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1 Euclidian case

Let Ω ⊂ Rn an open set, 0 < T <∞ and 1 < p <∞. In the product space Ω×]0, T [, which we
denote ΩT , we are interested in solving the evolution p-Laplacian equation

− du

dt
+ div(|∇u|p−2∇u) = 0, (1)

which has solutions u(x, t). Notice here that the gradient ∇u is only taken in the space variable
x ∈ Ω, not in t.

Lemma 1

It turns out that u being a weak solution to equation (1) is actually equivalent with u satisfying
the inequality

p

∫
{φ 6=0}

u
dφ

dt
dxdt+

∫
{φ 6=0}

|∇u|pdxdt ≤
∫
{φ 6=0}

|∇u+∇φ|pdxdt (2)

for all φ ∈ C∞0 (ΩT ). This is called the variational approach to the p-Laplacian equation. If u
satisfies (2) then u is called a parabolic minimizer.

Proof

First assume that u is a weak solution to (1). This means that∫
ΩT

(−udφ
dt

+ |∇u|p−2∇u · ∇φ)dxdt = 0

or in other words ∫
{φ 6=0}

|∇u|p−2∇u · ∇φdxdt =

∫
{φ 6=0}

u
dφ

dt
dxdt
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for all functions φ ∈ C∞0 (ΩT ). From this it follows that∫
{φ 6=0}

|∇u|pdxdt =

∫
{φ 6=0}

|∇u|p−2(∇u · ∇u)dxdt

=

∫
{φ 6=0}

|∇u|p−2∇u · (∇u+∇φ)dxdt−
∫
{φ 6=0}

|∇u|p−2∇u · ∇φdxdt

=

∫
{φ 6=0}

|∇u|p−2∇u · (∇u+∇φ)dxdt−
∫
{φ 6=0}

u
dφ

dt
dxdt.

Moving the last integral to the left-hand side and then using Cauchy-Schwarz inequality as well
as Young’s inequality we get∫

{φ 6=0}
|∇u|pdxdt+

∫
{φ 6=0}

u
dφ

dt
dxdt =

∫
{φ 6=0}

|∇u|p−2∇u · (∇u+∇φ)dxdt

≤
∫
{φ 6=0}

||∇u|p−2∇u · (∇u+∇φ)|dxdt

≤
∫
{φ 6=0}

|∇u|p−1|∇u+∇φ|dxdt

≤
∫
{φ 6=0}

(1− 1

p
)|∇u|p +

1

p
|∇u+∇φ|pdxdt.

Reminder of Young’s inequality: for a, b ≥ 0 and 1 < p <∞ we have

ab ≤ 1

p
ap + (1− 1

p
)b

p
p−1 . (3)

Moving the first term to the left-hand side and multiplying with p gives us the result

p

∫
{φ 6=0}

u
dφ

dt
dxdt+

∫
{φ 6=0}

|∇u|pdxdt ≤
∫
{φ 6=0}

|∇u+∇φ|pdxdt.

Now let’s assume that u satisfies (2) for all functions φ ∈ C∞0 (ΩT ). Take an arbitrary φ ∈
C∞0 (ΩT ) and let ε > 0. Clearly then εφ ∈ C∞0 (ΩT ) and the set where φ = 0 is the same as the
set where εφ = 0. Now using εφ as a test function we get

p

∫
{φε 6=0}

u
dεφ

dt
dxdt+

∫
{φε6=0}

|∇u|pdxdt ≤
∫
{φε6=0}

|∇u+∇(εφ)|pdxdt.

Moving the second integral to the right-hand side and dividing by ε we get

pε

∫
{φ 6=0}

u
dφ

dt
dxdt ≤

∫
{φ 6=0}

|∇u+∇(εφ)|pdxdt−
∫
{φ 6=0}

|∇u|pdxdt

p

∫
{φ 6=0}

u
dφ

dt
dxdt ≤

∫
{φ 6=0}

|∇u+ ε∇φ|p − |∇u|p

ε
dxdt.

Notice that what we have on the right-hand side is a difference quotient and the definition of
a ∇φ-directional derivative of the function |(x, t)|p. Thus by letting ε→ 0 we get

|∇u+ ε∇φ|p − |∇u|p

ε
→ p|∇u|p−1 ∇u

|∇u|
· ∇φ.

Using this the inequality becomes

p

∫
{φ 6=0}

u
dφ

dt
dxdt ≤

∫
{φ 6=0}

p|∇u|p−1 ∇u
|∇u|

· ∇φdxdt

p

∫
{φ 6=0}

u
dφ

dt
dxdt−

∫
{φ 6=0}

p|∇u|p−2(∇u · ∇φ)dxdt ≤ 0.
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By choosing −εφ as a test function and using the same logic we get instead that

p

∫
{φ 6=0}

u
dφ

dt
dxdt−

∫
{φ 6=0}

p|∇u|p−2(∇u · ∇φ)dxdt ≥ 0.

Finally by combining these results and dividing by p we have∫
{φ 6=0}

(u
dφ

dt
− |∇u|p−2∇u · ∇φ)dxdt = 0

for all functions φ ∈ C∞0 (ΩT ). This is exactly the definition of u being a weak solution to (1).
So this completes the proof.

2 More general metric space

From now on let (X, d, µ) be a complete metric space with a doubling Borel measure µ sup-
porting a weak (1, p)-Poincaré inequality. Similarly to the euclidian case we have an open set
Ω ⊂ X, 1 < p < ∞ and 0 < T < ∞. Also let α > 0. In the spirit of inequality (2) we define
that u ∈ Lploc(0, T ;N1,p

loc (Ω)) ∩ L2
loc(ΩT ) is a parabolic minimizer in ΩT if

α

∫
{φ 6=0}

u
dφ

dt
dν +

∫
{φ 6=0}

gpudν ≤
∫
{φ 6=0}

gpu+φdν (4)

for all compactly supported Lipschitz continuous functions φ ∈ Lip0(ΩT ). Here gu is, as usual,
the minimal p-weak upper gradient of u. As in the euclidean case, here the upper gradient is
only taken in the space X, not in time t. ν is a product measure, such that dν = dµdt.
We say that u is a parabolic superminimizer if it satisfies (4) for all nonnegative compactly
supported Lipschitz continuous functions φ ≥ 0. We say that u is a parabolic subminimizer
if −u is a parabolic superminimizer. The notation that u ∈ Lp(0, T ;N1,p(Ω)) means that for
almost every 0 < t < T , u(x, t) ∈ N1,p(Ω) where u is considered as a function in Ω because t is
fixed. The Lp at the beginning means that the integral∫ T

0

||u||pN1,p(Ω)dt

is finite.

From now on the subscript ε refers to the standard mollification in the time variable, ie.

uε(x, t) =

∫ ε

−ε
ηε(s)u(x, t− s)ds (5)

where ηε is the standard mollifier. First some lemmas.

Lemma 2

Let gu ∈ Lploc(ΩT ). Then

a) gu(x,t−s)−u(x,t) → 0 in Lploc(ΩT ) as s → 0 (6)
b) guε−u → 0 in Lploc(ΩT ) as ε→ 0. (7)

The proof is beyond the scope of this presentation so we need to accept this as a given. The
same applies for the next lemma.
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Lemma 3

If u ∈ Lploc(0, T ;N1,p(Ω)) ∩ L2
loc(ΩT ) is a parabolic superminimizer, then

− α
∫
{φ 6=0}

φ
duε
dt
dν +

∫
{φ 6=0}

(gpu)εdν ≤
∫
{φ 6=0}

(gpu(x,t−s)+φ)εdν (8)

for all nonnegative functions φ ∈ Lpc(0, T ;N1,p
0 (Ω))∩L2

loc(ΩT ). Here the c means that there are
some 0 < t1 < t2 < T such that φ = 0 when t < t1 or t > t2.

The theorem

Let u, v ∈ Lp(0, T ;N1,p(Ω)) ∩ L2(ΩT ) be a parabolic superminimizer and a parabolic submini-
mizer respectively. Suppose u ≥ v in the boundary of ΩT in the sense that for almost every
0 < t < T we have (v − u)+ ∈ N1,p

0 (Ω) and we have the initial condition

1

h

∫ h

0

∫
Ω

(v − u)2
+dµdt→ 0 as h→ 0.

Then u ≥ v ν-almost everywhere in ΩT .
This proof will be on the blackboard.

The theorem provides also a corollary about uniqueness. This is because in the definition (4) if
u is a parabolic minimizer, then it is also a superminimizer and a subminimizer.

Corollary

Let u, v ∈ Lp(0, T ;N1,p(Ω))∩L2(ΩT ) be parabolic minimizers. Suppose u = v in the boundary
of ΩT in the sense that for almost every 0 < t < T we have v − u ∈ N1,p

0 (Ω) and we have the
initial condition

1

h

∫ h

0

∫
Ω

|v − u|2dµdt→ 0 as h→ 0.

Then u = v ν-almost everywhere in ΩT .
The proof for this will be on the blackboard.
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