Problem 3.1

A static field points uniformly along the positive z-axis. A classical spinning particle, with positive gyromagnetic ratio γ and fixed magnetic moment magnitude μ, has its spin initially in the direction of the static field. A circularly polarized rf field points along the \hat{y}^{\prime} axis with time-dependent amplitude $B_{1 y^{\prime}}(t)$ (e.g., the rf field may be turned off at a later time) applied on-resonance starting at $t=0$.
a) Give expressions analogous to Equation (3.33) on p. 46 for all three magneticmoment vector components in the rotating (prime) reference frame for $t>0$. Your answer will be in terms of a definite integral.
b) Show that the equation of motion (2.24) on p. 28 is satisfied by your answer in (a) for $\vec{B} \rightarrow B_{1 y^{\prime}} \hat{y}^{\prime}$.
c) Find the generalization of Equation (2.35) on p. 33 needed for this timedependent case.

Problem 3.2

Show that

$$
\hat{x}^{r i g h t}=\hat{x}^{\prime} \cos 2 \omega t+\hat{y}^{\prime} \sin 2 \omega t
$$

using steps like those used in deriving (3.21). Also show that the time average

$$
\frac{1}{T} \int_{0}^{T} \hat{x}^{r i g h t}(t) \mathrm{d} t
$$

approaches zero as $T \rightarrow \infty$.

[^0]
[^0]: The problems are based on those in Robert W. Brown, Y.-C. Norman Cheng, E. Mark Haacke, Michael R. Thompson, Ramesh Venkatesan. Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd Edition, Wiley, 2014.

