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Home assignment 1 
A bar is loaded by its own weight as shown in the figure. Determine the equilibrium equation in terms of the dimensionless displacement 
[image: image29.bmp] with the large deformation theory. Without external loading, area of the cross-section, length of the bar, and density of the material are 
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, 
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, and 
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, respectively. Young’s modulus of the material is C. Find also the displacement according to the linear theory by simplifying the equilibrium equation with the assumption 
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Solution template
Virtual work densities of the non-linear bar model
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are based on the Green-Lagrange strain definition, which works also when rotations/displacements are large. The expressions depend on all displacement components, material property is denoted by 
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(kind of Young’s modulus), and the superscript in the cross-sectional area 
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 (and in other quantities) refers to the initial geometry where strain and stress vanish.
The non-zero displacement component of the structure is the vertical displacement of node 2 i.e. 
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. Linear approximations to the displacement components (two-node element) are
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In terms of the dimensionless displacement 
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, virtual work densities simplify to
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Virtual work expressions are integrals of the densities over the domain occupied by the element
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Principle of virtual work and the fundamental lemma of variation calculus imply that
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Assuming that 
[image: image22.wmf]a1

=

, only the linear part in 
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matters and the equilibrium equation simplifies to
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