l 1— Y1l CA Y1 1—— Yl ,
—( 7 ) L) (L)( 2—L)

2 = [ vl =By, (1= M CAC LY - 1),

Element 3 contribution (point force)
5W3 = _Féqu .

Virtual work expression of the structure is sum over the element contributions. In the standard form



lqu
— 4 F.
2L) ]

u 1 uyy.o u u
SW = —Suy,[LL CA= (L) + 1-ycqa(=ya -
YI[L 2(L) ( L) (L)(
Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium

equation

Uy €4

A2 3% o1y o0, €
L 2 L L



A thin triangular slab (assume plane stress conditions) loaded
by a horizontal force is allowed to move horizontally at node 1
and nodes 2 and 3 are fixed. Derive the equilibrium equation

for the structure according to the large displacement theory.

Material parameters C, v and thickness ¢ at the initial geome-

try of the slab are constants.

Solution
Virtual work density of internal force, when modified for large displacement analysis with the same

constitutive equation as in the linear case of plane stress, is given by

ou 1 ouy, 1 0voy
T = 2 —(—) 2(6 )
SE.. 1 v 0 E.| |E,
tC ov 1 8u 1 ov.o
Swit=—1 5E,, v 10 Ey oy Ey 1= = —(—) 5, )
we. | 7o 0 aewizllae | e | C
Xy xy xy ou ou 8v+ 8u ou ou_ ov 6v 6v
oy Ox Ox Oy 8x8y

Let us start with the approximations and the corresponding components of the Green-Lagrange
strain. Linear shape functions can be deduced from the figure. Only the shape function
N;=(1-x/L) ofnode 1 is needed. Displacement components v =w =0 and

Ou _uy; Ou _

u 1 u
u=(1-uy, = — =, =0, E,,=E, =0 and E  =——XL4_(—=XL)2
( )Xl O I ay yy Xy XX I 2( L)

When the strain component expression are substituted there, virtual work density simplifies to

Swil = _SE E. =

S PRV A L L 1-v2 L 2 L

tC __Squ(_l_i_qu) tC qu(_l lqu)

Integration over the (initial) domain gives the virtual work expression. As the integrand is constant

L2 ou u tC u lu
Xl( Xl) X1 (_1 Xl)

swl=—
2 L L 1-v? L 27

Virtual work expression of the point force follows from the definition of work

51/1)(1

5W2 =5uX1F= LF .

Virtual work expression of the structure is obtained as sum over the element contributions. In terms

of the dimensionless displacement a =u /L

2
5w =L sa(-1+2)€
2 1-

a( 1+— a)+5aLF = —( 1+ )

(a+a)F0(-
V ]v 2



A structure, consisting of a thin slab under the plane stress con-

ditions and a bar, is loaded by a horizontal force F acting on

node 1. Material properties are C and v, thickness of the slab is
t, and the cross-sectional area of the bar 4 at the initial unload-
ed geometry. Determine the equilibrium equation giving as its

solution the displacement component uy; of node 1 according

to the large displacement theory.

Solution
Virtual work densities of the thin slab and bar models, when modified for large displacement analy-

sis with the same constitutive equation as in the linear case, are given by

ou 1 ous, 1 0Ov
T G )
SE.. v 0 Ey | | Exw *
int tC ov 1 8u 1 ovy
Swie =—4 6E,, i 1 0 Ey ) Ew 17155 —(—) 2(6—) ;
0 0 (I-v)/2
20k, a=v) 2By 2By ou ou_ ov ov Lo 8u Ou ou_ ov ov ov
oy Ox Ox 0Oy Ox 8y

_du 1 duo 1 dv 1 dw
o mt 5E CAOE E —_—t—(— 22 +—(— 2
" == y 2

Element contributions need to be derived from approximations and virtual work densities. Approx-
imations to the displacement components depend only on the shape function associated with node 1
as the other nodes are fixed (displacement vanishes).

Let us start with the thin slab element. In terms of the displacement component u y

ou %_m ov 8v

uzqul and v=0 = —=0, ,and — =0,
L ox ov L ox 8y
giving
E.. 0 OF,. 0
E, t=1 d{sE, t=5 here a="21 and §a=2UXL.
py (=oajap an w (=0aja, where a—T and da=
2E,, 2 25E,, 1

Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)

0 I v 0 . 0 .
SWSE—— tC2 dacapy |v 1 0 —a<a =—5a5a 2(az+1—v)
=Vl Jo o a-wi2]” |2 v

Virtual work expression is the integral of density over the domain occupied by the element (note

that the virtual work density is constant in this case). Therefore



) 2
5W1=5w8£L :—é‘alaL— i (a2 +1-v).
2 2 212

The linear approximations to the displacement of the bar element are w=v =0 and

uz(l—%)u)ﬂ = ﬂ=—m=—a, and Exx:—m+l(—m)2=—a+la2.

dx L L 2 L 2

For the bar element, virtual work density of the internal forces and thereby the virtual work expres-
sion (density is constant) simplifies to

SW? =—8a(-1+a)LCAa(-a + %a) .

Virtual work expression of the point force follows e.g. directly from the definition (force multiplied

by the virtual displacement in its direction)
SW3 =—8uy\F = —8aLF .
Virtual work expression of a structure is the sum of element contributions

2
oW = —5a[laL— i
2 2

1 2(a2+1—v)+(—1+a)LCAa(—a+%a)+LF].
-V

Principle of virtual work and the fundamental lemma of variation calculus give

L C

41-y?

a(a’ +l—v)+CA(—1+a)a(—a+%a)+F:O. €



A long wall having triangular cross-section, and made of homogeneous,
isotropic, linearly elastic material, is subjected to its own weight. Deter-
mine the equilibrium equation giving as its solution displacement com-
ponents uy5 according to the large displacement theory. Nodes 1 and 2

are fixed. Use a three-node element and assume plane stress conditions

and symmetry uy3 =0. Material properties C, v and the density pof

the initial geometry are constants.

Solution
According to the large displacement theory, virtual work densities of the thin slab model under

plane strain conditions are

ou 1 ou 1 ov
' 2@ G,
. O tE by 0 B B ov 1 ou 1 ov
Swilh =—{ 6E,, v L0 By By = SO
1-v y V y
0 0 (1-v)/2
25Exy (1=v) 2Exy 2E Ou Ov Oudu OvOv
—t—t——+——
oy Ox Oxdy OxOoy

S T
5Wexot — u tpo g-x
ov gy
in which g, and g, are the components of acceleration by gravity and p° the density at the initial

geometry. Above, constitutive equation is assumed to be of the same form as that for the linear

theory with possibly different elasticity parameters C and v .

Shape function N3 =y /L ofnode 3 can be deduced from the figure. Linear approximations to the
displacement components and their derivatives are
Ou ou . Ov ov  uyj

u=0and v="2uy; = £=0, =0, =0, and = =23
L ox oy ox oy L

When the approximation is substituted there, the non-zero Green-Lagrange strain component and its

variation take the forms

_uyy 1 uyzoo _ Ouys  Ouys uy3
Yy —T'FE(—) and 5Eyy = + 7 I .

Virtual work densities simplify to

5W}121£:_5uY3(1+uY3) tE uY3(1+luY3)’
L 1-v? L 2 L

5Wexot = —5uy3 %tpg .

Integration over the domain occupied by the body at the initial geometry gives the virtual work ex-

pressions



: S I’ E Jluys

3
L—- /2

5W6Xt — '[L
0 Y(y-L)2 L 6

Virtual work expression in the sum of the internal and external parts. Written in the standard form

2
5W:_5”Y3[(1+”Y3)L_ tE ”Y3( luysy, Ltpg]
L L 21—y 2 L 6

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium

equations

(1+a)a(1+1a)+1(1—v2)£:0 where a =213 &
273 E L



Node 4 of a thin rectangular slab, loaded by force F, is al- \
lowed to move horizontally and nodes 1, 2, and 3 are fixed.
Assume plane stress conditions, and derive the equilibrium
equation of the structure according to the large deformation

theory. Use just one bilinear element. Material parameters

C and v =0. Thickness of the slab at the initial geometry

1S t.

Solution
According to the large displacement theory, virtual work density of the thin slab model (plane stress
condition) is

ou 1 oun, 1 Ov
T = 2 —(—) 5 (6_)2

SE_, 1 v 0 E,. E. *
i tC ov 1 8u 1 ovy

5w8£:— 5Eyy . v 1 0 Eyy , Eyy = 8_ —(—) (8_)
—v
0 0 A1-v)/2

25Exy (1=v) 2Exy 2Exy ou ou_ ov ov Lo 8u ou ou_ ov ov 6v
oy Ox Ox 0y Ox 8y

Only the displacement of node 4 in the X — direction matters. Shape function N, =xy/ I gives

ou 0
v=0 andu=xyu% = —=y )‘;4 d—u=qu—24.
I ox L oy L

When the approximations are substituted there, the Green-Lagrange strain components and their

variations simplify to

2 2
Exx u y 1 u y 5Exx 51,[ y u y
— X4 2 (ZX4y2) 2 ded. €3 X4 2
E, == 0 +2( 2) x* rand §OE,, r= 5 (K0p+ 51X ).
L L L L
2E,, X 2xy 25E,, X 2xy

Virtual work density of the internal forces according to the large displacement theory simplify to
(with the Poisson’s ratio v =0)

> 2
p y y 10 0 y Y

5 1nt I/IX4[ 0 +ul);(_24 xZ ]TtC 0 1 0 [U2(4 42 (UX4) )CZ ]’
2xy 00 1/2 x 2xy

The four terms of the virtual work density

_Ouyy Suxa 1€ 2, 1 2yixs

5 int
( )1 L L2 y > I

b



_Ouxy 1C
L L

1 u
Swi int _ 3+x2 L UX4N2
(Sniih), = 07+t S (B

Ouyy Uyy tC N
Swil int\ __9¥x4 Hxq 3+x X4’

_51/1)(4 Uxa tC

4 4
+x +2x
.1 Lz(y

1 u
(Swie)s = S EEY?

Virtual work expressions are obtained by integrating the densities over the domain occupied by the

element
int _ L (L int 5“){41 U)(4
W, _jo jo (5w, dydx = 2L (C=X4
L

24 L

~ L ¢L Ouyy U Su
Wv31nt:.[0 .[O (5W1nt)3d dx = — 2(4 )24 C212 )24’

1nt .[ .[ (5W1nt)4dydx__5u2(4 u)24 (CL 2 ii(u)24)

Virtual work expression of the point force

swext = gy Otxa

Virtual work expression is the sum of the terms. In terms of the dimensionless displacement
A=Uxy /L
SW = —tCI25a(La+2a2 + 1203 - L)
2 8 45 tLC
Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation
5, 14 53 F

1
—a+—-a"+—a ———=0
2 8 45 tLC



