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1 Euclidian case

Let 2 C R™ an open set, 0 < 7' < oo and 1 < p < oo. In the product space 2x]0, T'[, which we

denote (7, we are interested in solving the evolution p-Laplacian equation
du
- div(|Vul|P~>Vu) = 0, (1)

which has solutions u(z, t). Notice here that the gradient Vu is only taken in the space variable
x € §2, not in t.

Lemma 1

It turns out that u being a weak solution to equation (1)) is actually equivalent with u satisfying
the inequality

d
p/ u—gbdacdt +/ |Vul|Pdzdt < / \Vu + Vo|Pdxdt (2)
{0} At {640} (60}

for all ¢ € C§°(Q2r). This is called the variational approach to the p-Laplacian equation. If u
satisfies then w is called a parabolic minimizer.

Proof

First assume that « is a weak solution to . This means that

/ (—u% + |VulP?Vu - Vo)dzdt = 0
Qr

or in other words

d
/ |Vul|P"*Vu - Vodrdt = / u—¢dxdt
{60} (o0} At

1



for all functions ¢ € C5°(Qr). From this it follows that
/ \VulPdzdt = / |VulP~?(Vu - Vu)dzdt
{070} {o70}

= / |VulP~2Vu - (Vu + V)drdt — / |VulP~2Vu - Vodadt
{¢#0} {¢#0}

= / |VulP2Vu - (Vu + V)dzdt — / u@dmdt.
{60} foroy At

Moving the last integral to the left-hand side and then using Cauchy-Schwarz inequality as well
as Young’s inequality we get

/ |Vul|Pdzdt + / ud—¢dxdt = / |VulP2Vu - (Vu + V¢)dxdt
{670} for0y @ {670}
< / [VulP™2Vu - (Vu + Vo)|dzdt
{¢#0}
<[ [vupVas Velds
{p#0}

1 1
< / (1 =) |VulP + =|Vu + Vo[Pdxdt.
{60} p p

Reminder of Young’s inequality: for a,b > 0 and 1 < p < co we have

1 1. »
ab < —aP + (1 — =)br-1. 3
p ( p) (3)

Moving the first term to the left-hand side and multiplying with p gives us the result

d
p/ u—(bd:vdt +/ |VulPdzdt < / |\Vu + Vo|Pdzdt.
foz0} dt {640} {640}

Now let’s assume that u satisfies for all functions ¢ € C§°(Q2r). Take an arbitrary ¢ €
C°(Qr) and let € > 0. Clearly then ep € C3°(€r) and the set where ¢ = 0 is the same as the
set where € = 0. Now using e¢ as a test function we get

p/ u@dxdt +/ |VulPdzdt < / |Vu + V(ep)|[Pdadt.
{pe£0} {pe#0} {ges#0}

Moving the second integral to the right-hand side and dividing by ¢ we get

d
pe/ u—¢dxdt < / |Vu + V(ep)|Pdadt — / |Vu|Pdxdt
{or0y At {60} {640}

p __ p
p/ u@dxdt < / [Vu + V4| [Vl dzdt.
{¢#0} {¢p#0}

dt €

Notice that what we have on the right-hand side is a difference quotient and the definition of
a V¢-directional derivative of the function |(z,?)[’. Thus by letting ¢ — 0 we get

p_ P
[Vu+ eVl — |Vu| L p[ V! Vu V.
€ |Vu|

Using this the inequality becomes

d
P / w3 g < / VU Y G pdadt
{orop At {60} |Vl

d
p/ u—qbd:cdt - / p|VulP~*(Vu - Vo)drdt < 0.
foz0} Ct {640}



By choosing —e¢ as a test function and using the same logic we get instead that

d
p/ u—qbdxdt — / p|VulP~?(Vu - Vo)dxdt > 0.
for0} Ct {640}

Finally by combining these results and dividing by p we have

d
/ (u—¢ — |VulP™*Vu - Vo)drdt =0
fozoy  dt
for all functions ¢ € C3°(Qr). This is exactly the definition of u being a weak solution to ([1).
So this completes the proof.

2 More general metric space

From now on let (X,d, ) be a complete metric space with a doubling Borel measure p sup-
porting a weak (1, p)-Poincaré inequality. Similarly to the euclidian case we have an open set
QCc X, 1<p<ooand 0 <T < 0. Also let a > 0. In the spirit of inequality we define
that w € LY (0,T; N2P(Q)) N L} (Qp) is a parabolic minimizer in Qg if

loc loc loc
do v
a u—-dv + ghdv < GurodV (4)
{oroy At {60} {60}

for all compactly supported Lipschitz continuous functions ¢ € Lip,(€2r). Here g, is, as usual,
the minimal p-weak upper gradient of u. As in the euclidean case, here the upper gradient is
only taken in the space X, not in time ¢. v is a product measure, such that dv = dudt.

We say that u is a parabolic superminimizer if it satisfies for all nonnegative compactly
supported Lipschitz continuous functions ¢ > 0. We say that u is a parabolic subminimizer
if —u is a parabolic superminimizer. The notation that u € LP(0,T; N'(2)) means that for
almost every 0 <t < T, u(z,t) € N'?(Q) where u is considered as a function in € because  is
fixed. The LP at the beginning means that the integral

T
R

From now on the subscript e refers to the standard mollification in the time variable, ie.

ue(x,t) = /6 Ne(s)u(x,t — s)ds (5)

—€

is finite.

where 7). is the standard mollifier. First some lemmas.

Lemma 2

Let g, € LY (Qr). Then

loc

a) Gu(z t—s)—u(z,t) —7 0 in LilDOC<QT) ass — 0 (6)
b) gu.—uw — 01in L7 (Q7) as € — 0. (7)

The proof is beyond the scope of this presentation so we need to accept this as a given. The
same applies for the next lemma.



Lemma 3

Ifue Lr (0,T;N"(Q))N L (Qr) is a parabolic superminimizer, then

loc
duc D D
— ¢ dt dl/+ (gu)edy S (gu(x7t_5)+¢)€dy (8)
{¢#0} {¢#£0} {0}

for all nonnegative functions ¢ € L2(0,T; N, *()) N L2 (Qr). Here the ¢ means that there are

some 0 < t; <ty < T such that ¢ =0 when t <, or t > t,.

The theorem

Let u,v € LP(0,T; N'?(Q)) N L?(27) be a parabolic superminimizer and a parabolic submini-
mizer respectively. Suppose u > v in the boundary of ()7 in the sense that for almost every
0 <t <T wehave (v —u), € N;”(2) and we have the initial condition

1 b
E/ /(v—u)idydt—)OaSh—)O.
0o Ja

Then u > v v-almost everywhere in Q.
This proof will be on the blackboard.

The theorem provides also a corollary about uniqueness. This is because in the definition (4) if
u is a parabolic minimizer, then it is also a superminimizer and a subminimizer.

Corollary

Let u,v € LP(0,T; N'(Q2)) N L*(Qr) be parabolic minimizers. Suppose v = v in the boundary
of Q in the sense that for almost every 0 < ¢t < T' we have v — u € Ny”(Q2) and we have the

initial condition .
1
—/ /|v—u!2dudt—>0ash—>0.
h Jo Ja

Then v = v v-almost everywhere in €.
The proof for this will be on the blackboard.
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