Comparison principle for parabolic super- and subminimizers on space-time cylinders and a uniqueness result for minimizers of a boundary value problem

Timo Takala

March 2019

1 Euclidian case

Let $\Omega \subset \mathbb{R}^{n}$ an open set, $0<T<\infty$ and $1<p<\infty$. In the product space $\left.\Omega \times\right] 0, T[$, which we denote Ω_{T}, we are interested in solving the evolution p-Laplacian equation

$$
\begin{equation*}
-\frac{d u}{d t}+\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 \tag{1}
\end{equation*}
$$

which has solutions $u(x, t)$. Notice here that the gradient ∇u is only taken in the space variable $x \in \Omega$, not in t.

Lemma 1

It turns out that u being a weak solution to equation (1) is actually equivalent with u satisfying the inequality

$$
\begin{equation*}
p \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t+\int_{\{\phi \neq 0\}}|\nabla u|^{p} d x d t \leq \int_{\{\phi \neq 0\}}|\nabla u+\nabla \phi|^{p} d x d t \tag{2}
\end{equation*}
$$

for all $\phi \in C_{0}^{\infty}\left(\Omega_{T}\right)$. This is called the variational approach to the p-Laplacian equation. If u satisfies (2) then u is called a parabolic minimizer.

Proof

First assume that u is a weak solution to (11). This means that

$$
\int_{\Omega_{T}}\left(-u \frac{d \phi}{d t}+|\nabla u|^{p-2} \nabla u \cdot \nabla \phi\right) d x d t=0
$$

or in other words

$$
\int_{\{\phi \neq 0\}}|\nabla u|^{p-2} \nabla u \cdot \nabla \phi d x d t=\int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t
$$

for all functions $\phi \in C_{0}^{\infty}\left(\Omega_{T}\right)$. From this it follows that

$$
\begin{aligned}
\int_{\{\phi \neq 0\}}|\nabla u|^{p} d x d t & =\int_{\{\phi \neq 0\}}|\nabla u|^{p-2}(\nabla u \cdot \nabla u) d x d t \\
& =\int_{\{\phi \neq 0\}}|\nabla u|^{p-2} \nabla u \cdot(\nabla u+\nabla \phi) d x d t-\int_{\{\phi \neq 0\}}|\nabla u|^{p-2} \nabla u \cdot \nabla \phi d x d t \\
& =\int_{\{\phi \neq 0\}}|\nabla u|^{p-2} \nabla u \cdot(\nabla u+\nabla \phi) d x d t-\int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t .
\end{aligned}
$$

Moving the last integral to the left-hand side and then using Cauchy-Schwarz inequality as well as Young's inequality we get

$$
\begin{aligned}
\int_{\{\phi \neq 0\}}|\nabla u|^{p} d x d t+\int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t & =\int_{\{\phi \neq 0\}}|\nabla u|^{p-2} \nabla u \cdot(\nabla u+\nabla \phi) d x d t \\
& \leq \int_{\{\phi \neq 0\}}|\nabla u|^{p-2} \nabla u \cdot(\nabla u+\nabla \phi) \mid d x d t \\
& \leq \int_{\{\phi \neq 0\}}|\nabla u|^{p-1}|\nabla u+\nabla \phi| d x d t \\
& \leq \int_{\{\phi \neq 0\}}\left(1-\frac{1}{p}\right)|\nabla u|^{p}+\frac{1}{p}|\nabla u+\nabla \phi|^{p} d x d t .
\end{aligned}
$$

Reminder of Young's inequality: for $a, b \geq 0$ and $1<p<\infty$ we have

$$
\begin{equation*}
a b \leq \frac{1}{p} a^{p}+\left(1-\frac{1}{p}\right) b^{\frac{p}{p-1}} . \tag{3}
\end{equation*}
$$

Moving the first term to the left-hand side and multiplying with p gives us the result

$$
p \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t+\int_{\{\phi \neq 0\}}|\nabla u|^{p} d x d t \leq \int_{\{\phi \neq 0\}}|\nabla u+\nabla \phi|^{p} d x d t .
$$

Now let's assume that u satisfies (2) for all functions $\phi \in C_{0}^{\infty}\left(\Omega_{T}\right)$. Take an arbitrary $\phi \in$ $C_{0}^{\infty}\left(\Omega_{T}\right)$ and let $\epsilon>0$. Clearly then $\epsilon \phi \in C_{0}^{\infty}\left(\Omega_{T}\right)$ and the set where $\phi=0$ is the same as the set where $\epsilon \phi=0$. Now using $\epsilon \phi$ as a test function we get

$$
p \int_{\{\phi \epsilon \neq 0\}} u \frac{d \epsilon \phi}{d t} d x d t+\int_{\{\phi \epsilon \neq 0\}}|\nabla u|^{p} d x d t \leq \int_{\{\phi \epsilon \neq 0\}}|\nabla u+\nabla(\epsilon \phi)|^{p} d x d t .
$$

Moving the second integral to the right-hand side and dividing by ϵ we get

$$
\begin{aligned}
& p \epsilon \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t \leq \int_{\{\phi \neq 0\}}|\nabla u+\nabla(\epsilon \phi)|^{p} d x d t-\int_{\{\phi \neq 0\}}|\nabla u|^{p} d x d t \\
& p \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t \leq \int_{\{\phi \neq 0\}} \frac{|\nabla u+\epsilon \nabla \phi|^{p}-|\nabla u|^{p}}{\epsilon} d x d t .
\end{aligned}
$$

Notice that what we have on the right-hand side is a difference quotient and the definition of a $\nabla \phi$-directional derivative of the function $|(x, t)|^{p}$. Thus by letting $\epsilon \rightarrow 0$ we get

$$
\frac{|\nabla u+\epsilon \nabla \phi|^{p}-|\nabla u|^{p}}{\epsilon} \rightarrow p|\nabla u|^{p-1} \frac{\nabla u}{|\nabla u|} \cdot \nabla \phi .
$$

Using this the inequality becomes

$$
\begin{aligned}
& p \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t \leq \int_{\{\phi \neq 0\}} p|\nabla u|^{p-1} \frac{\nabla u}{|\nabla u|} \cdot \nabla \phi d x d t \\
& p \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t-\int_{\{\phi \neq 0\}} p|\nabla u|^{p-2}(\nabla u \cdot \nabla \phi) d x d t \leq 0 .
\end{aligned}
$$

By choosing $-\epsilon \phi$ as a test function and using the same logic we get instead that

$$
p \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d x d t-\int_{\{\phi \neq 0\}} p|\nabla u|^{p-2}(\nabla u \cdot \nabla \phi) d x d t \geq 0 .
$$

Finally by combining these results and dividing by p we have

$$
\int_{\{\phi \neq 0\}}\left(u \frac{d \phi}{d t}-|\nabla u|^{p-2} \nabla u \cdot \nabla \phi\right) d x d t=0
$$

for all functions $\phi \in C_{0}^{\infty}\left(\Omega_{T}\right)$. This is exactly the definition of u being a weak solution to (1). So this completes the proof.

2 More general metric space

From now on let (X, d, μ) be a complete metric space with a doubling Borel measure μ supporting a weak $(1, p)$-Poincaré inequality. Similarly to the euclidian case we have an open set $\Omega \subset X, 1<p<\infty$ and $0<T<\infty$. Also let $\alpha>0$. In the spirit of inequality (2) we define that $u \in L_{l o c}^{p}\left(0, T ; N_{l o c}^{1, p}(\Omega)\right) \cap L_{l o c}^{2}\left(\Omega_{T}\right)$ is a parabolic minimizer in Ω_{T} if

$$
\begin{equation*}
\alpha \int_{\{\phi \neq 0\}} u \frac{d \phi}{d t} d \nu+\int_{\{\phi \neq 0\}} g_{u}^{p} d \nu \leq \int_{\{\phi \neq 0\}} g_{u+\phi}^{p} d \nu \tag{4}
\end{equation*}
$$

for all compactly supported Lipschitz continuous functions $\phi \in \operatorname{Lip}_{0}\left(\Omega_{T}\right)$. Here g_{u} is, as usual, the minimal p-weak upper gradient of u. As in the euclidean case, here the upper gradient is only taken in the space X, not in time $t . \nu$ is a product measure, such that $d \nu=d \mu d t$.
We say that u is a parabolic superminimizer if it satisfies (4) for all nonnegative compactly supported Lipschitz continuous functions $\phi \geq 0$. We say that u is a parabolic subminimizer if $-u$ is a parabolic superminimizer. The notation that $u \in L^{p}\left(0, T ; N^{1, p}(\Omega)\right)$ means that for almost every $0<t<T, u(x, t) \in N^{1, p}(\Omega)$ where u is considered as a function in Ω because t is fixed. The L^{p} at the beginning means that the integral

$$
\int_{0}^{T}\|u\|_{N^{1, p}(\Omega)}^{p} d t
$$

is finite.
From now on the subscript ϵ refers to the standard mollification in the time variable, ie.

$$
\begin{equation*}
u_{\epsilon}(x, t)=\int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) u(x, t-s) d s \tag{5}
\end{equation*}
$$

where η_{ϵ} is the standard mollifier. First some lemmas.

Lemma 2

Let $g_{u} \in L_{l o c}^{p}\left(\Omega_{T}\right)$. Then
a) $g_{u(x, t-s)-u(x, t)} \rightarrow 0$ in $L_{l o c}^{p}\left(\Omega_{T}\right)$ as $\mathrm{s} \rightarrow 0$
b) $g_{u_{\epsilon}-u} \rightarrow 0$ in $L_{l o c}^{p}\left(\Omega_{T}\right)$ as $\epsilon \rightarrow 0$.

The proof is beyond the scope of this presentation so we need to accept this as a given. The same applies for the next lemma.

Lemma 3

If $u \in L_{l o c}^{p}\left(0, T ; N^{1, p}(\Omega)\right) \cap L_{l o c}^{2}\left(\Omega_{T}\right)$ is a parabolic superminimizer, then

$$
\begin{equation*}
-\alpha \int_{\{\phi \neq 0\}} \phi \frac{d u_{\epsilon}}{d t} d \nu+\int_{\{\phi \neq 0\}}\left(g_{u}^{p}\right)_{\epsilon} d \nu \leq \int_{\{\phi \neq 0\}}\left(g_{u(x, t-s)+\phi}^{p}\right)_{\epsilon} d \nu \tag{8}
\end{equation*}
$$

for all nonnegative functions $\phi \in L_{c}^{p}\left(0, T ; N_{0}^{1, p}(\Omega)\right) \cap L_{l o c}^{2}\left(\Omega_{T}\right)$. Here the c means that there are some $0<t_{1}<t_{2}<T$ such that $\phi=0$ when $t<t_{1}$ or $t>t_{2}$.

The theorem

Let $u, v \in L^{p}\left(0, T ; N^{1, p}(\Omega)\right) \cap L^{2}\left(\Omega_{T}\right)$ be a parabolic superminimizer and a parabolic subminimizer respectively. Suppose $u \geq v$ in the boundary of Ω_{T} in the sense that for almost every $0<t<T$ we have $(v-u)_{+} \in N_{0}^{1, p}(\Omega)$ and we have the initial condition

$$
\frac{1}{h} \int_{0}^{h} \int_{\Omega}(v-u)_{+}^{2} d \mu d t \rightarrow 0 \text { as } h \rightarrow 0
$$

Then $u \geq v \nu$-almost everywhere in Ω_{T}.
This proof will be on the blackboard.
The theorem provides also a corollary about uniqueness. This is because in the definition (4) if u is a parabolic minimizer, then it is also a superminimizer and a subminimizer.

Corollary

Let $u, v \in L^{p}\left(0, T ; N^{1, p}(\Omega)\right) \cap L^{2}\left(\Omega_{T}\right)$ be parabolic minimizers. Suppose $u=v$ in the boundary of Ω_{T} in the sense that for almost every $0<t<T$ we have $v-u \in N_{0}^{1, p}(\Omega)$ and we have the initial condition

$$
\frac{1}{h} \int_{0}^{h} \int_{\Omega}|v-u|^{2} d \mu d t \rightarrow 0 \text { as } h \rightarrow 0 .
$$

Then $u=v \nu$-almost everywhere in Ω_{T}.
The proof for this will be on the blackboard.

