
A very short introduction to Γ-convergence

Throughout, X = (X, d) will be a metric space as in the course. In applications, this could be
a function space such as W k,p(Ω), 1 < p <∞, Ω ⊂ Rn.

Definition

Problem: Suppose that you are given a sequence of functions (Fn)n onX, as well as a sequence
(xn)n such that xn minimizes Fn. Does limn xn exist and, if yes, does it minimize anything?
In what sense does Fn have to converge to some F to ensure that the minimizers converge as
well?

Γ-convergence is a natural concept of convergence for such a sequence of variational problems.

De Giorgi, Franzoni 1975: Su un tipo de convergenza variazionale, Atti Accademia Nazionale de
Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali 58

Definition 0.1 (Γ-convergence). Γ-lower limit and Γ-upper limit of the sequence (Fn)n at a
point x ∈ X are defined as

Γ- lim inf
n→∞

Fn(x) = inf
{

lim inf
n→∞

Fn(xn) : xn → x
}
,

Γ- lim sup
n→∞

Fn(x) = inf

{
lim sup
n→∞

Fn(xn) : xn → x

}
.

The infimum is taken over the sequences (xn)n converging to x. We say that (Fn)n Γ-converges
to F , denoted F = Γ- limn→∞ Fn, if

Γ- lim sup
n→∞

Fn(x) ≤ Γ- lim inf
n→∞

Fn(x) ∀x ∈ X.

One sometimes sees the shorthand notation Fn
Γ−→ F .

There are several equivalent ways of stating these conditions that may or may not be more
appropriate for proving certain things. The following is one workable version.

Definition 0.2 (Testing Γ-convergence). LetX be a metric space, Fn : X → [−∞,∞] functions.
We say that (Fn)n Γ-converges to F if

(i) for every sequence (xn)n converging to some x ∈ X,

F (x) ≤ lim inf
n→∞

Fn(xn);

(ii) for every x ∈ X, there exists a sequence (xn)n converging to x with

lim sup
n→∞

Fn(xn) ≤ F (x).

This sequence (xn) is sometimes called a recovery sequence.

We immediately note that Γ-limits are well-defined in the sense that if Fn
Γ−→ F , then every

subsequence (Fnk
)k also Γ-converges to F .

In applications, it is often useful to note that Γ-convergence is stable under continuous pertur-
bations: Let G be a continuous function. Then Γ- limn (Fn +G) = Γ- limn F +G.

In general, Γ-convergence does not have anything to do with pointwise convergence. One does
not imply another, and even if a sequence of functions converges both Γ and pointwise, the two
limits may not be the same (it is possible to construct examples to this effect).
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A simple example on the real line. Consider Fn(x) = sin(nx). It is well known that
this sequence does not have a pointwise limit. How about Γ-convergence? We have −1 ≤
lim infn sin(nxn); let f(x) = −1 be our candidate for the Γ-limit. For any x ∈ R, let xn be the
nearest point such that sin(nxn) = −1;

xn = − π

2n
+

2 [nx/2]π

n

should work if you want a formula. Because sin(nx) is 2π/n-periodic, we have |xn − x| ≤ π/n
and xn → x as n→∞. So Γ- limn sin(nx) = −1.

Some fundamental properties

One important structural property of Γ-limits is that they are lower semicontinuous. This
guarantees that the limit function attains its minimum on a compact set.

Definition 0.3 (Lower semicontinuity). F : X → [−∞,∞] is lower semicontinuous (lsc) if

xn → x ⇒ F (x) ≤ lim inf
n→∞

F (xn).

Equivalently, {x ∈ X : F (x) ≤ t} is closed in X for each t.

Theorem 0.4. Let Fn
Γ−→ F . Then F is lsc.

Proof. By contradiction: assume not, in which case there exist a x ∈ X and a sequence (xm)m
with

lim
m→∞

xm = x, lim
m→∞

F (xm) < F (x).

By Γ-convergence, for every m there exists a sequence (xm,n)n with

lim
n→∞

xm,n = xm, lim
n→∞

Fn(xm,n) = F (xm).

For simplicity, assume limF (xm), F (x) are finite. Let

δ =
1

4

(
F (x)− lim

m→∞
F (xm)

)
> 0.

For every m, there is an index Nm ∈ N such that

FNm(xm,Nm)− F (xm) < δ, (1)
lim

m→∞
xm,Nm = x, lim

m→∞
Nm =∞.

Choose m so large that
F (xm) < F (x)− 3δ, (2)

which is possible by the choice of δ on (1), as well as

F (x) < FNm(xm,Nm) + δ. (3)

Combining (2) and (3), we have F (xm) + 3δ < F (x) < FNm(xm,Nm) + δ, that is

FNm(xm,Nm)− F (xm) > 2δ,

which contradicts the choice of Nm on (1).
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The Γ-limit of the constant sequence. Let’s take a look at the Γ-limit of the constant
sequence Fn(x) = F ∀n ∈ N. By Definition 0.2 (i), the Γ-limit F̃ (x) has to satisfy

F̃ (x) ≤ lim inf
n

F (xn)

for all x and sequences (xn)n converging to x. If F is not lsc, then there exists a x̃ and a sequence
(x̃n)n converging to a x̃ ∈ X such that

lim inf
n→∞

F (x̃n) < F (x̃);

in particular, F̃ (x̃) 6= F (x̃). In this case, the Γ-limit is the lower semicontinuous envelope a.k.a.
relaxed function of F , that is, the supremum of semicontinuous functions below or equal to F .

Finally, the fundamental theorem of Γ-convergence, namely that the minimizers converge under
an equicoercivity assumption.

Lemma 0.5. Let Fn
Γ−→ F . We have

(i) for K ⊂ X compact, infx∈K F (x) ≤ lim infn infx∈K Fn(x),

(ii) for U ⊂ X open, infx∈U F (x) ≥ lim supn infx∈U Fn(x).

Proof.

(i) Let (x̃n)n ⊂ K be a sequence such that lim infn infx∈K Fn(x) = lim infn Fn(x̃n). Extract
a subsequence (x̃nk

)k such that

lim
k→∞

Fnk
(x̃nk

) = lim inf
n→∞

inf
x∈K

Fn(x),

and x̃nk
→ x̃ ∈ K. Define the sequence

xn =

{
x̃nk

if n = nk,

x̃ otherwise.

Then, we have

inf
x∈K

F (x) ≤ F (x̃) ≤ lim inf
n→∞

Fn(xn) ≤ lim inf
k→∞

Fnk
(xnk

) = lim
k→∞

Fnk
(x̃nk

) = lim inf
n→∞

inf
x∈K

Fn(x)

as desired. The second inequality follows from the fact that Fn
Γ−→ F .

(ii) Fix a δ > 0 and let y ∈ U be such that F (y) ≤ infx∈U F (x)+δ. Then, if (yn)n is a recovery
sequence for y, we have

inf
x∈U

F (x) + δ ≥ Fn(y) ≥ lim sup
n→∞

Fn(yn) ≥ lim sup
n→∞

inf
x∈U

Fn(x),

and the result follows because δ was arbitrary.
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Definition 0.6 (Equi-coercivity). A sequence (Fn)n is said to be equi-mildly coercive if there
exists a nonempty compact set K ⊂ X such that infx∈X Fn(x) = infx∈K Fn(x) for all n.

Theorem 0.7 (Convergence of minimizers). Let (Fn)n be a sequence of equi-mildly coercive
functions on X, and let Fn

Γ−→ F . Then minF exists and amounts to

min
x∈X

F (x) = lim
n→∞

inf
x∈K

Fn(x).

Proof. Using Lemma 0.5 with K as the equi-coercivity set related to the sequence (Fn)n and
U = X:

inf
x∈X

F (x) ≤ min
x∈K

F (x) ≤ lim inf
n→∞

inf
x∈K

Fn(x) = lim inf
n→∞

inf
x∈X

Fn(x) ≤ lim sup
n→∞

inf
x∈X

Fn(x) ≤ inf
x∈X

F (x).
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