Aalto University

 School of ScienceContinuation of: Regularity of minimizers of the area functional in metric spaces

Cintia Pacchiano Camacho

Aalto University

March 17, 2019

Heikki Hakkarainen, Juha Kinnunen and Panu Lahti, Regularity of minimizers of the area funtcional in metric spaces.

Preliminaries

In this paper, (X, d, μ) is a complete, separable and connected metric space endowed with a Borel measure μ on X. The measure μ is assumed to fulfill a doubling property, i.e. there exist a constant $c \geq 1$ such that

$$
0<\mu\left(B_{2 r}(x)\right) \leq C_{D} \mu\left(B_{r}(x)\right)<\infty
$$

for all radii $r>0$ and centres $x \in X$.
The doubling condition implies that for any ball $B(y, R)$ in $X, x \in B(y, R)$ and $0<r \leq R<\infty$, we have

$$
\frac{\mu(B(y, R))}{\mu(B(x, r))} \leq C\left(\frac{R}{r}\right)^{Q}
$$

for some $Q>1$ and $C \geq 1$ that only depends on C_{μ}.

Poincaré inequality

They assume that X supports a weak $(1,1)$-Poincare inequality, in the sense that there exist a constant $c_{P}>0$ and a dilation factor $\tau \geq 1$ such that for all open balls $B_{\rho}\left(x_{0}\right) \subset X$, for all L^{1}-functions u on X and all upper gradients $\widetilde{g_{u}}$ of u there holds

$$
f_{B_{\rho}\left(x_{0}\right)}\left|u-u_{\rho, x_{0}}\right| \mathrm{d} \mu \leq c_{P} \rho f_{B_{\tau \rho}\left(x_{0}\right)} \widetilde{g_{u}} \mathrm{~d} \mu
$$

where

$$
u_{\rho, x_{0}}:=f_{B_{\rho}\left(x_{0}\right)} u \mathrm{~d} \mu:=\frac{1}{\mu\left(B_{\rho}\left(x_{0}\right)\right)} \int_{B(x, r)} u \mathrm{~d} \mu
$$

denotes the mean value integral of the function u on the ball $B_{\rho}\left(x_{0}\right)$ with respect to the measure μ.
The Poincaré inequality implies the Sobolev-Poincaré inequality:

$$
\left(f_{B(x, r)}\left|u-u_{B(x, r)}\right|^{\frac{Q}{(Q-1)}} \mathrm{d} \mu\right)^{\frac{(Q-1)}{Q}} \leq C_{S} r f_{B(x, 2 \tau r)} g_{u} \mathrm{~d} \mu
$$

for every $u \in L_{\text {loc }}^{1}(X)$ and every 1 -weak upper gradient g of u. Here the constant $C>0$ depends only on the doubling constant and the constants in the Poincare inequality.

Sobolev inequality for BV-functions

Lemma

There exists a constant $C>0$, depending only on the doubling constant and the constants in the Poincare inequality, such that if $B(x, r)$ is a ball in X with $0<r<\operatorname{diam}(X)$ and $u \in L_{l o c}^{1}(X)$ with a compact support in $B(x, r)$, then

$$
\left(f_{B(x, r)}|u|^{\frac{Q}{(Q-1)}} d \mu\right)^{\frac{(Q-1)}{Q}} \leq \frac{C r}{\mu(B(x, r))}\|D u\|(B(x, r))
$$

Area functional in metric spaces

Definition

Let Ω and Ω^{*} be bounded open subsets of X such that $\Omega \Subset \Omega^{*}$, and assume that $f \in B V\left(\Omega^{*}\right)$. For every $u \in B V_{f}(\Omega)$, we define the generalized surface area functional by

$$
\mathcal{F}(u, \Omega)=\inf \left\{\liminf _{i \rightarrow \infty} \int_{\Omega^{*}} \sqrt{1+g_{u_{i}}^{2}} \mathrm{~d} \mu\right\}
$$

where $g_{u_{i}}$ is a 1 -weak upper gradient of u_{i}, and the infimum is taken over sequences of functions $u_{i} \in \operatorname{Lip}_{\mathrm{loc}}\left(\Omega^{*}\right)$ such that $u_{i} \rightarrow u$ in $L_{\mathrm{loc}}^{1}\left(\Omega^{*}\right)$. A function $u \in B V_{f}(\Omega)$ is a minimizer of the generalized surface area functional with the boundary values f if

$$
\mathcal{F}(u, \Omega)=\inf \mathcal{F}(v, \Omega)
$$

where the infimum is taken over all $v \in B V_{f}(\Omega)$

Theorem
Let Ω and Ω^{*} be bounded open subsets of X such that $\Omega \Subset \Omega^{*}$. Then for every $f \in B V\left(\Omega^{*}\right)$ there exists a minimizer $u \in B V_{f}(\Omega)$ of the generalized surface area functional with the boundary values f.

Local boundedness of minimizers

Theorem

Let Ω and Ω^{*} be bounded open subsets of X such that $\Omega \Subset \Omega^{*}$, and assume that $f \in B V\left(\Omega^{*}\right)$. Let $u \in B V_{f}(\Omega)$ be a minimizer of the generalized surface area functional with the boundary values f. Assume that $B(x, R) \subset \Omega$, and let $0<r<R$. Then for every $k \in \mathbb{R}$, we have

$$
\left\|D(u-k)_{+}\right\|(B(x, r)) \leq \frac{2}{R-r} \int_{\Omega}(u-k)_{+} d \mu+\mu\left(A_{k}, R\right)
$$

where $A_{k}, R=B(x, R) \cap\{u>k\}$.

Theorem
Let Ω and Ω^{*} be bounded open subsets of X such that $\Omega \Subset \Omega^{*}$, and assume that $f \in B V\left(\Omega^{*}\right)$. Let $u \in B V_{f}(\Omega)$ be a minimizer of the generalized surface area functional with the boundary values f. Assume that $B(x, R) \subset \Omega$ with $R>0$, and let $k_{0} \in \mathbb{R}$. Then

$$
\underset{B(x, R / 2)}{\operatorname{ess} \sup } u \leq k_{0}+C f_{B(x, R)}\left(u-k_{0}\right)_{+} d \mu+R
$$

where the constant C depends only on the doubling constant of the measure and the constants in the Poincare inequality.

EXTRA

- If $u, v \in \mathcal{N}^{1, p}(X)$, then $g_{u}=g_{v}$ a.e. on $\{x \in X: u(x)=v(x)\}$. Moreover, if $c \in \mathbb{R}$ is a constant, then $g_{u}=0$ a.e. on $\{x \in X: u(x)=c\}$.
- If $u, v \in \mathcal{N}^{1, p}(X)$, then $g_{u} \mathcal{X}_{\{u>v\}}+g_{v} \mathcal{X}_{\{v \geq u\}}$ is a minimal p-weak upper gradient of $\max \{u, v\}$ and $g_{v} \mathcal{X}_{\{u>v\}}+g_{u} \mathcal{X}_{\{v \geq u\}}$ is a minimal p-w.u.g of $\min \{u, v\}$.
- Let $u, v \in \mathcal{N}^{1, p}(X)$ and $\eta \in \operatorname{Lip}(X)$ be such that $0 \leq \eta \leq$. Set $w=u+\eta(v-u)=(1-\eta) u+\eta v$. Then $g:=(1-\eta) g_{u}+\eta g_{v}+|v-u| g_{\eta}$ is a $p-w . u . g$. of w.
- If $u, v \in \mathcal{N}^{1, p}(X)$, then $|u| g_{v}+|v| g_{u}$ is a $p-w . u . g$. of $u v$.
- Let $\left\{Y_{n}\right\}$ for $n=0,1, \cdots$ be a sequence of positive numbers, satisfying the inequalities

$$
Y_{n+1} \leq C b^{n} Y_{n}^{1+\alpha}
$$

where $C, b>1$ and $\alpha>0$ are given numbers. If

$$
Y_{0} \leq C^{-1 / \alpha} b^{-1 / \alpha^{2}}
$$

then $\left\{Y_{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$.

