

Continuation of: Regularity of minimizers of the area functional in metric spaces

Cintia Pacchiano Camacho

Aalto University

March 17, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heikki Hakkarainen, Juha Kinnunen and Panu Lahti, *Regularity of minimizers of the area funtcional in metric spaces.*

Preliminaries

In this paper, (X, d, μ) is a complete, separable and connected metric space endowed with a Borel measure μ on X. The measure μ is assumed to fulfill a doubling property, i.e. there exist a constant $c \ge 1$ such that

$$0 < \mu \left(B_{2r}(x) \right) \le C_D \mu \left(B_r(x) \right) < \infty$$

for all radii r > 0 and centres $x \in X$.

The doubling condition implies that for any ball B(y,R) in $X, x \in B(y,R)$ and $0 < r \le R < \infty$, we have

$$\frac{\mu(B(y,R))}{\mu(B(x,r))} \le C\left(\frac{R}{r}\right)^Q$$

for some Q > 1 and $C \ge 1$ that only depends on C_{μ} .

Poincaré inequality

They assume that X supports a weak (1,1)-Poincaré inequality, in the sense that there exist a constant $c_P > 0$ and a dilation factor $\tau \ge 1$ such that for all open balls $B_\rho(x_0) \subset X$, for all L^1 -functions u on X and all upper gradients $\widetilde{g_u}$ of u there holds

$$\int_{B_{\rho}(x_0)} |u - u_{\rho, x_0}| \, \mathrm{d}\mu \le c_P \rho \int_{B_{\tau \rho}(x_0)} \widetilde{g_u} \, \mathrm{d}\mu,$$

where

$$u_{\rho,x_0} := \int_{B_{\rho}(x_0)} u \, \mathrm{d}\mu := \frac{1}{\mu(B_{\rho}(x_0))} \int_{B(x,r)} u \, \mathrm{d}\mu.$$

denotes the mean value integral of the function u on the ball $B_{
ho}(x_0)$ with respect to the measure μ .

The Poincaré inequality implies the Sobolev-Poincaré inequality:

$$\left(\int_{B(x,r)} |u-u_{B(x,r)}|^{\frac{Q}{(Q-1)}} \mathrm{d}\mu\right)^{\frac{(Q-1)}{Q}} \leq C_S r \int_{B(x,2\tau r)} g_u \mathrm{d}\mu.$$

for every $u \in L^1_{loc}(X)$ and every 1-weak upper gradient g of u. Here the constant C > 0 depends only on the doubling constant and the constants in the Poincaré inequality.

Sobolev inequality for BV-functions

Lemma

There exists a constant C > 0, depending only on the doubling constant and the constants in the Poincaré inequality, such that if B(x,r) is a ball in X with 0 < r < diam(X) and $u \in L^1_{loc}(X)$ with a compact support in B(x,r), then

$$\left(\int_{B(x,r)} |u|^{\frac{Q}{(Q-1)}} d\mu\right)^{\frac{(Q-1)}{Q}} \le \frac{Cr}{\mu(B(x,r))} \|Du\|(B(x,r)).$$

Area functional in metric spaces

Definition

Let Ω and Ω^* be bounded open subsets of X such that $\Omega \Subset \Omega^*$, and assume that $f \in BV(\Omega^*)$. For every $u \in BV_f(\Omega)$, we define the generalized surface area functional by

$$\mathcal{F}(u,\Omega) = \inf \{ \liminf_{i \to \infty} \int_{\Omega^*} \sqrt{1 + g_{u_i}^2} \mathrm{d}\mu \}$$

where g_{u_i} is a 1-weak upper gradient of u_i , and the infimum is taken over sequences of functions $u_i \in \operatorname{Lip}_{\operatorname{loc}}(\Omega^*)$ such that $u_i \to u$ in $L^1_{\operatorname{loc}}(\Omega^*)$. A function $u \in BV_f(\Omega)$ is a minimizer of the generalized surface area functional with the boundary values f if

$$\mathcal{F}(u,\Omega) = \inf \mathcal{F}(v,\Omega)$$

where the infimum is taken over all $v \in BV_f(\Omega)$

Theorem

Let Ω and Ω^* be bounded open subsets of X such that $\Omega \Subset \Omega^*$. Then for every $f \in BV(\Omega^*)$ there exists a minimizer $u \in BV_f(\Omega)$ of the generalized surface area functional with the boundary values f.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Local boundedness of minimizers

Theorem

Let Ω and Ω^* be bounded open subsets of X such that $\Omega \Subset \Omega^*$, and assume that $f \in BV(\Omega^*)$. Let $u \in BV_f(\Omega)$ be a minimizer of the generalized surface area functional with the boundary values f. Assume that $B(x, R) \subset \Omega$, and let 0 < r < R. Then for every $k \in \mathbb{R}$, we have

$$||D(u-k)_+||(B(x,r))| \le \frac{2}{R-r} \int_{\Omega} (u-k)_+ d\mu + \mu(A_k,R)$$

where $A_k, R = B(x, R) \cap \{u > k\}.$

Theorem

Let Ω and Ω^* be bounded open subsets of X such that $\Omega \Subset \Omega^*$, and assume that $f \in BV(\Omega^*)$. Let $u \in BV_f(\Omega)$ be a minimizer of the generalized surface area functional with the boundary values f. Assume that $B(x, R) \subset \Omega$ with R > 0, and let $k_0 \in \mathbb{R}$. Then

$$\operatorname{ess\,sup}_{B(x,R/2)} u \le k_0 + C \oint_{B(x,R)} (u - k_0)_+ d\mu + R,$$

where the constant C depends only on the doubling constant of the measure and the constants in the Poincaré inequality.

EXTRA

- If $u, v \in \mathcal{N}^{1,p}(X)$, then $g_u = g_v$ a.e. on $\{x \in X : u(x) = v(x)\}$. Moreover, if $c \in \mathbb{R}$ is a constant, then $g_u = 0$ a.e. on $\{x \in X : u(x) = c\}$.
- If u, v ∈ N^{1,p}(X), then g_uX_{u>v} + g_vX_{v≥u} is a minimal p-weak upper gradient of max{u, v} and g_vX_{u>v} + g_uX_{{v≥u} is a minimal p-w.u.g of min{u, v}.
- Let $u, v \in \mathcal{N}^{1,p}(X)$ and $\eta \in \operatorname{Lip}(X)$ be such that $0 \le \eta \le$. Set $w = u + \eta(v u) = (1 \eta)u + \eta v$. Then $g := (1 \eta)g_u + \eta g_v + |v u|g_\eta$ is a p-w.u.g. of w.
- If $u, v \in \mathcal{N}^{1,p}(X)$, then $|u|g_v + |v|g_u$ is a p-w.u.g. of uv.
- Let $\{Y_n\}$ for $n = 0, 1, \cdots$ be a sequence of positive numbers, satisfying the inequalities

$$Y_{n+1} \le Cb^n Y_n^{1+\alpha}$$

where C, b > 1 and $\alpha > 0$ are given numbers. If

$$Y_0 \le C^{-1/\alpha} b^{-1/\alpha^2}$$

then $\{Y_n\} \to 0$ as $n \to \infty$.