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1 Introduction
Question of existence of minimizers of non-lsc functionals.

The fundamental problem of the calculus of variations is

inf
{

I(u) = ∫Ω
f (x, u(x), Du(x))dx ∶ u ∈ u0 +W

1,p
0

(

Ω;ℝN)
}

, (P)

where
Ω ⊂ ℝn is a bounded open set, with Lipschitz boundary )Ω;
u ∶ Ω→ ℝN ,

u = u(x) = u
(

x1,… , xn
)

=
(

u1(x),… , uN (x)
)

Du ∈ ℝN×n denotes its Jacobian matrix
f ∶ Ω ×ℝN ×ℝN×n → ℝ is continuous, f = f (x, u, �)
1 ⩽ p ⩽ ∞ andW 1,p

(

Ω;ℝN
)

denotes the usual space of Sobolev functions, where

ui, )u
i

)xj
∈ Lp(Ω), i = 1,… , N, j = 1,… , n;

u0 ∈ W 1,p
(

Ω;ℝN
)

is a given function;
u ∈ u0 +W

1,p
0

(

Ω;ℝN
)

, meaning that u ∈ W 1,p
(

Ω;ℝN
)

and u = u0 on )Ω in the Sobolev
sense.

In order to simplify the presentation, consider the case where there is no dependence on lower-
order terms, i.e., f (x, u, �) = f (�).

When dealing with nonconvex problems, the first step is the relaxation theorem, established by
L.C. Young, Mac Shane, Ekeland and others. This consists in replacing the problem (P) by the
so-called relaxed problem

inf
{

I(u) ∶= sup{(u) ∶  ⩽ I and  is weakly lsc} ∶ u ∈ u0 +W
1,p
0 (Ω)

}

(QP)

Therefore the direct methods, which do not apply to (P), apply to (QP). It can be shown that

inf(P) = inf(QP)

and that minimizers of (P) are necessarily minimizers of (QP), the converse being false.
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The second step in proving the existence of minimizers for (P) is to see if among all solutions of
(QP) , if any, at least one of them is also a solution of (P). This amounts in finding u ∈ u0+W

1,p
0 (Ω)

so that

∫Ω
Cf (Du(x))dx = inf(P) = inf(QP)

and at the same time in solving the first-order differential equation

Cf (Du(x)) = f (Du(x)) a.e. x ∈ Ω.

In this work only the first step is dicussed, the relaxation theorem in the vector valued case.
For relaxation, there are essentially two options: one is replacing the integrand, the second (can

be called relaxation-extension) is replacing the original problem with the generalized minimization
problem with the help of Young measures.

First, if we only care about the infimal value of I , we can compute the relaxation I of I , which
by definition is the largest lower semicontinuous functional below I . However, the minimizer of
I may not say much about the minimizing sequence of our original I since all oscillations (and
concentrations in some cases) have been "averaged out".

Second, we can focus on theminimizing sequences themselves and try to find a generalized limit
object to a minimizing sequence that encapsulates "interesting" information. The natural candidates
for such limit objects are (gradient) Youngmeasures. Youngmeasure theory allows one to replace a
minimization problem over a Sobolev space by a generalized minimization problem over (gradient)
Young measures. This generalized minimization problem always has a solution. This approach is
described well in [2].

2 Relaxation of functionals

2.1 The different notions of convexity
Definition 1. (i) A function f ∶ ℝN×n → ℝ = ℝ ∪ {+∞} is said to be rank one convex if

f (�� + (1 − �)�) ⩽ �f (�) + (1 − �)f (�)

for every � ∈ [0, 1], �, � ∈ ℝN×n with rank (� − �} ⩽ 1.
(ii) A Borel measurable and locally integrable function f ∶ ℝN×n → ℝ is said to be quasiconvex

if
f (�) ⩽ ⨍D

f (� +D'(x))dx

for every bounded domain D ⊂ ℝn, for every � ∈ ℝN×n and for every ' ∈ W 1,∞
0

(

D;ℝN
)

(iii) A Borel measurable and locally integrable function f ∶ ℝN×n → ℝ is said to be quasiaffine
if f and −f are quasiconvex.

(iv) A function f ∶ ℝN×n → ℝ = ℝ ∪ {+∞} is said to be polyconvex if there exists g ∶
ℝr(n,N) → ℝ convex, such that

f (�) = g(T (�)),
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where T ∶ ℝN×n → ℝr(n,N) is such that

T (�) =
(

�, adj2 �,… , adjn∧N �
)

.

adjs� stands for the matrix of all s × s minors of the matrix � ∈ ℝN×n, 2 ⩽ s ⩽ n ∧ N =
min{n,N}

These notions are related as fconvex ⇒ fpolyconvex ⇒ fquasiconvex ⇒ f rank one convex.
For the scalar case, all these notions reduce to the notion of convexity.

When u ∶ ℝ → ℝN or u ∶ ℝn → ℝ, Qf is simply the convexication of f .
Note that in the definition of quasiconvexity if the inequality holds for a given domainD ⊂ ℝn,

then it holds for every such domain D.
If the function f ∶ ℝN×n → ℝ, i.e., f takes only finite values, is convex or polyconvex or

quasiconvex or rank one convex, then it is continuous and even locally Lipschitz.
When the function f depends on lower-order terms, i.e., f ∶ Ω × ℝN × ℝN×n → ℝ with

f = f (x, u, �), all the above notions are understood only with respect to the variable �, all the other
variables being kept fixed.

The important concept from the point of view of minimization in the calculus of variations is
the notion of quasiconvexity. This condition is equivalent to the fact that the functional I is weakly
lower semicontinuous inW 1,p

(

Ω;ℝN
)

meaning that

I(u) ⩽ lim inf
v→∞

I
(

uv
)

for every sequence uv → u inW 1,p (Morrey’s theorem, 1952)

2.2 Envelopes
Define

Cf = sup{g ⩽ f ∶ g convex},
P f = sup{g ⩽ f ∶ g polyconvex},
Qf = sup{g ⩽ f ∶ g quasiconvex},
Rf = sup{g ⩽ f ∶ g rank one convex},

to be the convex, polyconvex, quasiconvex, rank one convex envelope of f . They are related as

Cf ⩽ Pf ⩽ Qf ⩽ Rf ⩽ f

Several representation formulas exist for computing these envelopes, we need quasiconvex en-
velope case here.
Theorem 1. (Dacorogna formula). If f ∶ ℝN×n → ℝ is locally bounded and Borel measurable
then, for every � ∈ ℝN×n,

Qf (�) ∶= inf
{

⨍Ω
f (� +D'(x))dx ∶ ' ∈ W 1,∞

0

(

Ω;ℝN)
}

where Ω ⊂ ℝn is a bounded domain. The infimum is independent of the choice of the domain.
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The Alibert-Dacorogna-Marcellini example. HereN = n = 2 and

f (�) = |�|2
(

|�|2 − 2
 det �
)

,

where |�| stands for the Euclidean norm of the matrix and 
 ⩾ 0. Then

f is convex ⟺ 
 ⩽ 
c =
2
3

√

2
f is polyconvex ⟺ 
 ⩽ 
p = 1
f is quasiconvex ⟺ 
 ⩽ 
q, where 
q > 1
f is rank one convex ⟺ 
 ⩽ 
r =

2
√

3

2.3 Relaxation theorem
Theorem 2. LetΩ ⊂ ℝn be a bounded open set. Let f ∶ ℝN×n → ℝ be Borel measurable satisfying,
for 1 ⩽ p <∞,

0 ⩽ f (�) ⩽ �1 (1 + |�|p) for every � ∈ ℝN×n (1)

where �1 > 0 is a constant and for p = ∞ it is assumed that f is locally bounded. Let

Qf = sup{g ⩽ f ∶ g quasiconvex}

be the quasiconvex envelope of f . Then

inf(P) = inf(QP).

More precisely, for every u ∈ W 1,p
(

Ω;ℝN
)

, there exists a sequence {uv}∞v=1 ⊂ u0+W
1,p
0

(

Ω;ℝN
)

such that

∫Ω
f (Du�(x)) dx → ∫Ω

Qf (Du(x))dx as v→∞.

Remark. The theorem remains also valid if the function f depends on lower-order terms, i.e., f =
f (x, u, �). The quasiconvex envelope is then to be understood as the quasiconvex envelope only
with respect to the variable �, the other variables (x, u) being kept fixed.

Proof. Step 1. We start with an approximation of the given function u. Let " > 0 be arbitrary,
we can then find disjoint open sets Ω1,… ,Ωk ⊂ Ω, �1,… , �k ∈ ℝN×n, 
 independent of " and
v ∈ u +W 1,p

0

(

Ω;ℝN
)

such that

⎧

⎪

⎨

⎪

⎩

meas
[

Ω −
⋃k

i=1Ωi

]

⩽ "
‖u‖W 1,p , ‖v‖W 1,p⩽
, ‖u−v‖W 1,1⩽"
Dv(x) = �i if x ∈ Ωi

(2)

By taking " smaller if necessary we can also assume, using the continuity ofQf and the growth
condition on f, that

∫Ω
|Qf (Du(x)) −Qf (Dv(x))|dx ⩽ " (3)

0 ⩽ ∫Ω−⋃k
i=1 Ωi

[f (Dv(x)) −Qf (Dv(x))]dx ⩽ ". (4)
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Indeed let us discuss the case 1 ⩽ p < ∞, the case p = ∞ being easier. Any quasiconvex
function is locally Lipschitz continuous (Theorem 5.3 in Dacorogna book [1]). Since it also satisfies
1, then there exists � > 0 (see Proposition 2.32 in Dacorogna book [1]) such that

|Qf (Du) −Qf (Dv)| ⩽ �
(

1 + |Du|p−1 + |Dv|p−1
)

|Du −Dv|.

Using the Hölder inequality we obtain

∫Ω
|Qf (Du) −Qf (Dv)|dx

⩽ �
[

∫Ω

[(

1 + |Du|p−1 + |Dv|p−1
)]p∕(p−1)

]p∕(p−1) [

∫Ω
|Du −Dv|p

]1∕p

and (3) follows from (2). The inequality (4) follows from (2) and a classical property of the integrals
(since f (Dv), Qf (Dv) ∈ L1).

Step 2. Now use Dacorogna Formula on every Ωi to find 'i ∈ W
1,∞
0

(

Ωi;ℝN
)

⨍Ωi
f
(

�i +D'i(x)
)

dx⩾ Qf
(

�i
)

⩾ −" + ⨍Ωi
f
(

�i +D'i(x)
)

dx

Setting

w(x) =
{

v(x) + 'i(x) if x ∈ Ωi, i = 1,… , k
v(x) if x ∈ Ω −

⋃k
i=1Ωi

we get that w ∈ u +W 1,p
0

(

Ω;ℝN
)

and (using (4))

0 ⩽ ∫∪ki=1Ωi
[f (Dw(x)) −Qf (Dv(x))]dx ⩽ " meas

[

k
⋃

i=1
Ωi

]

,

0 ⩽ ∫Ω−∪ki=1Ωi
[f (Dw(x)) −Qf (Dv(x))]dx = ∫Ω−∪ki−1Ωi

[f (Dv(x)) −Qf (Dv(x))]dx ⩽ ".

In other words, combining these inequalities, we have proved that

0 ⩽ ∫Ω
[f (Dw(x)) −Qf (Dv(x))]dx ⩽ "(1 + measΩ)

Invoking (3), we find

|

|

|

|

∫Ω
[f (Dw(x)) −Qf (Du(x))]dx

|

|

|

|

⩽ "(2 + measΩ)

Setting " = 1∕v with v ∈ ℕ and uv = w, we have indeed obtained the theorem.

In the caseN = n = 1, this result has been proved by L.C. Young and then generalized by others
to the scalar case, N = 1 or n = 1, notably by Berliochi and Lasry, Ekeland, Ioffe and Tihomirov
and Marcellini and Sbordone.
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2.4 Rank one convexity
For a given f , is it in need of relaxation? Is Qf = f or not?

A very powerful test is provided by the "layering": if f is lsc (Qf = f ) then f must be rank
one convex.

Sverak (1992) gave an example of a rank one convex function that is not quasiconvex. Therefore
rank one convexity is not equaivalent to quasiconvexity.
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