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In these notes, which are based on the research article Regularity of minimizers of the area
functional in metric spaces by Heikki Hakkarainen, Juha Kinnunen and Panu Lahti from
2014, we will consider a complete metric measure space (X, d, µ), where µ is a nontrivial
doubling Borel regular outer measure. We will also assume that our space is unbounded
and supports a (1,1)-Poincaré inequality.

The notes are divided into two parts, we will first give an introduction through an informal
example in Rn, and only then consider the more general metric case. For convenience we
will only consider the area functional, but the same methods apply for any functional of
linear growth as stated in remark 9.

Definition 1. Let Ω and Ω∗ be open sets in X such that Ω b Ω∗ and let f ∈ BV(Ω∗).
We define BVf (Ω) as the space of functions u ∈ BV(Ω∗) such that u = f in µ-almost
everywhere in Ω∗\Ω.

In the notation of the previous definition, we call the function f boundary values of a BV-
function. Thus BV0(Ω) is the BV-space with zero boundary values and clearly u ∈ BVf (Ω)
if and only if u− f ∈ BV0(Ω).

Ω∗ is only a reference set and even though we integrate over it in the area functional the
minimizers themselves are not dependent of it because of the predetermined boundary val-
ues f outside of the subset Ω.

Example 2. (Rn) By using the reference set Ω∗ we are consistent with the Euclidean case,
where we already need this kind of set, because while working with boundary values of
BV-functions, we often encounter the issue that the approximation procedure leaves us
with a measure that has singular part on the boundary of Ω. Thus we need to take a larger
reference set to take this part into account. For simplicity, it is often assumed that Ω has
at least Lipschitz boundary.

We may write our minimization problem in Rn as minimize
´

Ω

√
1 + |Du|2 in the function

class {u ∈ BV(Ω∗) | u = φ on Ω∗\Ω}, where φ ∈ W 1,1(Ω∗\Ω) has boundary values ϕ on
∂Ω in the sense of traces.

Traces are a way to make sense of boundary values of Sobolev functions. The idea is to
approximate the boundary values by restrictions of smoother functions to the boundary in
the sense that the partial integration formula works with the trace playing the role of the
function integrated on the boundary of the set.

Furthermore we may write

ˆ
Ω∗

√
1 + |Du|2 =

ˆ
Ω

√
1 + |Du|2 +

ˆ
∂Ω

|(Du)s|+
ˆ

Ω∗\Ω

√
1 + |Dφ|2 dx
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Note that the last term only depends on the boundary values and the boundary set is of
zero Lebesgue measure and thus there can only exist a singular term of the variational
measure on that set. To show that the singular term is precisely of this form is a delicate
issue and would require a project of it’s own. It follows from a structure theorem that gives
an explicit integral representation for the minimizer. An extremely hand waving argument
to see the intuition behind this fact is that since the measure is singular, the derivatives of
the approximating functions have to blow up and we have 1 +Du2 ≈ Du2.

To analyze the singular part of the measure on the boundary further, we denote the set
Et = {u > t} and then we have by the coarea formula and the Gauss-Green formula
(technically for all Borel sets on the measure theoretic boundary, but with approximation
we can neglect this technicality)

|(Du)s|(∂Ω) = ||Du||(∂Ω)

=

ˆ
R
||DχEt ||(∂Ω) dt

=

ˆ
R

( ˆ
∂Ω

χ∂Et dHn−1

)
dt

=

ˆ
∂Ω

(ˆ
R
χ∂Et dt

)
dHn−1

=

ˆ
∂Ω

(u+ − u−) dHn−1,

where the last equality follows from the fact that

]u−(x), u+(x)[⊂ {t ∈ R : x ∈ ∂MEt ∩ ∂Ω} ⊂ [u−(x), u+(x)].

Thefore the minimization problem can be written as minimization of

ˆ
Ω

√
1 + |Du|2 +

ˆ
∂Ω

|u− ϕ| dHn−1,

where for the first term we have

ˆ
Ω

√
1 + |Du|2 = sup

{ˆ
Ω

(φn+1 + u
n∑

i=1

Diφi dx | φ ∈ C1
0(Ω;Rn+1), |φ| ≤ 1

}
.

This follows from basic calculus, as
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ˆ
Ω

(
φn+1 + u

n∑
i=1

Diφi

)
dx =

ˆ
Ω

(
φn+1 −

n∑
i=1

(φiDiu)

)
dx

=

ˆ
Ω

(
φn+1 −∇u · (φ1, ..., φn)

)
dx

=

ˆ
Ω

φ ·
(
(0, ..., 0, 1)− (D1u, ..., Dnu, 0)

)
dx

≤
ˆ

Ω

|φ||(0, ..., 0, 1)− (D1u, ..., Dnu, 0)| dx

≤
ˆ

Ω

√
|Du|2 + 1 dx.

In the metric setting, which is our main topic, we are going to define the area functional by
method of relaxation. This method will not be discussed in this project and we will take as
granted that the following definition gives a formulation of the same problem as discussed
above. The benefit is that we can consider the gradients as functions instead of measures.

Definition 3. Let Ω and Ω∗ be bounded open sets in X such that Ω b Ω∗ and let
f ∈ BV (Ω∗). We define for any u ∈ BVf (Ω), the surface area functional

I(u,Ω) = inf

{
lim inf
i→∞

ˆ
Ω∗

√
1 + g2

ui
dµ

}
,

where gui
is the minimal 1-weak upper gradient of ui and the infimum is taken over all

sequences (ui)i with ui ∈ Liploc(Ω
∗) and ui → u in L1

loc(Ω
∗).

Note that
√

1 + g2
ui
≤ 1 + gui

and thus

I(u,Ω) = inf

{
lim inf
i→∞

ˆ
Ω∗

√
1 + g2

ui
dµ

}
≤ inf

{
lim inf
i→∞

ˆ
Ω∗

1 + gui
dµ

}
=

ˆ
Ω∗

1 dµ+ inf

{
lim inf
i→∞

ˆ
Ω∗
gui

dµ

}
= µ(Ω∗) + ||Du||(Ω∗)
<∞,

as Ω∗ is bounded and u ∈ BV(Ω∗).
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Remark 4. A function u ∈ BVf (Ω) is a minimizer of the area functional with boundary
values f if I(u,Ω) = inf I(v,Ω), where the infimum is taken over all v ∈ BVf (Ω).

Next we will show three needed Lemmas; semicontinuity for the area functional, Sobolev-
type inequality for BV functions and a compactness result in BV.

Lemma 5. (Semicontinuity) Let Ω and Ω∗ be bounded open sets in X such that Ω b Ω∗

and let f ∈ BV (Ω∗). If u, ui ∈ BVf (Ω) for i = 1, 2, 3... and ui → u in L1(Ω) as i → ∞,
then

I(u,Ω) ≤ lim inf
i→∞

I(ui,Ω)

Proof. In order to obtain the required L1
loc(Ω

∗) convergence later, we define for all positive
natural numbers k the set

Ωk =

{
y ∈ Ω∗ : dist(y,X\Ω∗) > 1

k

}
.

Since we aim to estimate the infimum, we will choose for every index i an example sequence
(vi,j)j such that as j →∞, we have vi,j → ui in L1

loc(Ω
∗) and

´
Ω∗

√
1 + g2

vi,j
dµ→ I(ui,Ω).

The existance of such sequence is clear from the definition of the area functional. In what
follows, we will show that this particular sequence satisfies the claim and thus the infimum
of all sequences does too. First we choose the indices j(i) such that

ˆ
Ωi

|ui − vi,j(i)| dµ <
1

i

and ˆ
Ω∗

√
1 + g2

vi,j(i)
dµ < I(ui,Ω) +

1

i

Denoting vi = vi,j(i), we obtain by using the triangle inequality and the fact that |u−ui| = 0
outside of Ω ˆ

Ωk

|u− vi| dµ ≤
ˆ

Ωk

|u− ui| dµ+

ˆ
Ωk

|ui − vi| dµ

=

ˆ
Ω

|u− ui| dµ+

ˆ
Ωk

|ui − vi| dµ→ 0

as i→∞, as Ωk is increasing. Thus vi → u in L1
loc(Ω

∗). Since the area functional takes the
infimum of such sequences, we have

I(u,Ω) ≤ lim inf
i→∞

ˆ
Ω∗

√
1 + g2

vi
dµ ≤ lim inf

i→∞

(
I(ui,Ω) +

1

i

)
= lim inf

i→∞
I(ui,Ω).
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Lemma 6. If B(x, r) ⊂ Ω∗ is a ball with 0 < r < diam(Ω∗) and u ∈ BV(Ω∗) is compactly
supported in B(x, r), then there exists a constant C > 0 depending only on the doubling
constant and the constant in the Poincaré inequality such that(

−
ˆ
B(x,r)

|u|
Q

Q−1 dµ

)Q−1
Q

≤ Cr

µ(B(x, r))
||Du||(B(x, r)).

Proof. Recall from Lemma 5.2 in the lecture notes that as u ∈ BV(B(x, r)), there exists a
sequence (ui)i ⊂ Liploc(B(x, r)) such that ui → u in L1

loc(B(x, r)) and

||Du||(B(x, r)) = lim
i→∞

ˆ
B(x,r)

gui
dµ.

To use the Sobolev-type inequality from the lecture notes for the approximating functions
ui, we need to first consider the measure of the set

Ai = {y ∈ B(x, r) : |ui(y)| > 0}.

Since u is compactly supported in the ball, we can assume that ui are in the Sobolev space
with zero boundary values, thus by Remark 6.4 In the lecture notes, we conclude that

µ(Ai) ≤ γµ(B(x, r)).

Now by Lemma 6.3 in the lecture notes we have that for ui, the following inequality holds

(
−
ˆ
B(x,r)

|ui|
Q

Q−1 dµ

)Q−1
Q

≤ Cr

µ(B(x, r))

ˆ
B(x,r)

gui
dµ. (1)

By Minkowski and Hölder inequalities, we have

(
−
ˆ
B(x,r)

|ui|
Q

Q−1 dµ

)Q−1
Q

≤
(
−
ˆ
B(x,r)

|ui − u|
Q

Q−1 dµ

)Q−1
Q

+

(
−
ˆ
B(x,r)

|u|
Q

Q−1 dµ

)Q−1
Q

≤ C

(ˆ
B(x,r)

|ui − u| dµ+

ˆ
B(x,r)

|u| dµ
)

→ C

ˆ
B(x,r)

|u| dµ <∞,

as ui → u in L1
loc and u ∈ L1(B(x, r)). Thus by taking limits on both sides of equation 1,

we conclude the claim.
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Lemma 7. (Compactness) Let (ui)i be a bounded sequence in BVloc(Ω
∗) with respect to

the norm of L1
loc(Ω

∗), such that supi ||Dui||(Ω) < ∞ for all Ω b Ω∗. Then there exists
u ∈ BVloc(Ω

∗) and a subsequence uij that converges to u in L1
loc(Ω

∗).

This compactness result is stronger than is required in the case of sobolev spaces with p>1,
but as we cannot use reflexivity, it is what we have to use. The proof is a project of it’s
own and is thus omitted in these notes.

Theorem 8. Let Ω and Ω∗ be bounded open sets in X such that Ω b Ω∗. For every
f ∈ BV(Ω∗) there exists a unique minimizer u ∈ BVf (Ω) of the area functional I(u,Ω)
with the boundary values f .

Proof. Denote m = inf I(v,Ω), where the infimum is taken over all v ∈ BVf (Ω). By
the definition of infimum we can take a minimizing sequence ui ∈ BVf (Ω) such that
I(ui,Ω)→ m.

In order to show the required convergence we will use Lemma 7 and thus we proceed by
considering the total variation of ui in Ω∗, we note that for positive real numbers it holds
that λ ≤

√
1 + λ2 and therefore for every index i we have

||Dui||(Ω∗) = inf

{
lim inf
i→∞

ˆ
Ω∗
gui

dµ : ui ∈ Liploc(Ω
∗), ui → u in L1

loc(Ω
∗)

}
≤ inf

{
lim inf
i→∞

ˆ
Ω∗

√
1 + g2

ui
dµ : ui ∈ Liploc(Ω

∗), ui → u in L1
loc(Ω

∗)

}
= I(ui,Ω) <∞

and thus ||Dui||(Ω∗) is a bounded sequence. Now take x ∈ Ω and choose r ∈ R such that
diam(Ω) < r < diam(Ω∗), then we clearly have Ω ⊂ B(x, r). By Hölder’s inequality

ˆ
Ω

|ui − f | dµ ≤
ˆ
B(x,r)

|ui − f | dµ

≤
( ˆ

B(x,r)

|ui − f |
Q

Q−1 dµ

)Q−1
Q

µ(B(x, r))
1
Q ,

because

µ(B(x, r))
1
Q =

1

µ(B(x, r))
−1
Q

=
1

µ(B(x, r))
Q−1
Q

µ(B(x, r)),
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as ui − f ∈ BV0(Ω), we have by Lemma 6

ˆ
Ω

|ui − f | dµ ≤
(
−
ˆ
B(x,r)

|ui − f |
Q

Q−1 dµ

)Q−1
Q

µ(B(x, r))

≤ Cdiam(Ω)||D(ui − f)||(B(x, r))

= Cdiam(Ω)||D(ui − f)||(Ω),

where the last equality follows from the fact that ui− f = 0 almost everywhere outside Ω.
Therefore we have

ˆ
Ω∗
|ui| dµ ≤

ˆ
Ω∗
|f | dµ+

ˆ
Ω∗
|ui − f | dµ

=

ˆ
Ω∗
|f | dµ+

ˆ
Ω

|ui − f | dµ

≤
ˆ

Ω∗
|f | dµ+ Cdiam(Ω)||D(ui − f)||(Ω)

≤
ˆ

Ω∗
|f | dµ+ Cdiam(Ω)

(
||Dui||(Ω) + ||Df ||(Ω)

)
<∞.

Thus by lemma 7 there exists a function u ∈ BVloc(Ω
∗) (in particular in BV(Ω)) and a

subsequence, which we will denote by ui, such that ui → u as i→∞ in L1
loc(Ω

∗). Thus along
a subsequence, again denoted by ui, we have pointwise convergence µ-almost everywhere
in Ω∗. Thus we have

|u(x)− f(x)| ≤ |u(x)− ui(x)|+ |ui(x)− f(x)| → 0

µ-almost everywhere in Ω∗\Ω, because the latter term is zero in that set. Therefore we
conclude that u = f for µ-almost every point x ∈ Ω∗\Ω. This, together with the fact that
u ∈ BV(Ω), implies that u ∈ BV(Ω∗) and ui → u in L1(Ω∗). Therefore u ∈ BVf (Ω), and
by lemma 5 we conclude that

m ≤ I(u,Ω) ≤ lim inf
i→∞

I(ui,Ω) = m.

This proves the existence, for uniqueness we will argue by contradiction and assume that
there exists two minimizers, namely u1 and u2, then for the function ũ = u1+u2

2
we have
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I =

ˆ
Ω

√
1 + |Du1|2

≤
ˆ

Ω

√
1 + |Dũ|2

=

ˆ
Ω∩{u1=u2}

√
1 + |Dũ|2 +

ˆ
Ω∩{u1 6=u2}

√
1 + |Dũ|2

<
1

2

ˆ
Ω∩{u1=u2}

√
1 + |Du1|2 +

1

2

ˆ
Ω∩{u1=u2}

√
1 + |Du2|2

+
1

2

ˆ
Ω∩{u1 6=u2}

√
1 + |Du1|2 +

1

2

ˆ
Ω∩{u1 6=u2}

√
1 + |Du2|2

=
1

2

ˆ
Ω

√
1 + |Du1|2 +

1

2

ˆ
Ω

√
1 + |Du2|2

=
1

2
I +

1

2
I = I,

where the strict inequality, obtained by using strict convexity of the integrand on the latter
part of the sum, gives us a contradiction. Thus we conclude that |Ω∩{u1 6= u2}| = 0, which
proves uniqueness.

Remark 9. With the same methods we could obtain the same results for more general
variational integrals of the form

I(u,Ω) = inf

{
lim inf
i→∞

ˆ
Ω∗
h(gui

) dµ

}
,

where h is convex, continous and satisfies the following linear growth condition

α|x| ≤ h(x) ≤ β(1 + |x|), 0 < α ≤ β <∞.

For the uniqueness of the minimizer we need strict convexity of h.
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