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Preliminaries

In this paper, (X, d, µ) is a complete, separable and connected metric space

endowed with a Borel measure µ on X. The measure µ is assumed to ful�ll a

doubling property, i.e. there exist a constant c ≥ 1 such that

0 < µ (B2r(x)) ≤ CDµ (Br(x)) <∞

for all radii r > 0 and centres x ∈ X.

The doubling condition implies that for any ball B(y,R) in X, x ∈ B(y,R)
and 0 < r ≤ R <∞, we have

µ(B(y,R))

µ(B(x, r))
≤ C

(
R

r

)Q
for some Q > 1 and C ≥ 1 that only depends on Cµ.



Poincaré inequality

They assume that X supports a weak (1, 1)−Poincaré inequality, in the sense

that there exist a constant cP > 0 and a dilation factor τ ≥ 1 such that for all

open balls Bρ(x0) ⊂ X, for all L1−functions u on X and all upper gradients

g̃u of u there holds

−
∫
Bρ(x0)

|u− uρ,x0 | dµ ≤ cP ρ −
∫
Bτρ(x0)

g̃u dµ,

where

uρ,x0 := −
∫
Bρ(x0)

u dµ :=
1

µ(Bρ(x0))

∫
B(x,r)

u dµ.

denotes the mean value integral of the function u on the ball Bρ(x0) with

respect to the measure µ.
The Poincaré inequality implies the Sobolev-Poincaré inequality:

(
−
∫
B(x,r)

|u− uB(x,r)|
Q

(Q−1) dµ

) (Q−1)
Q

≤ CSr −
∫
B(x,2τr)

gudµ.

for every u ∈ L1
loc(X) and every 1−weak upper gradient g of u. Here the

constant C > 0 depends only on the doubling constant and the constants in

the Poincaré inequality.



Sobolev inequality for BV-functions

Lemma

There exists a constant C > 0, depending only on the doubling constant and

the constants in the Poincaré inequality, such that if B(x, r) is a ball in X with

0 < r < diam(X) and u ∈ L1
loc(X) with a compact support in B(x, r), then(

−
∫
B(x,r)

|u|
Q

(Q−1) dµ

) (Q−1)
Q

≤ Cr

µ(B(x, r))
‖Du‖(B(x, r)).



Area functional in metric spaces

De�nition

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗, and assume

that f ∈ BV (Ω∗). For every u ∈ BVf (Ω), we de�ne the generalized surface

area functional by

F(u,Ω) = inf{lim inf
i→∞

∫
Ω∗

√
1 + g2

uidµ}

where gui is a 1−weak upper gradient of ui, and the in�mum is taken over

sequences of functions ui ∈ Lip
loc

(Ω∗) such that ui → u in L1
loc(Ω

∗). A
function u ∈ BVf (Ω) is a minimizer of the generalized surface area functional

with the boundary values f if

F(u,Ω) = inf F(v,Ω)

where the in�mum is taken over all v ∈ BVf (Ω)



Theorem

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗. Then for

every f ∈ BV (Ω∗) there exists a minimizer u ∈ BVf (Ω) of the generalized

surface area functional with the boundary values f .



Local boundedness of minimizers

Theorem

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗, and assume

that f ∈ BV (Ω∗). Let u ∈ BVf (Ω) be a minimizer of the generalized surface

area functional with the boundary values f . Assume that B(x,R) ⊂ Ω, and let

0 < r < R. Then for every k ∈ R, we have

‖D(u− k)+‖(B(x, r)) ≤ 2

R− r

∫
Ω

(u− k)+dµ+ µ(Ak, R)

where Ak, R = B(x,R) ∩ {u > k}.



Theorem

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗, and assume

that f ∈ BV (Ω∗). Let u ∈ BVf (Ω) be a minimizer of the generalized surface

area functional with the boundary values f . Assume that B(x,R) ⊂ Ω with

R > 0, and let k0 ∈ R. Then

ess sup
B(x,R/2)

u ≤ k0 + C −
∫
B(x,R)

(u− k0)+dµ+R,

where the constant C depends only on the doubling constant of the measure

and the constants in the Poincaré inequality.



EXTRA

• If u, v ∈ N 1,p(X), then gu = gv a.e. on {x ∈ X : u(x) = v(x)}.
Moreover, if c ∈ R is a constant, then gu = 0 a.e. on {x ∈ X : u(x) = c}.
• If u, v ∈ N 1,p(X), then guX{u>v} + gvX{v≥u} is a minimal p−weak upper

gradient of max{u, v} and gvX{u>v} + guX{v≥u} is a minimal p−w.u.g of

min{u, v}.
• Let u, v ∈ N 1,p(X) and η ∈ Lip(X) be such that 0 ≤ η ≤. Set
w = u+ η(v − u) = (1− η)u+ ηv. Then
g := (1− η)gu + ηgv + |v − u|gη is a p−w.u.g. of w.
• If u, v ∈ N 1,p(X), then |u|gv + |v|gu is a p−w.u.g. of uv.
• Let {Yn} for n = 0, 1, · · · be a sequence of positive numbers, satisfying

the inequalities

Yn+1 ≤ CbnY 1+α
n

where C, b > 1 and α > 0 are given numbers. If

Y0 ≤ C−1/αb−1/α2

then {Yn} → 0 as n→∞.


