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(Communicated by Joachim Krieger)

Abstract. We give several characterizations of parabolic (quasisuper)-
minimizers in a metric measure space equipped with a doubling measure and
supporting a Poincaré inequality. We also prove a version of comparison prin-
ciple for super- and subminimizers on parabolic space-time cylinders and a
uniqueness result for minimizers of a boundary value problem. We also give
an example showing that the corresponding results do not hold, in general, for
quasiminimizers even in the Euclidean case.

1. Introduction

This note studies properties of quasiminimimizers of parabolic variational in-
equalities of the p-Laplacian type in metric measure spaces. In the Euclidean case
the prototype equation is

∂u

∂t
− div(|Du|p−2Du) = 0, 1 < p < ∞,

and the corresponding variational inequality

p

∫∫
u
∂φ

∂t
dx dt+

∫∫
|Du|p dx dt ≤

∫∫
|Du+Dφ|p dx dt

for every compactly supported test function φ. Roughly speaking, a quasiminimizer
is a function which satisfies this condition up to multiplicative constants. The
precise definitions will be given later. Our results and methods also hold for more
general variational kernels of the p-Laplacian type, but as we shall see, in the class
of quasiminimizers it seems to be enough to consider the prototype case.

The main purpose of the study of quasiminimizers is to provide arguments in the
calculus of variations that are only based on energy estimates and, consequently,
are applicable in more general contexts than Euclidean spaces. In particular, we do
not always have the corresponding non-linear partial differential equation available.
This is a challenging problem already in the Euclidean case with the Lebesgue
measure and our results are relevant already in that case. In the elliptic case
quasiminimizers were introduced by Giaquinta and Giusti in [GG1] and [GG2] and
in the parabolic case by Wieser in [W]. See also [Z1] and [Z2]. First they were used
as a tool in the regularity theory, but later it turned out that they have theory
which is of independent interest; see [B], [KM] and [KS].

Until recently, most of the results have been obtained for elliptic quasiminimiz-
ers. Recent papers [KMMP], [MMPP] and [MS] extend the regularity theory of
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quasiminimizers to metric measure spaces with a doubling measure and a Poincaré
inequality. These are rather standard assumptions in analysis on metric measure
spaces and they are also assumed to hold throughout this note. We point out that
there is a large literature on time independent variational problems in metric mea-
sure spaces, but parabolic quasiminimizers open an opportunuty to consider more
general time dependent variational problems. So far there are only a few references
and many fundamental open problems remain.

In this note, we shall focus on two aspects. First, we give several characteriza-
tions of parabolic quasisuperminimizers extending the results in [KM] and [B]. We
show, by an example, that quasiminimizers do not have comparison principle and a
boundary value problem does not have a unique solution, in general. However, if we
restrict our attention to the minimizers that are quasiminimizers with the constant
one, then we have a parabolic comparison principle for super- and subminimizers
and a uniqueness result for a boundary value problem for the minimizers. We prove
these results in the second part of the paper. It has been shown in [W] that the
minimizers have a certain amount of regularity in time. More precisely, the time
derivative of a quasiminimizer belongs to the dual of the corresponding parabolic
Sobolev space. The corresponging result does not hold for super- and submini-
mizers and a delicate smoothing argument is needed. In the Euclidean case with
the Lebesgue measure, the comparision principle is not only sufficient but also a
necessary condition for a function to be a superminimizer, but in the metric space
the theory for the parabolic obstacle problems is currently missing; see [KL], [KKP]
and [KKS]. Our uniqueness result extends results of [W] to the metric setting.

2. Preliminaries

2.1. Doubling measure. Let (X, d) be a complete metric space. A measure μ is
said to be doubling if there exists a universal constant Cμ ≥ 1 such that

μ(B(x, 2r)) ≤ Cμμ(B(x, r)),

for every r > 0 and x ∈ X. Here B(x, r) denotes the open ball with the center
x and radius r. We assume that the measure is non-trivial in the sense that 0 <
μ(B(x, r)) < ∞ for every x ∈ X and r > 0. Recall that a complete metric space
with a doubling measure is proper, that is, every closed and bounded set is compact.

2.2. Upper gradients. We assume that Ω is an open and bounded subset of X,
although the boundedness is not always needed. Following [HK], a non-negative
Borel measurable function g : Ω → [0,∞] is said to be an upper gradient of a
function u : Ω → [−∞,∞] in Ω, if for all compact rectifiable paths γ joining x and
y in Ω we have

|u(x)− u(y)| ≤
∫
γ

g ds.(2.1)

In case u(x) = u(y) = ∞ or u(x) = u(y) = −∞, the left side is defined to be ∞.
Throughout the paper we assume that 1 < p < ∞. A property is said to hold
for p-almost all paths, if the set of non-constant paths for which the property fails
is of zero p-modulus. Following [S1], if (2.1) holds for p-almost all paths γ in X,
then g is said to be a p-weak upper gradient of u. This refinement is related to the
existence of a minimal weak upper gradient and it does not play any other role in
our study.
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When u is a measurable function and it has an upper gradient g ∈ Lp(Ω), it can
be shown [S2] that there exists a minimal p-weak upper gradient of u. We denote
it by gu, in the sense that gu is a p-weak upper gradient of u and for every p-weak
upper gradient g of u it holds gu ≤ g μ-almost everywhere in Ω. Moreover, if v = u
μ-almost everywhere in a Borel set E ⊂ Ω, then gv = gu μ-almost everywhere in
E. For more on upper gradients in metric spaces we refer to [BB] and [H].

2.3. Newtonian spaces. Following [S1], for u ∈ Lp(Ω), we define

‖u‖1,p,Ω = ‖u‖Lp(Ω,μ) + ‖gu‖Lp(Ω,μ),

and Ñ1.p(Ω) = {u : ‖u‖1,p,Ω < ∞}. An equivalence relation in Ñ1,p(Ω) is defined
by saying that u ∼ v if ‖u−v‖

˜N1,p(Ω) = 0. The Newtonian space N1,p(Ω) is defined

to be the space Ñ1,p(Ω)/ ∼, with the norm defined above.

A function u belongs to the local Newtonian space N1,p
loc (Ω) if it belongs to

N1,p(Ω′) for every Ω′ � Ω. The notation Ω′ � Ω means that Ω′ is a compact subset
of Ω. The Newtonian space with zero boundary values is defined as

N1,p
0 (Ω) = {u|Ω : u ∈ N1,p(X), u = 0 in X \ Ω}.

In practice, this means that a function belongs to N1,p
0 (Ω) if and only if its zero

extension to X \ Ω belongs to N1,p(X). For more properties of Newtonian spaces,
see [S1,KKM,BB,H].

2.4. Poincaré’s inequality. The spaceX is said to support a weak (1, p)-Poincaré
inequality with 1 ≤ p < ∞, if there exist constants P0 > 0 and τ ≥ 1 such that

1

μ(B(x, r))

∫
B(x,r)

|u− uB(x,r)| dμ ≤ P0r

(
1

μ(B(x, τr))

∫
B(x,τr)

gpu dμ

)1/p

,

for every u ∈ N1,p(X), x ∈ X and r > 0. If the measure is doubling and the space
supports a (1, p)-Poincaré inequality, then Lipschitz continuous functions are dense
in the Newtonian space. This will be useful for us, since the test functions in the
definition of quasiminimizers are assumed to be Lipschitz continuous.

2.5. General assumptions. Throughout this paper we assume (X, d, μ) to be a
complete metric space, equipped with a positive doubling Borel measure μ which
supports a weak (1, p)-Poincaré inequality for some 1 ≤ p < ∞.

2.6. Parabolic upper gradients and Newtonian spaces. From now on we
will denote the product measure by dν = dμ dt. Whenever t is such that u(·, t) ∈
N1,p(Ω), we define the parabolic minimal p-weak upper gradient of u in a natural
way by setting

gu(x, t) = gu(·,t)(x),

at ν-almost every (x, t) ∈ Ω×(0, T ) = ΩT and we call the parabolic minimal p-weak
upper gradient the upper gradient.

We define the parabolic Newtonian space Lp(0, T ;N1,p(Ω)) to be the space of
functions u(x, t) such that for almost every 0 < t < T the function u(·, t) belongs
to N1,p(Ω), and

T∫
0

‖u(·, t)‖p1,p,Ω dt < ∞.
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We say that u ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) if for every 0 < t1 < t2 < T and Ω′ � Ω we

have u ∈ Lp(t1, t2;N
1,p(Ω′)). Finally, we say that u ∈ Lp

c(0, T ;N
1,p(Ω)) if for some

0 < t1 < t2 < T , we have u(·, t) = 0 outside [t1, t2].
The next lemma on taking limits of upper gradients will also be needed later in

this paper.

Lemma 2.1. Let u be such that gu ∈ Lp
loc(ΩT ). Then the following statements

hold:

(a) As s → 0, we have gu(x,t−s)−u(x,t) → 0 in Lp
loc(ΩT ).

(b) As ε → 0, we have guε−u → 0 pointwise ν-almost everywhere in ΩT and in
Lp
loc(ΩT ).

Proof. See Lemma 6.8 in [MS]. �

3. Parabolic quasiminimizers

In this section we define parabolic quasiminimizers in metric measure spaces and
give several characterizations for them. We begin with a brief discussion about the
Euclidean case.

3.1. Euclidean case. There is a variational approach to the p-parabolic equation

(3.1)
∂u

∂t
− div(|Du|p−2Du) = 0, 1 < p < ∞.

To see this, first assume that u ∈ Lp
loc(0, T ;W

1,p
loc (Ω)) ∩ L2(ΩT ) is a weak solution

of (3.1) and denote dz = dx dt. Let U � ΩT and φ ∈ C∞
0 (U). Then∫

U

|Du|p dz =

∫
U

|Du|p−2Du ·Dudz

=

∫
U

|Du|p−2Du · (Du+Dφ) dz −
∫
U

u
∂φ

∂t
dz,

from which it follows that

(3.2) p

∫
U

u
∂φ

∂t
dz +

∫
U

|Du|p dz ≤
∫
U

|Du+Dφ|p dz.

In the last step we used Young’s inequality and rearranged terms.
Assume then that (3.2) holds for every U � ΩT and let φ ∈ C∞

0 (ΩT ). Then
εϕ ∈ C∞

0 (U) with ε > 0 for some U � ΩT and we have

εp

∫
U

u
∂φ

∂t
dz +

∫
U

|Du|p dz ≤
∫
U

|Du+ εDφ|p dz,

from which we conclude that

p

∫
U

u
∂φ

∂t
dz +

∫
U

1

ε
(|Du|p − |Du+ εDφ|p) dz ≤ 0.

As ε → 0, by the dominated convergence theorem we arrive at∫
U

u
∂φ

∂t
dz −

∫
U

|Du|p−2Du ·Dφdz ≤ 0.

The reverse inequality follows by choosing−εφ as the test function and consequently
u is a weak solution of (3.1). If u ∈ Lp

loc(0, T ;W
1,p
loc (Ω))∩L2

loc(ΩT ) satisfies (3.2) for
every U � ΩT , we say that u is a parabolic minimizer. Hence every weak solution of
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the p-parabolic equation is a parabolic minimizer and, conversely, every parabolic
minimizer is a weak solution of the p-parabolic equation.

Let us then consider more general equations

(3.3)
∂u

∂t
− divA(x, t,Du) = 0, 1 < p < ∞,

of the the p-Laplacian type, where A : Rn × R × R
n → R satisfies the following

assumptions:

(1) (x, t) �→ A(x, t, ξ) is measurable for every ξ,
(2) ξ �→ A(x, t, ξ) is continuous for almost every (x, t), and
(3) there exist 0 < c1 ≤ c2 < ∞ such that for every ξ and almost every (x, t),

we have

A(x, t, ξ) · ξ ≥ c1|ξ|p and |A(x, t, ξ)| ≤ c2|ξ|p−1.

As above, we can show that a weak solution of (3.3) satisfies∫
U

u
∂φ

∂t
dz + c1

∫
U

|Du|p dz ≤ c2

∫
U

|Du|p−1|Du+Dφ| dz

for every U � ΩT and φ ∈ C∞
0 (U). Young’s inequality implies that

(3.4)
p

c1

∫
U

u
∂φ

∂t
dz +

∫
U

|Du|p dz ≤
(
c2
c1

)p ∫
U

|Du|p dz

for every U � ΩT and φ ∈ C∞
0 (U). A function u ∈ Lp

loc(0, T ;W
1,p
loc (Ω)) ∩ L2

loc(ΩT ),
which satisfies this kind of inequality is called a parabolic quasiminimizer. The
precise definition will be given in the next section.

Example 3.1. When K > 1, then being a quasiminimizer is not a local property.
Indeed, consider the function u : (0,∞)× (0, 1) → R defined by setting

u(x, t) =
x− (i− 1)

k
+

i−1∑
j=1

1

j
,

when i−1 < x ≤ i with i = 1, 2, . . . . This function is an elliptic quasiminimizer with
some K > 1 when tested on intervals of finite length by a criterion given in [GG2].
However, it fails to be a quasiminimizer on the whole positive axis by the same
criterion. The situation is even worse, since every continously differentiable function
with a non-vanishing derivative is a local elliptic quasiminimizer, but obviously not
a quasiminimizer.

3.2. Metric case. The advantage of the notion of a quasiminimizer is that it makes
sense also in metric spaces and this enables us to develop the theory of non-linear
parabolic partial differential equations also in the metric context.

Definition 3.2. Suppose that Ω ⊂ X is an open set and 0 < T < ∞. Let 1 < p <
∞, α > 0 and K ≥ 1. We say that a function u ∈ Lp

loc(0, T ;N
1,p
loc (Ω)) ∩ L2

loc(ΩT )
is a parabolic K-quasiminimizer, if for every open U � ΩT and for all functions
φ ∈ Lip(ΩT ) such that {φ �= 0} ⊂ U , we have

α

∫
U

u
∂φ

∂t
dν +

∫
U

gpu dν ≤ K

∫
U

gpu+φ dν.(3.5)

A function u ∈ Lp
loc(0, T ;N

1,p
loc (Ω))∩L2

loc(ΩT ) is a parabolic K-quasisuperminimizer
if (3.5) holds for every open U � ΩT and for all non-negative functions φ ∈ Lip(ΩT )
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such that {φ > 0} ⊂ U . A function u is a parabolic K-quasisubminimizer, if −u is a
parabolic K-quasisuperminimizer. If K = 1, then the parabolic K-quasiminimizer
and parabolic K-quasisuperminimizer are called parabolic minimizer and parabolic
superminimizer, respectively.

Remark 3.3. (1) As Example 3.1 suggests, an elliptic quasiminimizer with a trivial
extension in time is a parabolic quasiminimizer. However, the class of the par-
abolic quasiminimizers is more general than the elliptic quasiminimizers already
in the Euclidean case, since a solution of the parabolic p-Laplace equation is a
quasiminimizer for every K ≥ 1.

(2) As we see from (3.4), two parameters α and K are required to obtain a notion
of a quasiminimizer which includes the whole class of parabolic equations of the
type (3.3). Roughly speaking, the parameter α describes the diffusion part and K
the structure of the divergence part of the equation.

We proceed by proving characterizations for parabolic quasiminimizers. The
characterizations are proved for parabolic quasisuperminimizers. However, the
reader should note that Lemmas 3.4 through 3.7 can be formulated and proved also
for K-quasisubminimizers, after replacing the word ‘non-negative’ in the proofs
with the word ‘non-positive’. In particular, this implies that the corresponding
results also hold for parabolic minimizers.

Lemma 3.4. A function u ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) ∩ L2

loc(ΩT ) is a parabolic K-
quasisuperminimizer if and only if for every ν-measurable set E � ΩT and every
non-negative φ ∈ Lip(ΩT ) such that {φ > 0} ⊂ E, we have

α

∫
E

u
∂φ

∂t
dν +

∫
E

gpu dν ≤ K

∫
E

gpu+φ dν.

Proof. Assume that u is a parabolicK-quasisuperminimizer in ΩT and let E � Ω be
a ν-measurable set. Let φ ∈ Lip(Ω) be non-negative with the property {φ > 0} ⊂ E.

Since E is ν-measurable, and since u + φ ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) ∩ L2

loc(ΩT ), by the
regularity of μ there exists an open set U � ΩT such that∫

U\E
gpu+φ dν <

ε

K
.

Moreover, {φ �= 0} ⊂ E, and since φ is Lipschitz continuous with respect to time,
we have

ν((F \ E) ∩ {∂φ/∂t �= 0}) = 0.

Since u is a K-quasisuperminimizer, we arrive at

α

∫
E

u
∂φ

∂t
dν +

∫
E

gpu dν ≤ α

∫
U

u
∂φ

∂t
dν +

∫
U

gpu dν

≤ K

∫
E

gpu+φ dν +K

∫
U\E

gpu+φ dν ≤ K

∫
E

gpu+φ dν + ε.

This holds for every ε, and so one direction of the claim is true by passing ε → 0.
The other direction is immediate, since open sets are ν-measurable. �

The following two characterizations are often useful in applications and in many
cases can be taken as the definition of a parabolic K-quasiminimizer.
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Lemma 3.5. A function u ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) ∩ L2

loc(ΩT ) is a K-quasisuper-
minimizer if and only if for every non-negative φ ∈ Lip(ΩT ) such that {φ �= 0} �
ΩT , we have

α

∫
{φ �=0}

u
∂φ

∂t
dν +

∫
{φ �=0}

gpu dν ≤ K

∫
{φ �=0}

gpu+φ dν.(3.6)

Proof. Suppose first that (3.6) holds. Let φ ∈ Lip(ΩT ) be non-negative with {φ �=
0} � ΩT . Let U � ΩT be an open set such that {φ �= 0} ⊂ U . Since φ is Lipchitz
continuous with respect to time, we have

ν({φ = 0, ∂φ/∂t �= 0}) = 0,

and consequently

α

∫
U

u
∂φ

∂t
dν +

∫
U

gpu dν = α

∫
{φ �=0}

u
∂φ

∂t
dν +

∫
{φ �=0}

gpu dν +

∫
U∩{φ=0}

gpu dν

= K

∫
{φ �=0}

gpu+φ dν +

∫
U∩{φ=0}

gpu dν ≤ K

∫
U

gpu+φ dν.

This shows that u is a parabolic K-quasisuperminimizer.
Suppose then that u is a K-quasisuperminimizer. Consider an open set U � ΩT

and a non-negative function φ ∈ Lip(ΩT ) such that {φ �= 0} ⊂ U . The set {φ �= 0}
is ν-measurable and {φ �= 0} � ΩT , and so by Lemma 3.4 we have (3.6). This
completes the proof. �

Lemma 3.6. A function u ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) ∩ L2

loc(ΩT ) is a K-quasisuper-
minimizer if and only if for every non-negative φ ∈ Lip(ΩT ) such that suppφ ⊂ ΩT ,
we have

α

∫
suppφ

u
∂φ

∂t
dν +

∫
suppφ

gpu dν ≤ K

∫
suppφ

gpu+φ dν.(3.7)

Proof. Suppose u is a K-quasisuperminimizer and let φ ∈ Lip(ΩT ) be non-negative
such that suppφ ⊂ ΩT . Because φ is continuous, we have

ν({φ = 0, ∂φ/∂t �= 0}) = 0.

Since K ≥ 1, we can write∫
suppφ

u
∂φ

∂t
dν +

∫
suppφ

gpu dν

≤
∫
{φ �=0}

u
∂φ

∂t
dν +

∫
{φ �=0}

gpu dν +

∫
suppφ\{φ �=0}

gpu dν

≤ K

∫
{φ �=0}

gpu+φ dν +

∫
suppφ\{φ �=0}

gpu+φ dν

≤ K

∫
suppφ

gpu+φ dν.

Then let φ ∈ Lip(ΩT ) be such that {φ �= 0} � ΩT . For i = 1, 2, . . . , define

ψi = (φ− i−1)+ − (φ+ i−1)−.
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Then for each i we have

ψi ∈ Lip(ΩT ), {ψi �= 0} ⊂ {φ �= 0}, ν({φ �= 0} \ {ψi �= 0}) → 0

as i → ∞, and

∂ψi

∂t
=

∂φ

∂t
and gψi

= gφ,

in the set {ψi �= 0}. Moreover, since φ is continuous, we have suppψi ⊂ {|φ| ≥ i−1}.
Let ε > 0. By the absolute continuity of the integral and the above properties, there
exists a large enough i such that∫

{φ �=0}
u
∂φ

∂t
dν + C1

∫
{φ �=0}

gpu dν ≤
∫
suppψi

u
∂φ

∂t
dν + C1

∫
suppψi

gpu dν + ε

≤ K

∫
suppψi

gpu−ψi
dν + ε ≤ K

∫
{φ �=0}

gpu−φ dν + 2ε.

Since this is true for any positive ε, by Lemma 3.5 u is a parabolic K-quasisuper-
minimizer. �

It turns out that after mollifying a K-quasisuperminimizer in time, we obtain
estimates for test functions which do not necessarily have to be smooth in time. In
what follows (·)ε denotes the standard time mollification

fε(x, t) =

∫ ε

−ε

ηε(s)f(x, t− s) ds.

Lemma 3.7. Let u ∈ Lp
loc(0, T ;N

1,p
loc (Ω)) ∩ L2

loc(ΩT ) be a parabolic K-quasisuper-
minimizer. Then for every non-negative φ ∈ Lp(0, T ;N1,p(Ω)) ∩ L2(ΩT ) such that
{φ �= 0} � ΩT , we have

−α

∫
{φ �=0}

∂uε

∂t
φ dν +

∫
{φ �=0}

(gpu)ε dν ≤ K

∫
{φ �=0}

(gpu(x,t−s)+φ)ε dν(3.8)

for every small enough positive ε. Moreover, if u ∈ Lp
loc(0, T ;N

1,p(Ω)) ∩ L2
loc(ΩT ),

then the same inequality also holds for every non-negative φ ∈ Lp
c(0, T ;N

1,p
0 (Ω)) ∩

L2(ΩT ).

Proof. See Lemma 2, Corollary 1 and Lemma 3 in [MMPP]. �

4. Parabolic comparison principle

In this section we prove a comparison principle for minimizers, and as a con-
sequence obtain the uniqueness of parabolic minimizers. We emphasize that it
is essential to have K = 1 in the discussion below. Indeed, we give an example
which shows that the comparison principle and the uniqueness result do not hold
for parabolic K-quasiminimizers when K > 1.

Theorem 4.1. Let u ∈ Lp(0, T ;N1,p(Ω)) ∩ L2(ΩT ) be a parabolic superminimizer
and let v ∈ Lp(0, T ;N1,p(Ω)) ∩ L2(ΩT ) be a parabolic subminimizer, both with the
same constant α > 0 in (3.5). Suppose u ≥ v near the parabolic boundary of ΩT ,
in the sense that for almost every 0 < t < T we have the lateral boundary condition
(v(x, t)− u(x, t))+ ∈ N1,p

0 (Ω) and also the initial condition

1

h

∫ h

0

∫
Ω

(v − u)2+ dν → 0, as h → 0.(4.1)
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Then u ≥ v ν-almost everywhere in ΩT .

Proof. Assume that u and v are as in the formulation of the result. Let t′ ∈ (0, T ),
and for h > 0 define

χh =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t−h
h , h ≤ t ≤ 2h,

1, 2h ≤ t ≤ t′ − 2h,
t′+h−t

2h , t′ − h ≤ t ≤ t′ + h,

0, otherwise.

Choose the test function φ= (vε−uε)+χh. By the assumptions made on (u−v)+
near the lateral boundary of ΩT , we see that for ε and h small enough φ ∈
Lp
c(0, T ;N

1,p
0 (Ω))∩L2(ΩT ). Therefore, since u is a superminimizer, by Lemma 3.7

we have

−α

∫
{φ �=0}

∂uε

∂t
(vε − uε)+χh dν +

∫
{φ �=0}

(gpu)ε dν

≤
∫
{φ �=0}

(gpu(x,t−s)+(vε−uε)χh
)ε dν.

On the other hand, since v is a subminimizer, we may use −φ as a test function,
to obtain

α

∫
{φ �=0}

∂vε
∂t

(vε − uε)+χh dν +

∫
{φ �=0}

(gpv)ε dν

≤
∫
{φ �=0}

(gpv(x,t−s)+(uε−vε)χh
)ε dν.

By adding the above two inequalities together we have

α

∫
{φ �=0}

1

2

∂

∂t

(
(vε − uε)

2
+

)
χh dν +

∫
{φ �=0}

(gpu)ε dν +

∫
{φ �=0}

(gpv)ε dν

≤
∫
{φ �=0}

(gpu(x,t−s)+(vε−uε)χh
)ε dν +

∫
{φ �=0}

(gpv(x,t−s)−(vε+uε)χh
)ε dν.

(4.2)

Next we note that by adding and subtracting, and then using Minkowski’s inequal-
ity, and since χh does not depend on the spatial variable, we have(∫

{φ �=0}
gpu(x,t−s)+(vε−uε)χh

dν

)
ε

≤

⎛⎝⎛⎝(∫
{φ �=0}

gpv dν

)1/p

+

(∫
{φ �=0}

gpu(x,t−s)−u dν

)1/p

+

(∫
{φ �=0}

gpvε−v dν

)1/p

+

(∫
{φ �=0}

gpu−uε
dν

)1/p

+

(∫
{φ �=0}

gp(vε−uε)
(χh − 1)p dν

)1/p
⎞⎠p⎞⎠

ε

.
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Lemma 2.1 implies that

lim sup
ε→0

∫
{φ �=0}

(gpu(x,t−s)+vε−uε
)ε dν ≤

∫
{ϕ�=0}

gpv dν,

where we have denoted ϕ = (v − u)+χh. Similarly, we see that

lim sup
ε→0

∫
{φ �=0}

(gpv(x,t−s)−vε+uε
)ε dν ≤

∫
{ϕ�=0}

gpu dν.

On the left hand side of (4.2) we integrate by parts and use the definition of χh to
obtain

α

∫
{φ �=0}

1

2

(
∂

∂t
(vε − uε)

2
+

)
χh dν

=
α

4h

∫ t′+h

t′−h

∫
Ω

(vε − uε)
2
+ dμ dt− α

2h

∫ 2h

h

∫
Ω

(vε − uε)
2
+ dμ dt.

Hence from (4.2) we obtain, after first taking the limit ε → 0 and then h → 0, and
also taking into account initial condition (4.1),

α

4h

∫
Ω

(v(x, t′)− u(x, t′))2+ dμ+

∫
{ϕ�=0}

gpu dν +

∫
{ϕ�=0}

gpv dν

≤
∫
{ϕ�=0}

gpv dν +

∫
{ϕ�=0}

gpu dν

for almost every t′ ∈ (0, T ). Since the upper gradient terms cancel each other, the
above implies that for almost every t′ ∈ (0, T ) we have

(v(x, t′)− u(x, t′))+ = 0

at μ-almost every x ∈ Ω. This completes the proof. �

A parabolic minimizer is both a sub- and superminimizer, and so the comparison
principle above immediately implies the following uniqueness result.

Theorem 4.2. Let u, v ∈ Lp(0, T ;N1,p(Ω))∩L2(ΩT ) be parabolic minimizers, both
with the same constant α > 0 in (3.5). Suppose that for almost every t ∈ (0, T ) we

have u− v ∈ N1,p
0 (Ω), and suppose we have the initial condition

1

h

∫ h

0

∫
Ω′

|v − u|2 dν → 0, as h → 0.

Then u = v ν-almost everywhere in ΩT .

Example 4.3. Consider the functions u and v which are solutions of the one-
dimensional heat equations

∂u

∂t
− u

′′
= 0 and

∂v

∂t
− av

′′
= 0, a > 1,

in the domain (0, 1) × (0, 1) with zero boundary values on the lateral boundary
and the same non-trivial initial values. Denote dz = dx dt. By the separation
of variables we see that u �= v, but they have the same boundary values on the
parabolic boundary.
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As above, we can show that v satisfies∫
U

v
∂φ

∂t
dz + a

∫
U

|v′|2 dz ≤ a

∫
U

|v′||v′ + φ′| dz

≤
(
a− 1

2

)∫
U

|v′|2 dz + 1

2

a2

2a− 1

∫
U

|v′ + φ′|2 dz

for every U � (0, 1)× (0, 1) and φ ∈ C∞
0 (U). This implies that

2

∫
U

v
∂φ

∂t
dz +

∫
U

|v′|2 dz ≤ a2

2a− 1

∫
U

|v′ + φ′|2 dz

for every U � (0, 1)× (0, 1) and φ ∈ C∞
0 (U) and hence v is a parabolic quasimini-

mizer with

K =
a2

2a− 1
> 1.

On the other hand, the function u satisfies

2

∫
U

u
∂φ

∂t
dz +

∫
U

|u′|2 dz ≤
∫
U

|u′ + φ′|2 dz ≤ K

∫
U

|u′ + φ′|2 dz

for every U � (0, 1)× (0, 1) and φ ∈ C∞
0 (U) and hence u is a parabolic quasimin-

imizer with the same constant as v and, consequently, both uniqueness and the
comparison principle do not hold for quasiminimizers in general.
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