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1 Introduction

This paper studies minimizers of the nonparametric area integral

F(u, Q) = 1+ |Dul|? dx
I

[0}

in metric measure spaces equipped with a doubling measure and a Poincaré inequality. In the Euclidean case
the minimizers satisfy the corresponding minimal surface equation

n Dju
Yo,
i3 V1 + |Dul?

in an open and bounded subset Q2 of R". It is well known that an equivalent concept can be obtained as the

relaxed area integral
F(u, Q) = inf{lim ian \1 + |Duy;|? dx},

(0}

where the infimum is taken over all sequences of functions u; € Cl(Q) with u; — u in LY(Q) as i — oo,
see [3, Section 5.5] and [15, Chapter 6]. Minimizers are functions of bounded variation (BV) with prescribed
boundary values, see [7], [10], [14], [15, Chapter 6], [16] and [21]. The advantage of the variational approach is
that it can be adapted to the very general context of metric measure spaces, and it also applies to more gen-
eral integrals and quasiminimizers with linear growth. Indeed, functions of bounded variation are defined
through relaxation in the metric setting, see [1, 2, 4, 22].

Boundary values of BV-functions are a delicate issue already for domains with a smooth boundary in
the Euclidean case, since the trace operator fails to be continuous with respect to the weak*-topology in BV.
A standard approach is to consider extensions of boundary values to a slightly larger reference domain.
Minimizers with the extended boundary values are the same as for the original problem, and they turn
out to be independent of the extension. The larger reference domain is also natural in the sense that in
general the total variation measure of the minimizer charges the boundary. By using the structure theorem
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for BV-functions in the Euclidean case it is possible to obtain an integral representation of the area integral
with a penalty term for the boundary values, see [15, Chapter 6]. In the metric setting such a formula remains
an open question.

We give a definition of the minimizer of a relaxed area integral with prescribed boundary values in metric
measure spaces. The direct methods in the calculus of variations can be applied to show that a minimizer
exists for an arbitrary bounded domain with BV-boundary values. The necessary compactness result can be
found in [22], and the lower semicontinuity property of the area integral is shown in this work.

In the Euclidean case with the Lebesgue measure, minimizers can be shown to be smooth. However, it is
somewhat unexpected that the regularity fails even for continuously differentiable weights in the Euclidean
case. We give an explicit example of a minimizer that is discontinuous at an interior point of the domain.
Similar examples for slightly different functionals are presented in [13, Example 3.1] and [7, p. 132]. This phe-
nomenon occurs only in the case when the variational integral has linear growth. For variational integrals
with superlinear growth, the minimizers are locally Holder continuous by [20]. In particular, these examples
show that there does not seem to be hope to extend the regularity theory of minimizers to the metric setting.

Our main result shows that the minimizers are locally bounded, and the previously mentioned exam-
ples show that this result is essentially the best possible that can be obtained in this generality. We prove
the main result by purely variational techniques without referring to the minimal surface equation. Indeed,
the minimizers satisfy a De Giorgi type energy estimate, and the local boundedness follows from an itera-
tion scheme. This point of view may be interesting already in the Euclidean case, because it also applies
to quasiminimizers.

2 Preliminaries

In this paper, (X,d,u) is a complete metric measure space with a Borel regular outer measure y, and
diam(X) = oco. The measure is assumed to be nontrivial in the sense that 0 < u(B(x, r)) < oo for every ball with
center x € X and radius r > 0. It is also assumed to be doubling, meaning that there exists a constant C,, > 0
such that

u(B(x,2r)) < Cpu(B(x,r))
for all x € X and r > 0. This implies that

#B(R) C<§)Q
u(B(x,r)) r

foreveryr < Rand x € B(y, R), and some Q > 1 and C > 1 that only depend on Cj,. Later on the symbol Q will
always refer to this exponent, which in a certain manner represents the dimension of the space X. We recall
that a complete metric space endowed with a doubling measure is proper, that is, closed and bounded sets
are compact.

A nonnegative Borel measurable function g on X is an upper gradient of an extended real valued func-
tion u on X if for all paths y in X, we have

u(x) - u(y)| < j gds 21)
Y

whenever both u(x) and u(y) are finite, and j g ds = oo otherwise. Here x and y are the end points of y. If g is
a nonnegative measurable function on X and (2.1) holds for almost every path with respect to the 1-modulus,
then g is a 1-weak upper gradient of u. By saying that (2.1) holds for 1-almost every path we mean that it fails
only for a path family with zero 1-modulus. A family I' of paths is of zero 1-modulus if there is a nonnegative
Borel measurable function p € L'(X) such that for all paths y € I, the path integral fy p ds is infinite.

The collection of all upper gradients, together, play the role of the modulus of the weak gradient of
a Sobolev function in the metric setting. We consider the following norm:

el ) = llullprx) + igf gl x)>
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with the infimum taken over all upper gradients g of u. The Newton—Sobolev space considered is the space
NP(X) = {u: g xy < 00}/,
where the equivalence relation ~ is given by u ~ v if and only if

[l - U”lel(x) =0,

see [23]. For more on Newtonian spaces, we refer to [6].
Next we recall the definition and basic properties of functions of bounded variation on metric spaces,
see [22].

Definition 2.1. Foru e L!

loc(X), we define the total variation as

[Dull(X) = inf{li{r_l)(i)glf J Gu, Ap : u; € Lipy (X), u; — uin Lioc(X)},
X

where g, is a 1-weak upper gradient of ; and Lip,,.(X) denotes the class of functions that are Lipschitz
continuous on compact subsets of X. We say that a function u € L'(X) is of bounded variation, and de-
note u € BV(X), if | Du(X) < co.

By replacing X with an open set U ¢ X in the definition of the total variation, we can define ||Dul|(U). For an
arbitrary set A ¢ X, we define

| Dull(A) = inf{|Dul|(U) : U > A, U ¢ X is open}.

If u € BV(X), |Du|(-) is a finite Borel outer measure by [22, Theorem 3.4].
We say that X supports a (1, 1)-Poincaré inequality if there exist constants C, > 0 and 7 > 1 such that for
all balls B(x, r), all locally integrable functions u, and all 1-weak upper gradients g of u, we have

|M - uB(x,r)l dl" < CPr :l: gd[l,
B(x,r) B(x,7r)

where )

= d = - d .

“Ben { Ha w(B(x,7)) J wa
B(x,r) B(x,r)
If the space supports a (1, 1)-Poincaré inequality, by an approximation argument we get for every u € L}OC(X )
| Dull(B(x, 7))

[ — ug ol dp < Cpr
Besn L EHE = SP (B(x, 1)

B(x,r)
where the constant C, and the dilation factor z are the same as in the (1, 1)-Poincaré inequality. We assume,
without further notice, that the measure u is doubling and that the space supports a (1, 1)-Poincaré inequality.
For brevity, the (1, 1)-Poincaré inequality will be called the Poincaré inequality later on.
The Poincaré inequality implies the Sobolev-Poincaré inequality

@Q-1/Q
lu— uB(x,r)lQ/(Q_l) dﬂ) <Cr :|: g d[l

B(x,r) B(x,277)

for every u € L}OC(X) and every 1-weak upper gradient g of u [6, Theorem 4.21]. Here the constant C > 0 de-
pends only on the doubling constant and the constants in the Poincaré inequality. We will use the following
version of the Sobolev inequality for BV-functions.

Lemma 2.2. There exists a constant C > 0, depending only on the doubling constant and the constants in the
Poincaré inequality, such that if B(x,r) is a ball in X with 0 < r < diam(X) and u € L}OC(X) with a compact
support in B(x, r), then
Q-1/Q Cr
hﬁw”d) < ——— | Dul[(B(x, 7).
<} # u(B(x,)

B(x,r)

Proof. This result follows from Sobolev’s inequality ([6, Theorem 5.51]) by an approximation argument. [
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We also specify what we mean by boundary values of BV-functions.

Definition 2.3. Let Q and Q" be open subsets of X such that Q € Q~, and assume that f € BV(Q"). We define
the space BVf(Q) as the space of functions u € BV(Q") such that u = f y-almost everywhere in Q" \ Q.

In particular, when f = 0, we get the BV space with zero boundary values BV (Q2). Itis obvious thatu BV, Q)
ifand only if u — f € BV(Q). Note that we could choose Q" = X. However, the approach used here is consis-
tent with that of the Euclidean case in [15, pp. 584-585].

3 Area functional in metric spaces

In this section we consider the existence of a BV-minimizer of a nonparametric area integral subject to
given boundary values. Instead of the classical definition, which is not suited to the metric space setting,
we introduce a definition based on a relaxation of the area functional, which also takes into account the
boundary values in an appropriate way. First we briefly recall the classical Euclidean definition with the
Lebesgue measure.

Example 3.1. In the Euclidean case with the Lebesgue measure and an open Q ¢ R" with a Lipschitz bound-
ary, the classical BV-version of the Dirichlet problem for nonparametric minimal surfaces is the following,
see [16] and [15, Chapter 6]. Given a function f € L'(0) with respect to the (n — 1)-dimensional Hausdorff
measure, find a function u € BV(Q) minimizing the nonparametric area integral

J \1+ |Dul? dx
Q

with the boundary values f on 0Q in the sense of traces as in [15, pp. 584—585]. The area functional is defined

for BV-functions as
< o0y;
J A1+ [Dul? dx = sup J(t//nﬂ + ;ua—x)dx
Q Q =

where the supremum is taken over all functions v € Cé(_Q; R™) satisfying lvls < 1. The area functional
corresponds to the total variation of the vector valued measure (£", Du).

Let Q" be a bounded open set such that Q € Q*. By Gagliardo’s extension theorem in [12], every
f € L'(0Q) can be extended to Q*\ Q as @ e W"'(Q" \ ) satisfying ® = 0 on 9Q". The space BV;(Q) is
defined as the space of functions u € BV(Q*) such that u = @ in Q" \ Q, where @ is an extension of f.

For functions u € BVf(Q) we define the extension of the area integral as

J\/1+|Du|2dx+ J lu— fldH"" + J \1+ |DOJ? dx.
(0}

o0 0\Q

By [15, Theorem 8], this integral has a minimizer in BVf(Q), and since the last term depends only on f,
we find that for every f € L'(Q) there is a minimizer in BV(Q) of the integral

J V1 + 1Dup? dx + J u— fld3e,
0 o0

Observe that the minimizer is independent of Q" and @. This problem is the same as the minimization problem
in the following definition, see [15, pp. 582-585].

Definition 3.2. Let Q and Q" be bounded open subsets of X such that Q € Q*, and assume that f € BV(Q").
For every u € BV ;(Q2), we define the generalized surface area functional by

F(u, Q) = inf{liminf j \1+a, dy},

O
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where g, isa 1-weak upper gradient of u;, and the infimum is taken over sequences of functions u; € Lip,, (Q7)
such thatu; — uin L}OC(Q* ). A function u € BV,(Q) is a minimizer of the generalized surface area functional

with the boundary values f if

F(u, Q) = inf F(v, Q),
where the infimum is taken over all v € BV f(_Q).
Remark 3.3. (1) It is possible to define a local concept of a minimizer by requiring that u € BV,,.(Q) is a min-
imizer with the boundary values u in every Q' e Q. It is clear that a minimizer u € BV,(Q) of the generalized
surface area functional with the boundary values f € BV(Q") is also a local minimizer. We shall only consider
minimizers with boundary values in this work.

(2) The set Q" is merely a reference set and it does not have an important role for us. Observe that the
minimizers do not depend on Q*, but the value of the generalized area functional does. However, we are
interested in local regularity of the minimizers and in this respect the value of the area functional is irrelevant.
Because of these reasons we do not include Q" in the notation. We could also require that f is compactly
supported in Q* by using a simple cutoff function.

(3) The interpretation of the boundary trace of a BV-function is a delicate issue already in the Euclidean
case with the Lebesgue measure. We have chosen an approach that generalizes the existing Euclidean results.

Remark 3.4. We could consider more general variational integrals

F(u, Q) = inf{lim inf J I(gui)dy},

ar
where I(p) is a continuous and convex function with the linear growth condition
alpl < I(p) < B(1 + |pl)

forsome 0 < « < 8 < co. Otherwise the arguments are essentially the same, but in the De Giorgi type estimate,
i.e. Theorem 4.1 below, we apply a hole filling technique as in the proof of [17, Theorem 6.5]. For simplicity,
we only consider the model case I(p) = V1 + | p|2 here.

First we give a useful lower semicontinuity result.

Lemma 3.5. Let Q and Q" be bounded open subsets of X such that Q e Q*, and assume that f € BV(Q").
Ifu,u; € BV (Q),i=1,2,...,and u; — uin L'(Q) asi — oo, then

F(u, Q) < liminf F(u;, Q).
Proof. Fork =1,2,..., denote
O = {y € Q" : dist(y, X \ Q) > %}

Foreveryi=1,2,..., we choose a sequence (v, ;), with v; ; € Lip;,.(2%), such that v; j—uin L' (Q*)and

loc
J A1+ ggi}_ du — F(u;, Q)

o*

as j — oo. We choose indices j(i) such that

1
I lu; = vy )l dp < 7

o
and )
J \1+ g2 " du < F(u;, Q) + -.
i ;
o
We set 7; = v, ;) and notice that for every k = 1,2,..., we have

jlu—ﬁildysJlu—uild‘u+J|ui—ﬁ,~|d[,t—>0

O O O
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1

asi— oo. Hence o, - uin L

implies that

(Q") and, by the definition of the generalized surface area functional, this

F(u, Q) < liminf J 1+ g2 du < lim inf<?(ui, Q)+ l) = liminf F(u;, Q).
1—00 i i—00 1 1—00
9
This completes the proof. O
The following result shows that a minimizer with given boundary values exists. Even in the Euclidean case we

cannot expect uniqueness of the minimizer without further assumptions, see [16, 15.12] and [15, Chapter 6].

Theorem 3.6. Let O and Q" be bounded open subsets of X such that Q e Q*. Then for every f € BV(Q") there
exists a minimizer u € BV;(Q) of the generalized surface area functional with the boundary values f.

Proof. Denote m = inf F(v, Q2), where the infimum is taken over all v € BV f(Q). We can pick a minimizing
sequence u; € BV,(Q) such that F(u;, Q) - masi — oo. Since a < V1 + a?, we see that

IDu;|(Q%) < F(u;, Q) foreveryi=1,2,...,

and consequently (||Du;[|(2")) is a bounded sequence of real numbers. Since u; — f € BV,(Q2), we have

j lu; — fldp < C diam(Q)ID(w; — I,

0

where the constant C depends only on the doubling constant and the constants in the Poincaré inequality.
For a proof of this fact, we refer to [19, Corollary 2.4]. Now we can estimate

[ itdus [ 171dus [~ 11
o8 ok Q
< [ 11du + C diam(@1D, - PIED)
O
< [ 1f1du + C diam@(IDu ") + IDANO")).
9
This implies that the sequence (u;) is bounded in BV(Q™). Thus there is a subsequence, still denoted (u;), such
}OC(Q*) for some u € BV,,.(Q"). We refer to [22, Theorem 3.7] for this compactness
result. By passing to a subsequence, if necessary, we may assume that u; — u pointwise y-almost everywhere
in Q. We see that

thatu; - uasi —» ocoin L

lu(x) = ()] < u(x) —w;(x)] + [u;(x) = f(x)| — 0

for p-almost every x € Q* \ Q as i — oo, since the latter term on the right-hand side is identically zero
there. This implies that u = f y-almost everywhere in Q" \ ©, and consequently that u € BV(Q*) and u; — u
inL'(Q*)asi — co. Thusu € BV;(Q2), and by Lemma 3.5 we conclude that

m < F(u, Q) < liminf F(u;, Q) = m,

and this proves the claim. O

4 Local boundedness of minimizers

In this section we study regularity of the minimizers of the generalized surface area functional. We will later
see that minimizers may fail to be continuous, and in fact, they may have jump discontinuities inside the
domain even for very nice domains and measures. Nonetheless, here we apply the De Giorgi method to show
that minimizers are locally bounded. First we derive a De Giorgi type energy estimate for a minimizer of
the generalized surface area functional. For convenience, in this chapter we assume that the 1-weak upper
gradients of functions are minimal 1-weak upper gradients, see [6, Theorem 2.5, Theorem 2.25].
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Theorem 4.1. Let Q and Q" be bounded open subsets of X such that Q € Q*, and assume that f € BV(Q™).
Let u € BV ;(2) be a minimizer of the generalized surface area functional with the boundary values f. Assume
that B(x,R) c O, andlet 0 < r < R. Then for every k € R, we have

ID(u - k), [(B(x, 1)) < J (= k), dp + p(Agr)s

B(x,R)

R-r

where A; p = B(x,R) N {u > k}.

Proof. Letu; € Lip,,.(Q") be a minimizing sequence such that u; — u in L' (Q*)and that

loc
F(u, Q) = lim J \1+ g2 du.

9
Let k € Rand let us denote A; ; = B(x, R) N {u; > k}. Now for y € B(x, R), we have

max{u(y), u;(y)}

[ ) - pa k= [ vkl - w0l
o minf{u(y), u;(y)}

Thus

lu—u;| du = J ( J XA e = X! d#)dk

B(x,R) —©0 B(x,R)

and hence there exists a subsequence (u;) such that y Mirs — Xgn in L'(B(x, R)) as i — oo for £'-almost
every k € R, see [11, p.188]. In particular, this implies that u(A; z;) — p(Agg) as i — oo for £'-almost
every k € R.

Let k € R be such that the above convergence takes place. Let 5 € Lip(2), 0 < < 1 be a Lipschitz cutoff
function such that 5 has a compact support in B(x, R), # = 1 in B(x, r) and 9y < 2/(R-r). Letg; = —n(u; — k),
and ¢ = —n(u — k),.Sinceu + ¢ € BV ¥ (Q"), it is an admissible test function for the minimization problem and
thus

F(u, Q) < T(u+¢,Q).

1

Let £ > 0. Since also u; + ¢; = u+¢ in L,

(Q%) as i — o0, there exists an N, such that for every i > N,,

we have
J U+ 2 dp < 5w, Q) + g
o
and
&
Fu+¢,0) < J 1+ (Gysg)? dp + 7

9
By combining the three previous inequalities we obtain that

J \1+4. du < I L+ (Gurp,)? dp + €

o* o*

for i > N,. Furthermore, since u; = u; + ¢; in Q* \ A, ;, the locality of the minimal weak upper gradient,
see [6, Corollary 2.21], implies that g, = g,, ., #-almost everywhere in Q" \ A; ;. Thus

J 1+g; du< J- YL+ (Gurg) Ayt e

Agri Agrii

for i > N,. We note that g, ) =g, in Ay, (see for instance [6, Corollary 2.20]). By combining this
with [6, Lemma 2.18], which is based on the fact that functions in N () are absolutely continuous on paths
outside a family of 1-modulus zero, we conclude that the perturbed function u; + ¢; has the minimal 1-weak
upper gradient Gu+, satisfying

Gu+; <(1- ﬂ)g(ui—k)+ + gr](ui - k)+
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in A p;. By using the previous two estimates and the elementary inequality a < V1+a? <1 +a fora >0,
we obtain that fori > N,

j Iiu—k), A = J gy, dp < J \1+g; du

kR AR Alri
< J L+ (Guug,) > du + €
AR

< J (1 + Gurp)du+ &

Ak,R,i
< J (1 =M Gu-r), du + J Gy — k), dp + u(Ag;) + &
Ak,R,i Ak,R,i

Thus 5
[ w0, dus o [ =0, du A v

Ak,R,x’ Ak,R,i

and since = 1in B(x,r) and A, ; € B(x, R), we obtain

| G dus g | -0, dur wage) e

B(x,r) B(x,R)

Since (u; — k), — (u-k), in L}OC(Q*) as i — 0o, the lower semicontinuity of the total variation measure
implies that

DG 0,18 ) < limint [ g0, du

B(x,r)
< RZ_ " J (u—-k), dﬂ+iliTo”(Ak’R’i) +e
B(x,R)
= 2 J (u—k),du+u(Arg) +e
R-r ’
B(x,R)

The claim for £'-almost every k € R follows from this by letting ¢ — 0. For an arbitrary k € R, we take
a sequence of numbers k; \, k for which the above estimate holds. Then the lower semicontinuity of the total
variation measure implies that

ID( = k), (B(x, 7)) < lim inf | D(u - k;). | (B(x, 7))

. 2
< lim 1nf<ﬁ J (u-k;),du+ .“(Ak,.,R)>

i—00
B(x,R)

< 7 J (u—k),du+ pu(Agg).
B(x,R)

This completes the proof. O
The following result shows that minimizers are locally bounded.

Theorem 4.2. Let Q and Q" be bounded open subsets of X such that Q € Q*, and assume that f € BV(Q").
Let u € BV ;(2) be a minimizer of the generalized surface area functional with the boundary values f. Assume
that B(x,R) c Qwith R > 0, and let k, € R. Then

esssupu < ky +C J: (u—ky), du+R,
B(x,R/2)
B(x,R)

where the constant C depends only on the doubling constant of the measure and the constants in the Poincaré
inequality.
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Proof. Letd > 0 be a constant that will be fixed later, and let
ki =ky+d(1-27)

fori =0,1,.... Moreover, let
R i
ro=R r=—+2"""R, F= -
and A, . = B(x,r;) N {u > k;,,}. Denote B; = B(x, r;) and B; = B(x, ), and observe that B;,, ¢ B; C B;. For ev-
eryindexi = 0,1,..., we define a Lipschitz cutoff function #; with a compact support in B; such that0 < #; < 1,

n; = 1in B,,;, and the weak upper gradient satisfies

2 2i+4

9y < = ==
o T R

Let g = Q/(Q - 1) as in Lemma 2.2, and take a sequence of nonnegative locally Lipschitz functions (vj) such
thatv; — (u - k;,), in L}, (B;) and

loc

1D - k). 1(B) = lim [ g, du

Bi
Observe that now nv; — #,(u - k;,,), in L'(B;) as j — co.
We use Holder’s inequality and Lemma 2.2 to obtain
[ ki) du s [, du
Biyy Ei
1/q
< Mui-)“q(][ 113 = Fep). |7 dy) Ay, )

B.

i

< CRu(Ay, ) ™ uB) " Dy (1 - ki) )I(B;)

(A, )\ 7
< CR(”#) lim inf J G, A
‘u(Bl) j—o0 v

< CR(M)”MOim sup J g, U; dy + lim sup j g dy).
- w(B;) jooo 3 jmeor 470
The last inequality follows from the Leibniz rule [6, Theorem 2.15] for weak upper gradients. The estimate for
the weak upper gradient g, gives
2i+4
lim sup J gy Vjdy < R J(u — ki), du,

jmoo

i B;

and Theorem 4.1 implies that

limsup [ g,, die = 1D - K, I(B)
J7oeo -

2
— k. A
< 2 ek, duvpay,,)

2i+4
T J’(u - ki+1)+ d."‘ + Au(Ak,-H,r,-)'
B;

Therefore

P‘(Ak,-ﬂ,r,-) )1—1#1( 9i+5

J =k s < 2 [k du ua, ) )

B wB) B;
s WAL D\
< C21+5( %) (J(u - ki+1)+ d.u + R.u(Akiﬂ,Ti))' (4-1)

B:

i



10 —— H.Hakkarainen, J. Kinnunen and P. Lahti, Regularity of minimizers DE GRUYTER

In order to estimate the term Ru(A, . ), we note thatk;,, — k; = 27@Vd fori = 0,1,..., which implies that
u—k; >k, -k =2"%q
inAg ,.Thus

2i+1
‘M(Akiﬂv’i) s 7

J(u ~k;), du. (4.2)
B;

i

Let )
v, = 2wk, du
B.

i

The doubling property of the measure y and the fact that R/2 < r,,; < # < r; < Rimply that
u(Biyy) = M(Ei) ~ W(B)),

where the constants of comparison depend only on the doubling constant of the measure. Thus, by combin-
ing (4.1) and (4.2) and observing that k;,, > k;, we arrive at

1 i ‘u(A i+1)ri) il 1 R ‘H(A ,'+1:Ti)
V= 2 f -k, duzcr (ﬁ) (2 RS L )
B, i 3 E

i+1 i

s [ (AL r))l"l/q( 2i+1R>1
scz”s(# 1+ —][ -k, d
u(B) a Jaytriondu

i

) A 1-1/q i+1
< G2 M 1+ 2 R Y,
w(B)) d

< C21+5(21+1Yi)1 Uq(ﬁ + E)ZHIYi

i+5 1 R i+1 1+a
=C2 (2i+1+2 2"'Y)

1 R 2+a\iy 14+a
<Cl-+—= ]2 Y ',
(15
where « = 1 —1/q = 1/Q > 0 and the constant C depends only on the doubling constant of the measure and
the constants in the Poincaré inequality. If we now assume that d > R, then we have that

Y-+1 < C(22+rx)iYi1+(x

1

fori=0,1,..., and the dependencies of the constant C remain the same. We now apply [17, Lemma 7.1] to
conclude that Y; — 0 asi — oo provided d > R and
1 _ _ ~_
- ][ (u—ky), du < CHe@Pey e Z &1,
B(x,R)

Both conditions for d are satisfied if we choose

d=C { (u—ky),du+R.
B(x,R)

Since B(x,R/2) ¢ B;and (u —ky —d), < (u—-k;), fori =0,1,..., we have that

(u—-ky—d),dp < lim J(u—ki)+d;4=0.
B(x,R/2) B;
Thus
esssupu<ky+d=ky+C J: (u—ky), du+R.
B(x,R/2) BGR)

This proves the result. O
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5 Counterexamples on regularity

The classical treatment of the area functional begins with results concerning the existence of Lipschitz con-
tinuous minimizers. An important step in the argument is the so-called reduction to the boundary principle,
which follows from the maximum principle. The reduction to the boundary principle states that in order to
estimate the Lipschitz-constant of a minimizer, it suffices to consider its behavior on the boundary of the
domain. More precisely, if u is a Lipschitz continuous minimizer, then

Lip(u) = sup =¥
xeQ |x - yl
yeoQ

The same principle appears also in the study of more general functionals, and it is known that the geometry
of the domain plays an important role in the theory, see e.g. [17].

However, in the general context of metric measure spaces, the reduction to the boundary principle fails
even for nice domains. In fact, in the weighted one-dimensional case it is relatively easy to construct examples
of minimization problems which give minimizers that do not satisfy this principle. This phenomenon gives
rise to an example of a discontinuous minimizer of the area functional. Hence the local boundedness result
obtained in the last section is essentially optimal in this generality. We begin with a motivating example.

Example 5.1. Let R be equipped with the usual Euclidean distance and the weighted measure
du = min{e, exz} dx,

and let Q = (-1, 1). Then the area functional takes the form
1
F(u, Q) = J 1+ (1 (x))? e dx.
-1

Let us suppose that this problem has a Lipschitz continuous minimizer » with boundary values u(-1) = 0
and u(1) = 1. The smoothness and convexity of the integrand imply that u is smooth and satisfies the strong
form of the Euler-Lagrange equation

0 ( u/(x)ex2 ) o

0X \ A1+ (i (x))?

for every x € (-1, 1), see e.g. [7, Theorem 4.6], [10, Theorem 4.12] and [9]. This implies that

2x%

WGl = (5 - 1)_1/2,

where the constant C satisfies 0 < |C| < 1. The largest values of |1/'| are obtained near the point x = 0, and it
is then a straightforward application of the Fundamental Theorem of Calculus to conclude that the reduction
to the boundary principle fails.

The next example shows that in general, our problem does not have minimizers in the Sobolev class. In fact,
even in the one-dimensional case, the minimizer can be discontinuous inside the domain. This example is in
strict contrast with the unweighted case, where the minimizer is a straight line segment joining the boundary
values. A similar example for a slightly different functional is presented in [13, Example 3.1]. See also [7, p. 132].

Example 5.2. Let us consider the variational problem in the metric space R equipped with the Euclidean
distance and the measure defined by du = w dx, where

w(x) = min{\/i, V1 + x4/3}.

Note that w is continuously differentiable in (-1, 1).
In this case, we can equivalently look for the minimizers from the unweighted space. Indeed, since w
is continuous and 1 < w < V2, the space of BV-functions obtained via the metric measure space definition
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coincides with the weighted space BV(Q*; ) for any open Q" ¢ R, see e.g. [8, Theorem 3.2.3]. Furthermore,
there is a one-to-one correspondence between the functions of the weighted space BV(Q*; ») and the func-
tions of the unweighted space BV(Q*), see [5, Proposition 3.5].

Let Q = (-1,1), and let Q" > Q be an open and bounded set. Let u € BV(Q") be a generalized minimizer

of the problem
1

F(u, Q) = J 1+ W) wdx,
-1
with boundary values u(-1) = —a and u(1) = a, where the constant a > 0 will be chosen later.
As in Example 3.1, the function u minimizes the functional

1 1
F(u) = J 1+ W) wdx + J wd|(Dw)’| + w(-D|u(-1) + a| + w()|u(1) - al,
-1 S

where the boundary values are interpreted in the sense of traces and (Du)* = u' dx denotes the absolutely
continuous part and (Du)® the singular part of the total variation measure Du, see the structure theorem and
the further discussion in [15, pp. 583-585].

First we conclude that u attains the correct boundary values u(-1) = —a and u(1) = a. If this were not the
case, we could consider the function v defined as

{u(x)—u(—l)—a, -1<x<0,
v(x) =
u(x) —u(l) + a, 0<x<1,

and obtain that

Fv) = J V1+ @ wdx + J wd|(Du)’| + w(0)u~(0) — ' (0) — u(=1) + u(1) - 2a]
(-1,1)\{0} (-1,1)\{0}

< J 1+ @ wdx + J wd|(Du)’| + w(0)u~(0) — 1" (0)] + w(=D)[u(=1) + a] + w()[u(1) - a|
(=1L,1)\{0} (=1,1)\{0}
= F(u),

which contradicts the fact that u is a minimizer. Thus u attains the correct boundary values.

On the other hand, any minimizer in W"!((~1, 1)) would have to satisfy the weak form of the correspond-
ing Euler-Lagrange equation, see [10, Theorem 4.12] for instance. This together with the DuBois—Reymond’s
lemma, see [7, Lemma 1.8], then implies that

w(x)Z -1/2
c 1)

almost everywhere for some constant C with 0 < |C| < 1. Now, choosing a > 3, we conclude that

')l = (

1

j ' ()] dx

-1

) e

IN
N | =

a =3 lu(1) - u(-D)|

(w(x)? - 1) dx

IN

1

xPdx=3< a,
2

|
Jﬁ

which is a contradiction. Thus the minimizer does not belong to Sobolev space, since we saw earlier that any
minimizer will attain the correct boundary values.
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Let us conclude this example by showing that » has a jump discontinuity at the point x = 0, i.e. the singu-
lar part of the measure Du has a nontrivial point mass at x = 0. To see this, let ' dx + (Du)* be the Lebesgue
decomposition of the total variation measure Du. Note that the derivative »’ exists almost everywhere. Let us
consider the function v defined by v(-1) = —a, v’ = ' and

1
(Dv)* = (I d(Du)S>8O,
-1

where §, is the Dirac delta at x = 0. By applying the fact that any # € BV(-1, 1) has a representative of the
form h(x) = ¢ + Dh((-1, x)), see [3, Theorem 3.28], it is then straightforward to verify that v(1) = a. Further-
more, we have the estimate

1
F) = I 1+ (u')zwdx+w(0)U d(Du)*
-1

(=LD)\{o}

< j \/1+(u’)2wdx+jd|(Du)s|.
1

(=L1)\{0}

The fact that u is a minimizer implies F(u) < F(v), and since the absolutely continuous parts of Du and Dv
are the same, the previous estimate gives that

1 1
deI(Du)sl < J d|(Du)|.
-1 -1

This is true only if supp(Du)* c {0}, since w(x) > 1 for x # 0. Since we know that the minimizer is not an abso-
lutely continuous function, we conclude that (Du)* is not a null measure. Thus u has a jump at point x = 0.

Remark 5.3. The question whether the one-dimensional weighted area functional has absolutely continuous
minimizers with given boundary values has been studied in [18], where the necessary and sufficient condi-
tion for the existence of such minimizers corresponds exactly to the calculation presented in the previous
example, see also [9, p. 440].
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