A very short introduction to Γ-convergence

Throughout, $X=(X, d)$ will be a metric space as in the course. In applications, this could be a function space such as $W^{k, p}(\Omega), 1<p<\infty, \Omega \subset \mathbb{R}^{n}$.

Definition

Problem: Suppose that you are given a sequence of functions $\left(F_{n}\right)_{n}$ on X, as well as a sequence $\left(x_{n}\right)_{n}$ such that x_{n} minimizes F_{n}. Does $\lim _{n} x_{n}$ exist and, if yes, does it minimize anything? In what sense does F_{n} have to converge to some F to ensure that the minimizers converge as well?
Γ-convergence is a natural concept of convergence for such a sequence of variational problems.
De Giorgi, Franzoni 1975: Su un tipo de convergenza variazionale, Atti Accademia Nazionale de Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali 58
Definition 0.1 (Γ-convergence). Γ-lower limit and Γ-upper limit of the sequence $\left(F_{n}\right)_{n}$ at a point $x \in X$ are defined as

$$
\begin{aligned}
& \Gamma-\liminf _{n \rightarrow \infty} F_{n}(x)=\inf \left\{\liminf _{n \rightarrow \infty} F_{n}\left(x_{n}\right): x_{n} \rightarrow x\right\} \\
& \Gamma-\limsup _{n \rightarrow \infty} F_{n}(x)=\inf \left\{\limsup _{n \rightarrow \infty} F_{n}\left(x_{n}\right): x_{n} \rightarrow x\right\}
\end{aligned}
$$

The infimum is taken over the sequences $\left(x_{n}\right)_{n}$ converging to x. We say that $\left(F_{n}\right)_{n} \Gamma$-converges to F, denoted $F=\Gamma$ - $\lim _{n \rightarrow \infty} F_{n}$, if

$$
\Gamma-\limsup _{n \rightarrow \infty} F_{n}(x) \leq \Gamma-\liminf _{n \rightarrow \infty} F_{n}(x) \quad \forall x \in X
$$

One sometimes sees the shorthand notation $F_{n} \xrightarrow{\Gamma} F$.
There are several equivalent ways of stating these conditions that may or may not be more appropriate for proving certain things. The following is one workable version.
Definition 0.2 (Testing Γ-convergence). Let X be a metric space, $F_{n}: X \rightarrow[-\infty, \infty]$ functions. We say that $\left(F_{n}\right)_{n} \Gamma$-converges to F if
(i) for every sequence $\left(x_{n}\right)_{n}$ converging to some $x \in X$,

$$
F(x) \leq \liminf _{n \rightarrow \infty} F_{n}\left(x_{n}\right)
$$

(ii) for every $x \in X$, there exists a sequence $\left(x_{n}\right)_{n}$ converging to x with

$$
\limsup _{n \rightarrow \infty} F_{n}\left(x_{n}\right) \leq F(x)
$$

This sequence $\left(x_{n}\right)$ is sometimes called a recovery sequence.
We immediately note that Γ-limits are well-defined in the sense that if $F_{n} \xrightarrow{\Gamma} F$, then every subsequence $\left(F_{n_{k}}\right)_{k}$ also Γ-converges to F.

In applications, it is often useful to note that Γ-convergence is stable under continuous perturbations: Let G be a continuous function. Then $\Gamma-\lim _{n}\left(F_{n}+G\right)=\Gamma-\lim _{n} F+G$.

In general, Γ-convergence does not have anything to do with pointwise convergence. One does not imply another, and even if a sequence of functions converges both Γ and pointwise, the two limits may not be the same (it is possible to construct examples to this effect).

A simple example on the real line. Consider $F_{n}(x)=\sin (n x)$. It is well known that this sequence does not have a pointwise limit. How about Γ-convergence? We have $-1 \leq$ $\liminf _{n} \sin \left(n x_{n}\right)$; let $f(x)=-1$ be our candidate for the Γ-limit. For any $x \in \mathbb{R}$, let x_{n} be the nearest point such that $\sin \left(n x_{n}\right)=-1$;

$$
x_{n}=-\frac{\pi}{2 n}+\frac{2[n x / 2] \pi}{n}
$$

should work if you want a formula. Because $\sin (n x)$ is $2 \pi / n$-periodic, we have $\left|x_{n}-x\right| \leq \pi / n$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. So Γ - $\lim _{n} \sin (n x)=-1$.

Some fundamental properties

One important structural property of Γ-limits is that they are lower semicontinuous. This guarantees that the limit function attains its minimum on a compact set.

Definition 0.3 (Lower semicontinuity). $F: X \rightarrow[-\infty, \infty]$ is lower semicontinuous (lsc) if

$$
x_{n} \rightarrow x \quad \Rightarrow \quad F(x) \leq \liminf _{n \rightarrow \infty} F\left(x_{n}\right)
$$

Equivalently, $\{x \in X: F(x) \leq t\}$ is closed in X for each t.
Theorem 0.4. Let $F_{n} \xrightarrow{\Gamma} F$. Then F is lsc.

Proof. By contradiction: assume not, in which case there exist a $x \in X$ and a sequence $\left(x_{m}\right)_{m}$ with

$$
\lim _{m \rightarrow \infty} x_{m}=x, \quad \lim _{m \rightarrow \infty} F\left(x_{m}\right)<F(x)
$$

By Γ-convergence, for every m there exists a sequence $\left(x_{m, n}\right)_{n}$ with

$$
\lim _{n \rightarrow \infty} x_{m, n}=x_{m}, \quad \lim _{n \rightarrow \infty} F_{n}\left(x_{m, n}\right)=F\left(x_{m}\right)
$$

For simplicity, assume $\lim F\left(x_{m}\right), F(x)$ are finite. Let

$$
\delta=\frac{1}{4}\left(F(x)-\lim _{m \rightarrow \infty} F\left(x_{m}\right)\right)>0 .
$$

For every m, there is an index $N_{m} \in \mathbb{N}$ such that

$$
\begin{align*}
F_{N_{m}}\left(x_{m, N_{m}}\right) & -F\left(x_{m}\right)<\delta, \tag{1}\\
\lim _{m \rightarrow \infty} x_{m, N_{m}} & =x, \quad \lim _{m \rightarrow \infty} N_{m}=\infty .
\end{align*}
$$

Choose m so large that

$$
\begin{equation*}
F\left(x_{m}\right)<F(x)-3 \delta, \tag{2}
\end{equation*}
$$

which is possible by the choice of δ on (1), as well as

$$
\begin{equation*}
F(x)<F_{N_{m}}\left(x_{m, N_{m}}\right)+\delta . \tag{3}
\end{equation*}
$$

Combining (2) and (3), we have $F\left(x_{m}\right)+3 \delta<F(x)<F_{N_{m}}\left(x_{m, N_{m}}\right)+\delta$, that is

$$
F_{N_{m}}\left(x_{m, N_{m}}\right)-F\left(x_{m}\right)>2 \delta,
$$

which contradicts the choice of N_{m} on (1).

The Γ-limit of the constant sequence. Let's take a look at the Γ-limit of the constant sequence $F_{n}(x)=F \forall n \in \mathbb{N}$. By Definition 0.2 (i), the Γ-limit $\widetilde{F}(x)$ has to satisfy

$$
\widetilde{F}(x) \leq \liminf _{n} F\left(x_{n}\right)
$$

for all x and sequences $\left(x_{n}\right)_{n}$ converging to x. If F is not lsc, then there exists a \widetilde{x} and a sequence $\left(\widetilde{x}_{n}\right)_{n}$ converging to a $\widetilde{x} \in X$ such that

$$
\liminf _{n \rightarrow \infty} F\left(\widetilde{x}_{n}\right)<F(\widetilde{x}) ;
$$

in particular, $\widetilde{F}(\widetilde{x}) \neq F(\widetilde{x})$. In this case, the Γ-limit is the lower semicontinuous envelope a.k.a. relaxed function of F, that is, the supremum of semicontinuous functions below or equal to F.

Finally, the fundamental theorem of Γ-convergence, namely that the minimizers converge under an equicoercivity assumption.

Lemma 0.5. Let $F_{n} \xrightarrow{\Gamma} F$. We have
(i) for $K \subset X$ compact, $\inf _{x \in K} F(x) \leq \liminf _{n} \inf _{x \in K} F_{n}(x)$,
(ii) for $U \subset X$ open, $\inf _{x \in U} F(x) \geq \limsup \operatorname{sinf}_{x \in U} F_{n}(x)$.

Proof.
(i) Let $\left(\widetilde{x}_{n}\right)_{n} \subset K$ be a sequence such that $\lim \inf _{n} \inf _{x \in K} F_{n}(x)=\liminf _{n} F_{n}\left(\widetilde{x}_{n}\right)$. Extract a subsequence $\left(\widetilde{x}_{n_{k}}\right)_{k}$ such that

$$
\lim _{k \rightarrow \infty} F_{n_{k}}\left(\widetilde{x}_{n_{k}}\right)=\liminf _{n \rightarrow \infty} \inf _{x \in K} F_{n}(x)
$$

and $\widetilde{x}_{n_{k}} \rightarrow \widetilde{x} \in K$. Define the sequence

$$
x_{n}= \begin{cases}\widetilde{x}_{n_{k}} & \text { if } n=n_{k} \\ \widetilde{x} & \text { otherwise }\end{cases}
$$

Then, we have
$\inf _{x \in K} F(x) \leq F(\widetilde{x}) \leq \liminf _{n \rightarrow \infty} F_{n}\left(x_{n}\right) \leq \liminf _{k \rightarrow \infty} F_{n_{k}}\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} F_{n_{k}}\left(\widetilde{x}_{n_{k}}\right)=\liminf _{n \rightarrow \infty} \inf _{x \in K} F_{n}(x)$
as desired. The second inequality follows from the fact that $F_{n} \xrightarrow{\Gamma} F$.
(ii) Fix a $\delta>0$ and let $y \in U$ be such that $F(y) \leq \inf _{x \in U} F(x)+\delta$. Then, if $\left(y_{n}\right)_{n}$ is a recovery sequence for y, we have

$$
\inf _{x \in U} F(x)+\delta \geq F_{n}(y) \geq \limsup _{n \rightarrow \infty} F_{n}\left(y_{n}\right) \geq \limsup _{n \rightarrow \infty} \inf _{x \in U} F_{n}(x)
$$

and the result follows because δ was arbitrary.

Definition 0.6 (Equi-coercivity). A sequence $\left(F_{n}\right)_{n}$ is said to be equi-mildly coercive if there exists a nonempty compact set $K \subset X$ such that $\inf _{x \in X} F_{n}(x)=\inf _{x \in K} F_{n}(x)$ for all n.

Theorem 0.7 (Convergence of minimizers). Let $\left(F_{n}\right)_{n}$ be a sequence of equi-mildly coercive functions on X, and let $F_{n} \xrightarrow{\Gamma} F$. Then $\min F$ exists and amounts to

$$
\min _{x \in X} F(x)=\lim _{n \rightarrow \infty} \inf _{x \in K} F_{n}(x) .
$$

Proof. Using Lemma 0.5 with K as the equi-coercivity set related to the sequence $\left(F_{n}\right)_{n}$ and $U=X$:

$$
\inf _{x \in X} F(x) \leq \min _{x \in K} F(x) \leq \liminf _{n \rightarrow \infty} \inf _{x \in K} F_{n}(x)=\liminf _{n \rightarrow \infty} \inf _{x \in X} F_{n}(x) \leq \limsup _{n \rightarrow \infty} \inf _{x \in X} F_{n}(x) \leq \inf _{x \in X} F(x)
$$

