
HARDWARE SECURITY ENABLERS
Lecture 4



You will be learning:

 What are example instances of hardware 
platform security?
 Fixed function TEEs: Trusted Platform Module 

(TPM)
 Programmable TEEs:
 ARM TrustZone
 Intel Software Guard Extensions (SGX)

 Standardized interfaces for using TEEs



3

External Security 
Co-processor

External Secure Element
(TPM, smart card)

TEE component

On-SoC

RAM ROM

OTP 
Fields

External 
Peripherals

Processor 
core(s)

Off-chip 
memory

TEE hardware realization alternatives

Figure adapted from: Global Platform. TEE system architecture. 2011.

Internal 
peripherals

RAM ROM

OTP 
Fields

External 
Peripherals

Processor 
core(s)

Off-chip 
Memory

Internal 
peripherals

Embedded Secure Element
(smart card)

On-chip Security 
Subsystem

On-SoC

Processor Secure Environment
(TrustZone, M-Shield)

On-SoC

RAM ROM

OTP 
Fields

External 
Peripherals

Processor 
core(s)

Off-chip 
Memory

Internal 
peripherals

Legend:
SoC : system-on-chip
OTP: one-time programmable

http://www.globalplatform.org/specificationsdevice.asp


TRUSTED COMPUTING GROUP
TPM / TPM2

TEE Specifications: www.trustedcomputinggroup.org

http://www.globalplatform.org/


5

Trusted Platform Module (TPM)
• Collects state information about a system

• separate from system on which it reports

• For remote parties 
• well-defined remote attestation
• Authorization for functions/objects in TPM

• Locally
• Generation/use of TPM-resident keys 
• Sealing: Securing data for non-volatile storage (w/ binding)
• Engine for cryptographic operations



6

RTM

Code 1m1 ← measure Code 1
send m1 to TPM
launch code 1

Code 2m2 ← measure Code 2
send m2 to TPM
launch code 2

Code 3m3 ← measure Code 3
send m3 to TPM
launch code 3

…

 Integrity-protected registers
 in volatile memory 
 represent current system configuration

 Store aggregated platform “state” measurement
 a given state reached ONLY via the correct “extension” sequence 
 Requires a root of trust for measurement (RTM)

Platform Configuration Registers (PCRs)

Authenticated boot

Hnew= H(Hold | new)

H0 = 0
H1 = H (0|m1)
H2 = H (H (0|m1) |m2)
H3 = H (H (H (0|m1) |m2)|m3)

state



7

TPM Remote Attestation

Goal: Check whether the prover is in a 
trustworthy state

Challenge c

Response: CertAIK, r

Verifier

Database of acceptable 
measurements

Verify r

Attestation Protocol
Prover

Measure 
software state 
into PCRs

“TPM Quote” r = Sign (SKAIK, c || PCR-values)

Attestation Identity Key (AIK) is a unique keypair whose 
private key (SKAIK) is TPM-protected
CertAIK certificate for PKAIK issued by, e.g., manufacturer



8

Sealing
Goal: Bind secret data to a specific configuration
• E.g., 

– create RSA keypair PK/SK when PCRX is Y  
– bind private key: EncSRK(SK, PCRX=Y)

• SRK is known only to TPM (cf. “device key” KD)
• “Storage Root Key” (created on TPM “take 

ownership” process)
– TPM will “unseal” key iff PCRX value is Y

• Y is the “reference value”



9

Isolated Execution with TPMs

Dynamic RTM
• Dynamic PCRs (17-23) set to -1 on boot
• Special CPU instruction to 

– reset dynamic PCRs to 0
– measure and extend a code block to PCR 17
– launch that code

• “Late launch” of a hypervisor
• Can be used as a TEE for arbitrary code: Flicker 

by McCune et al: 
https://doi.org/10.1145/1352592.1352625

https://doi.org/10.1145/1352592.1352625


10

TPM authorization

• Authorization essential for access to 
sensitive TPM services/resources.

• TPMs have awareness of system 
state (cf., removable smartcards)



11

Authorization example: university admissions

Examination 
board

Top University

Application for admission

Admission process

Admission policy:
Exam score > 80%



12

Authorization (policy) in TPM 1.2

TPM 1.2

System

System
state info

External auth (e.g. password) Object (e.g. key)

Object invocation

Object authorization

Reference values:
“PCR selection”
authData



13

TPM 2.0

‹ More expressive policy definition model

‹ Various policy preconditions

‹ Logical operations (AND, OR)

‹ A policy session accumulates all authorization information



14

University admissions 2.0

Top university

Examination 
board

Application for admission: program

Admission process

Other
organizations

Application 
portfolio

Admission policy:
Governing board

Governing board:
2019: exam score > 85%

Collect documents 
into your portfolio

Checks:
- Portfolio meets policy?
- Documents in portfolio correct?



15

Authorization (policy) in TPM 2.0

TPM 2.0

Object (e.g. key)

System

System
state info

Object invocation (command)

Object authorization

Other
TPM objs

policySession: 
policyDigest

Reference values: 
authPolicy
authValue

External authorization:
signatures
passwords

Commands to include some
part of TPM 2.0 (system) 
state in policy validation

Checks:
- policyDigest == authPolicy?
- deferred checks succeed?

- command == X?
- PCR 1 Y == Z?



16

Authorization Policy Example

• Allow app A (and no other app) to 
use a TPM-protected RSA keypair k1
–Only when a certain OS is in use

• Assume that
–When right OS is used, PCR 1 = mOS
–When app A in foreground, PCR 2 = mA



17

Enforcing the example policy

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

policySession
policyDigest

authPolicy

PCR 1: mOS

PCR 2: mA

k1: (private) decryption keyRSA_Decrypt (k1, c)

v11 <- … some TPM2_policyCommand …

v12 <- … some TPM2_policyCommand …

v13 <- … some TPM2_policyCommand …

RSA_Decrypt(k1, c)

Command sequence

Checks:
- policyDigest == authPolicy?
- deferred checks succeed?

- command == RSA_Decrypt?
- PCR 1 == mOS?
- PCR 2 == mA?



18

TPM2 Policy Session Contents

‹ accumulated session policy value: policyDigest

newDigestValue :=  H(oldDigestValue || 
commandCode || state_info )

‹ Some policy commands reset value

IF condition THEN 
newDigestValue :=  H( 0 || commandCode

|| state_info )

‹ deferred policy checks at object access time.

policyDigest

Deferred checks:
- PCRs changed
- Applied command
- Command locality

policySession



19

TPM2 Policy Command Examples

‹ TPM2_PolicyPCR: PCR values
update policyDigest with [pcr index, pcr value]

newDigest := H(oldDigest || TPM_CC_PolicyPCR || pcrs || digestTPM)

‹ TPM2_PolicyNV: reference value and operation 
(<, >, eq) for non-volatile memory area 
e.g., if counter5  > 2 then 
update policyDigest with [ref, op, mem.area]

newDigest := H(oldDigest || TPM_CC_PolicyNV || args || nvIndex->Name)



20

TPM2 Deferred Policy Example

‹ TPM2_PolicyCommandCode: Check command during 
“object invocation” :

update policyDigest with [command code]

newDigest := H(oldDigest || TPM_CC_PolicyCommandCode || code)

additionally save policySession->commandCode := command code

policySession->commandCode checked before object invocation!



21

Other policy commands
• TPM2_PolicyOR: Authorize one of several options:

Input: List of digest values <D1, D2, D3, .. >

IF policyDigest in List THEN
newDigest :=  H(0 || TPM2_CC_PolicyOR  || List)

• TPM2_PolicyAuthorize: Validate a signature on a 
policyDigest:
Input: signature and pubic key
IF signature validates  AND signed text matches policyDigest
THEN

newDigest :=  H(0 || TPM2_CC_PolicyAuthorize|| 
H(pub)|| ..)

Skip to example



22

Policy disjunction

TPM2_PolicyOR: Authorize one of several options:
Input: List of digest values <D1, D2, D3, .. >

IF policySession->policyDigest in List THEN
newDigest :=  H(0 || TPM2_CC_PolicyOR  || List)

Reasoning:  For a wrong digest Dx (not in <D1 D2 D3>) 
difficult to find List2 = <Dx Dy, Dz, .. > 
such that H(... |List) == H(... |List2)  

policyDigest

D1 D2 D3

H(.)

newDigest
H (...|D1|D2|D3)

policyDigestDx

(Failing OR)

(Successful OR)

D1 D2 D3

Dx



23

Policy conjunction
‹ No explicit AND command

‹ AND: consecutive auth. commands  order dependence

policyDigest

H(.)

PolicyCommandCode

D1 D2

Use OR to remove the order dependence of AND 

PolicyPCR

policyDigest

PolicyPCR

PolicyCommandCode



24

External Authorization

TPM2_PolicyAuthorize: Validate a signature on a 
policyDigest:
IF signature validates  AND signed text matches policySession->policyDigest
THEN

newDigest :=  H(0 || TPM2_CC_PolicyAuthorize|| H(pub)|| ..)

pub

policyDigest

priv H(...|H(pub)|..)

Z

Z
signature



25

Let’s try this out

• Developer D 
– Has TPM2-protected keypair k1 and Application A
– Wants only A can use k1 via 

• TPM2_RSA_Decrypt (key, ciphertext)
• Assume that

– OS measured into PCR1 (if correct OS: PCR1 = 
mOS)

– Foreground app into PCR2 (if A: PCR2 = mA)
• What should authPolicy of k1 be?



26

Enforcing policy

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

policySession
policyDigest

authPolicy

PCR 1: mOS

PCR 2: mA

k1: private decryption keyRSA_Decrypt (k1, c)

v11 <- PolicyPCR(1, mOS) 
//  v11 = h (0 || CC_PolicyPCR || 1 || mOS)

v12 <- PolicyPCR(2, mA)
// v12 = h (v11 || CC_PolicyPCR || 2 || mA)

v13 <- PolicyCommandCode(CC_RSA_Decrypt)
// v13 = h (v12 || CC_ PolicyCommandCode || CC_RSA_Decrypt)

RSA_Decrypt(k1, c)

Command sequence

Checks:
- policyDigest == authPolicy?
- deferred checks succeed?

- command == RSA_Decrypt?
- PCR 1 == mOS?
- PCR 2 == mA?

NOTE: We drop “TPM2_” and 
“TPM_” prefixes for simplicity…



27

Exercise 3

(i) What if D wants to authorize
app A1 (PCR2=mA_1) or app A2 (PCR2=mA_2)

(ii) What if D wants to authorize many apps



ANDROID KEYSTORE
Using TEEs



29

Mobile TEE deployment

• TrustZone support available in majority of 
current smartphones

• Mainly used for manufacturer internal purposes
– Digital rights management, Subsidy lock…

• APIs for developers?

TEE entry

App

Mobile OS

Normal world

App

Trusted OS

Trusted 
app

Trusted 
app

Secure world

Smartphone hardware 



30

Android Key Store API

// create RSA key pair
Context ctx;
KeyPairGeneratorSpec spec = new    

KeyPairGeneratorSpec.Builder(“key1”,KeyProperties.PURPOSE_SIGN);
… 
spec.build();

KeyPairGenerator gen = 
KeyPairGenerator.getInstance(KeyProperties.KEY_ALGORITHM_RSA, 
"AndroidKeyStore");

gen.initialize(spec);
KeyPair kp = gen.generateKeyPair();

// make a signature
Signature sig = Signature.getInstance(“SHA256withRSA/PSS”):
sig.initSign(kp.getPrivate()):

Android Key Store example

Android, Hardware-backed Keystore, 2015-2018

https://source.android.com/security/keystore/


31

Key Store implementation: example

TEE entry

Android 
app

Android OS

Normal world

Android 
app

Qualcomm Secure 
Execution Environment 

(QSEE)

Java Cryptography 
Extensions (JCE)

Secure world

ARM with TrustZone

Keymaster 
Trusted app

Android device

libQSEEcomAPI.so

Keymaster operations
• Public key algorithms
• Symmetric key algorithms (AES, 

HMAC) from v1.0
• Access control, key usage 

restrictions
• Key attestation (from v2.0), “ID 

attestation” (from v3.0)
• Android Protected Confirmation 

(Android 9, API level 28)
Persistent storage on Normal World

Elenkov. Credential storage enhancements in Android 4.3. 2013
Android, Hardware-backed Keystore, 2015-2018
Android, Protected Confirmation, 2018

http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html
https://source.android.com/security/keystore/
https://developer.android.com/training/articles/security-android-protected-confirmation


32

Android Key Store

• Available operations
– Signatures
– Encryption/decryption
– Attestation, confirmation

• Developers cannot utilize programmability of mobile TEEs
– Not possible to run arbitrary trusted applications

• Different API abstraction and architecture needed
• Example: On-board Credentials
• GlobalPlatform device working group specifications

https://ssg.aalto.fi/research/projects/on-board-credentials/


33

What protects hardware platform 
security?

A well-known scientist (some say it was Bertrand Russell) 
once gave a public lecture on astronomy. He described 
how the earth orbits around the sun and how the sun, in 
turn, orbits around the center of a vast collection of stars 
called our galaxy. At the end of the lecture, a little old 
lady at the back of the room got up and said: "What you 
have told us is rubbish. The world is really a flat plate 
supported on the back of a giant tortoise." The scientist 
gave a superior smile before replying, "What is the 
tortoise standing on?" "You're very clever, young man, 
very clever," said the old lady. "But it's tortoises all the 
way down!“
- Stephen Hawking, in A Brief History of Time

http://transversalinflections.files.
wordpress.com/2011/06/turtles-
all-the-way-down.png

http://en.wikipedia.org/wiki/Bertrand_Russell
http://transversalinflections.files.wordpress.com/2011/06/turtles-all-the-way-down.png


34

Device

App

Device OS

Rich execution 
environment (REE)

App

TEE management layer

Trusted 
app

Trusted 
app

TEE API

Trusted execution 
environment (TEE)

Device hardware and firmware with TEE support

TEE system architecture
Architectures with single TEE
• ARM TrustZone
• TI M-Shield
• Smart card
• Crypto co-processor
• Trusted Platform Module 

(TPM)

Architectures with multiple 
TEEs
• Intel SGX
• TPM (and “Late Launch”)
• Hypervisor

Figure adapted from: Global Platform. TEE system architecture. 2011.

TEE entry

http://www.globalplatform.org/specificationsdevice.asp


35

External Security 
Co-processor

External Secure Element
(TPM, smart card)

TEE component

On-SoC

RAM ROM

OTP 
Fields

External 
Peripherals

Processor 
core(s)

Off-chip 
memory

TEE hardware realization alternatives

Figure adapted from: Global Platform. TEE system architecture. 2011.

Internal 
peripherals

RAM ROM

OTP 
Fields

External 
Peripherals

Processor 
core(s)

Off-chip 
Memory

Internal 
peripherals

Embedded Secure Element
(smart card)

On-chip Security 
Subsystem

On-SoC

Processor Secure Environment
(TrustZone, M-Shield)

On-SoC

RAM ROM

OTP 
Fields

External 
Peripherals

Processor 
core(s)

Off-chip 
Memory

Internal 
peripherals

Legend:
SoC : system-on-chip
OTP: one-time programmable

http://www.globalplatform.org/specificationsdevice.asp


ARM TRUSTZONE
TEE instances



37

ARM TrustZone architecture

TEE entry

App

Mobile OS

Normal world (REE)

App

Trusted OS

Trusted 
app

Trusted 
app

Secure world (TEE)

Device hardware 

TrustZone system architecture

SoC internal bus 
(carries status flag) 

Main CPUModem

Peripherals 
(touchscreen, 
USB, NFC…)

Memory 
controller

Memory 
controller

Off-chip/main 
memory (DDR)

System on chip (SoC)

Boot 
ROM

Access control 
hardware

On-chip 
memory

Access control 
hardware

Access control 
hardware

TrustZone hardware architecture

Interrupt 
controller

Secure World and 
Normal World

ARM Ltd., “ARM Security Technology - Building a Secure System using TrustZone Technology”, Whitepaper 2009

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c


38

TrustZone overview
Secure World (SW)Normal World (NW)

User mode

Supervisor Supervisor

User User
SCR.NS=1

Boot sequence

Monitor
Secure Monitor call (SMC)

SCR.NS=0

SCR.NS := 1

Privileged mode

TZ-aware MMU

SW RW
NW NA

SW RO
NW WO

SW RW
NW RW

physical address range

Address space controllers

On-chip ROM On-chip RAM Main memory 

Legend:
MMU: memory management unit

SCR.NS := 0



39

TrustZone example (1/2)

Secure World 
SupervisorBoot sequence

1. Boot begins in Secure World Supervisor mode (set access control)

4. Prepare for Normal World boot

Secure World 
Supervisor

3. Configure address controller (protect on-chip memory)

Secure World 
Supervisor

2. Copy code and keys from on-chip ROM to on-chip RAM
Secure World 

Supervisor

On-chip ROM

On-chip RAM

Main memory 
(off-chip) 

SW RW
NW NA

SW RW
NW NA

SW RW
NW NA

code (trusted OS)
device key

SW NA
NW NA

SW RW
NW RW

code (boot loader)



40

TrustZone example (2/2) 

5. Jump to Normal World Supervisor for traditional boot

Secure World 
Supervisor Normal World 

Supervisor

An ordinary boot
follows: Set up MMU, 
load OS, drivers…

6. Set up trusted application execution

Supervisor

Normal
World User

Secure World 
Monitor

Normal World 
Supervisor

SMC, 
SCR.NS0

7. Execute trusted application

On-chip ROM

On-chip RAM

Main memory 
(off-chip)

SW NA
NW NA

SW RW
NW NA

SW RW
NW RW

trusted app and 
parameters

SCR.NS1



41

TZ-enabled CPUs

• TZ: set of ARM processor extensions
• Combined with other building blocks 

needed for TEEs
– Trust root to verify code (e.g., hash of 

manufacturer’s code signing key)
– Device-secret initialized during chip 

manufacture
– Monotonic counter or writable secure 

memory

Skip to GP



42

Secure state entry/exit in TrustZone

What happens during entry/exit?
• Store/restore all shared registers

– Kernel: switching between processor modes
– Secure monitor: switching between worlds

• Validate/(un)marshal parameters
– TEE driver

• Reconfigure MMU
– Secure monitor

Register banking: copies of registers
• Special purpose registers (SP, LR, SPSR)

– Banked between modes, but not worlds
– except at highest privilege mode

• Ordinary registers are not banked

Determine direction & 
update SCR NS bit

Store registers for world 
being left

Restore registers for 
world being entered

Enter SMC 
Exception Handler

Exit SMC 
Exception Handler

Skip to GP



43

Internet of resource constrained things

Wireless vehicle-presence sensor with 7 to 10 years of battery life
http://embedded-computing.com/articles/sensor-enabled-nodes-support-the-iot-for-smart-buildings-and-smart-transport/

Solar-powered soil-moisture sensor for agricultural irrigation
https://hackaday.io/project/6444-vinduino-a-wine-growers-water-saving-project

Wireless-enabled wearable activity tracker
https://en.wikipedia.org/wiki/Fitbit (MorePix) 

Remote-controlled consumer smart lighting platform
http://www.ikea.com/se/sv/catalog/categories/departments/lighting/36812/

http://embedded-computing.com/articles/sensor-enabled-nodes-support-the-iot-for-smart-buildings-and-smart-transport/
https://hackaday.io/project/6444-vinduino-a-wine-growers-water-saving-project
https://en.wikipedia.org/wiki/Fitbit
http://www.ikea.com/se/sv/catalog/categories/departments/lighting/36812/


44

Workhorses for small IoT devices

ATmega1281
14.74 MHz Clock Speed
8 kB SRAM
4 kB EEPROM
128 kB Flash
ZigBee (external)

http://www.libelium.com/v11-files/documentation/waspmote/smart-parking-sensor-board_eng.pdf
http://www.libelium.com/products/waspmote/hardware/

https://www.heise.de/make/artikel/Das-steckt-in-Ikea-Tradfri-3597295.html
https://www.silabs.com/products/wireless/mesh-networking/efr32mg-mighty-gecko-zigbee-thread-soc

ARM Cortex-M3
Up to 32 MHz Clock Speed
Up to 16 kB RAM
Up to 4kB EEPROM 
Up to 128 kB Flash
Bluetooth LE

ARM Cortex-M4 + Floating Point Unit
Up to 40 MHz Clock Speed
Up to 256 kB RAM
Up to 1024 kB Flash
ZigBee and Thread Radio (6LoWPAN)
Hardware Crypto Accelerator w/
AES-256/128, ECC, SHA-1, SHA-2https://hackaday.io/project/6444-vinduino-a-wine-growers-water-saving-project

https://store.arduino.cc/arduino-pro-mini

https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
http://www.st.com/en/microcontrollers/stm32l151c6.html

ATmega328
Up to 16 MHz Clock Speed
Up to 2 KB SRAM
Up to 32KB Flash
Up to 1 KB EEPROM
Wifi + Long range RF (external)

http://www.libelium.com/v11-files/documentation/waspmote/smart-parking-sensor-board_eng.pdf
http://www.libelium.com/products/waspmote/hardware/
https://www.silabs.com/products/wireless/mesh-networking/efr32mg-mighty-gecko-zigbee-thread-soc
https://www.silabs.com/products/wireless/mesh-networking/efr32mg-mighty-gecko-zigbee-thread-soc
https://hackaday.io/project/6444-vinduino-a-wine-growers-water-saving-project
https://store.arduino.cc/arduino-pro-mini
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
http://www.st.com/en/microcontrollers/stm32l151c6.html


4545

Characteristics of a resource 
constrained IoT system

• Monolithic firmware written in embedded C/C++
• interrupt-driven, reacts to external events
• simple real-time scheduling O/S (or no O/S at all!)

• Execute-in-place from persistent storage (NOR 
flash)
• reduces total RAM requirements
• flat memory space (no virtual memory)
• access control by Memory Protection Unit (MPU) 

• Limited processing power, storage and memory
• Restricted lifetime in battery operated devices



46

TrustZone-M (ARMv8-M)
bl <Secure_Function>

Secure_Function:
sg
b <Secure_Function_entry>

Secure_Function_entry:
push {r7, lr}
...
pop {r0}
mov lr, r0
mov r0, lr
mov r1, lr
mov r2, lr
mov r3, lr
bxns lr

In non-secure memory

Secure gateway veneer in secure non-secure callable memory (NSC)

In secure memory

ARM Ltd., “TrustZone technology for the ARMv8-M architecture”, Whitepaper 2016
Nyman et al “CFI CaRE”, RAID 2017

Memory regions labeled (secure, non-secure, NSC) during device initialization

REE

TEE

https://static.docs.arm.com/100690_0101/00/armv8_m_architecture_trustzone_technology_100690_0101_00_en.pdf
https://doi.org/10.1007/978-3-319-66332-6_12


47

Secure state entry/exist in TZ-M
bl <Secure_Function>

Secure_Function:
sg
b <Secure_Function_entry>

Secure_Function_entry:
push {r7, lr}
...
pop {r0}
mov lr, r0
mov r0, lr
mov r1, lr
mov r2, lr
mov r3, lr
bxns lr

Branch to entry point in secure gateway veneer

Secure Gate & branch to target in secure state

Store callee saved registers

Sanitize secure state registers

Return to non-secure state

In non-secure memory

Secure gateway veneer in secure non-secure callable memory (NSC)

In secure memory

ARM Ltd., “TrustZone technology for the ARMv8-M architecture”, Whitepaper 2016
Nyman et al “CFI CaRE”, RAID 2017

Memory regions labeled (secure, non-secure, NSC) during device initialization
Automatic transition to secure state on entering NSC, limited to SG instruction

https://static.docs.arm.com/100690_0101/00/armv8_m_architecture_trustzone_technology_100690_0101_00_en.pdf
https://doi.org/10.1007/978-3-319-66332-6_12


48

TrustZone-A vs. TrustZone-M

• Secure state transition via 
SMC

• Single entry point
(Monitor)

• Kernel & monitor
save/restore registers

• Monitor reconfigures
MMU on entry/exit

• Context switch costs
thousands of instructions

• Automatic transition on 
entering NSC

• Multiple entry points (SG 
veneers)

• Secure functions
save/restore registers

• No MMU in embedded
devices

• Context switch costs a 
few instructions



GLOBAL PLATFORM

TEE specifications: 
https://www.globalplatform.org/specificationsdevice.asp

https://www.globalplatform.org/specificationsdevice.asp


50

GP standards for smart card systems used many years
• Examples: payment, ticketing
• Card interaction and provisioning protocols
• Reader terminal architecture and certification

Recently GP has released standards for mobile TEEs
• Architecture and interfaces

http://www.globalplatform.org/specificationsdevice.asp
- TEE System Architecture
- TEE Client API Specification v.1.0
- TEE Internal Core API Specification v1.1 
- Trusted User Interface API v 1.0

Global Platform (GP)

http://www.globalplatform.org/specificationsdevice.asp


51

Isolation
boundary TEE

Trusted Operating System

Secure Storage Crypto I/O RPC

TEE Internal Core API v.1.1

Trusted
Application

Rich Execution 
Environment OS

TEE Client API v.1.0

Application

Trusted User Interface API v.1.0

REE

TEE Driver

GP TEE System Architecture



52

Isolation
boundary TEE

Trusted Operating System

Secure Storage Crypto I/O RPC

TEE Internal Core API v.1.1

Trusted
Application

Rich Execution 
Environment OS

TEE Client API v.1.0

Trusted User Interface API v.1.0

REE

TEE Driver

Interaction with Trusted Application

Application

1

2

REE App provides a pointer to its memory for the Trusted App
• Example: Efficient in place encryption



53

// 1. initialize context
TEEC_InitializeContext(&context, …);

// 2. establish shared memory 
sm.size = 20; 
sm.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT;
TEEC_AllocateSharedMemory(&context, &sm);

// 3. open communication session
TEEC_OpenSession(&context, &session, …);

// 4. setup parameters
operation.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, …);
operation.params[0].value.a = 1; // First parameter by value
operation.params[1].memref.parent = &sm; // Second parameter by reference
operation.params[1].memref.offset = 0;
operation.params[1].memref.size = 20;

// 5. invoke command
result = TEEC_InvokeCommand(&session, CMD_ENCRYPT_INIT, &operation, NULL);

TEE Client API example

D2 Val:1CMD

Ref
N/A
N/A

Parameters:



54

// each Trusted App must implement the following functions…

// constructor and destructor
TA_CreateEntryPoint();
TA_DestroyEntryPoint(); 

// new session handling
TA_OpenSessionEntryPoint(uint32_t param_types, TEE_Param params[4], void **session)
TA_CloseSessionEntryPoint (…)

// incoming command handling
TA_InvokeCommandEntryPoint(void *session, uint32_t cmd,

uint32_t param_types, TEE_Param params[4])
{

switch(cmd)
{

case CMD_ENCRYPT_INIT:
....

}
}

TEE Internal Core API example

In Global Platform model Trusted Applications are command-driven



55

RPC: Communication with other TAs

Secure storage: Trusted App can persistently store memory and objects

Storage and RPC (TEE internal Core API)

TEE_CreatePersistentObject(TEE_STORAGE_PRIVATE, flags, ..., handle)

TEE_ReadObjectData(handle, buffer, size, count);
TEE_WriteObjectData(handle, buffer, size);
TEE_SeekObjectData(handle, offset, ref);
TEE_TruncateObjectData(handle, size);

TEE_OpenTASession(TEE_UUID* destination, …,  paramTypes, params[4], &session);
TEE_InvokeTACommand(session, …, commandId, paramTypes, params[4]);

Also APIs for crypto, time, and arithmetic operations…



56

GP standards summary

• Specifications provide sufficient basis for TA development
• Issues

– Application installation (provisioning) model not yet defined
– Access to TEE typically controlled by the manufacturer
– User interaction

• Open-TEE
– Original intent: virtual TEE platform for TA developers

• Implements GP interfaces: TA development w/ standard Linux tooling

– Port for Android (requested by an OEM)
– https://github.com/Open-TEE

http://www.theregister.co.uk/2015/06/30/opentee_an_open_virtual_trusted_execution_environment/

Legend:
OEM: Original Equipment Manufacturer

https://github.com/Open-TEE
http://www.theregister.co.uk/2015/06/30/opentee_an_open_virtual_trusted_execution_environment/


57

TEE standards and specifications
- First versions of standards already out
- Goal: easier development; better interoperability 

TEE entry

App

Mobile OS

REE

App

Trusted OS

Trusted 
app

Trusted 
app

TEE

Device hardware Secure Boot

REE app API

TEE app API

TEE environment

Hardware 
trust roots

Intel SGX



58

Standards summary

• Global Platform Mobile TEE specifications
– Sufficient foundation to build trusted apps for mobile devices

• TPM 2.0 library specification
– TEE interface for various devices (also Mobile Architecture)
– Extended Authorization model is (too?) powerful and expressive
– Short tutorial on TPM 2.0: Citizen Electronic Identities using TPM 2.0

• Mobiles can combine UEFI, NIST, GP and TCG standards

• Developers do not yet have full access to TEE functionality

http://arxiv.org/abs/1409.1023


INTEL SOFTWARE GUARD 
EXTENSIONS (SGX)

TEE instances



60

App 2App 1

Intel Software Guard Extensions

• HW-supported TEE 
functionality in ring-3

• Enclave code/data 
encrypted by HW

• Supports attestation 
and sealing

Hardware

App-specific TEEs

Intel Software Guard Extensions :
“Theory of Operations”: https://software.intel.com/en-us/sgx/resource-library
Academic papers: https://software.intel.com/en-us/sgx/academic-research

Enclave 1 Enclave 2

Hardware support for enclaves

OS/Hypervisor

Skip to end

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx/resource-library
https://software.intel.com/en-us/sgx/academic-research


61

OS/Hypervisor

How does SGX work?
sgx_create_enclave(path,…, &eid, …)

Call func()

Execute func()

Return

ECREATE, EADD, EEXTEND, EINIT

EENTER

EEXIT 

Hardware support for enclaves

func():

App

Skip to SGX attestation



62

Hardware   

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Dev PK)  3. Upload App

SGX

App

Operating system

SGX
driver

5Enclave

5. Allocate enclave pages 6. Load & measure enclave 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

8. Generate enclave K key

7

9. Protect enclave

8
K

Dev

SK/PK

Trusted Untrusted

Skip to SGX attestation



63

Enclave Creation – Details

En
cl

av
e

Application

EPC list

OS

CPUM
M
U

MEE
RAMEPCEPCM

# Key ID

n

n+1

1a. Request Enclave Pages1b. Allocate EP to App

2a. ECREATE(SECS)

2b. Init SECS

SE
CS

Encl. 
code

3a. EADD(*src, *dest)

3b. copy 4a. EEXTEND(*src)

4b. Hardware measures

5a. EINIT

5b. Update HASH

Trusted Untrusted

En
cl

av
e

EPC: Enclave Page Cache EPCM:  EPC Map MEE: Memory Encryption Engine 
MMU: Memory Management Unit SECS:  SGX Enclave Control Structure

K PK

Skip to SGX attestation



64

Enclave Entry and Exit – Details

En
cl

av
e

Application

EPC list

OS

CPUM
M
U

MEERAMEPCEPCM

Lock TCS, start Enclave

TC
S

ISR

EENTER(TCS, AEP)

ERESUME

EEXIT

Interrupt

Stack

Save context in Enclave

AEP

Trusted Untrusted
Resume Enclave

AEP: Async Exit Point EPC: Encl . Page Cache EPCM:  EPC Map 
ISR: Int. Service Routine MEE: Mem. Enc. Engine TCS: Thread Control Structure

Skip to SGX attestation



65

Attestation in SGX

• Local Attestation: one enclave 
verifies another on the same device

• Remote Attestation: a remote party 
verifies an enclave



66

Enclave Identity

Identity of an enclave: 
– Enclave’s initial state
– sealing identity



67

Initial State

• Enclave measurement representing: 
– Contents of enclave pages (initial 

code/data)
– Relative position of enclave’s pages

• Determined during enclave creation:
– Log activities during enclave creation
– Digest of log contents in  MRENCLAVE
– Only CPU can modify the MRENCLAVE



68

Sealing Identity

• Sealing authority (SA) signs enclaves 
prior to distribution:

– Signature on trusted (expected) value of 
initial state

– Signature and SA’s public key sent to 
devices that need to run the enclave

• During enclave creation on device:
– signed measurement

• verified using SA’s public key
• compared with local measurement 
• If matched, sealing identity (hash of the SA’s 

public key) stored in the MRSIGNER register 



69

User space

OS

SGX

Local Attestation

1. Verifier sends measurement (mVerif) to prover
2. Prover calls EREPORT, with mVerif as 

parameter, to create report
3. Prover’s report (ID and MAC generated using 

the verifier’s report key) returned
Report := IDProver, MAC(IDProver)RepKeyVerifier

4. Report transferred to verifier
5. Verifier calls EGETKEY (for reports)
6. Verifier’s report key is returned
7. MAC included in Report verified using 

received report key

Prover Enclave

EREPORT

MRENCLAVE

MRSIGNER

EGETKEY

mVerif

….

Key Hierarchy

Trusted Protected Untrusted

56

1

3

4

Verifier Enclave

2

MAC

IDProver

MAC

IDProver



70

Remote Attestation

OS

SGX

User space

Quoting Enclave

Prover Enclave

Trusted Protected Untrusted

c

Report
Report

Intel Attestation 
Service (IAS) 

1234
1. Create Report

2. Verify Report

3 & 4. Create Quote

5 & 6. Verify Quote

6

5

OK

EPID Key

Quote



71

Intel Enhanced Privacy ID (EPID)

 Group signature scheme
 Each signer
 owns a secret key
 belongs to a group

 Group has a public key PKG

 Use PKG to verify signatures 
generated by any member

Group’s public key

Group’s public key



72

Sealing

• Store persistent data securely
• Enclaves get sealing keys via EGETKEY
• Two modes:

– Sealing to Enclave-Identity
• key derived from contents of MRENCLAVE

– Sealing to Sealing-Identity
• key derived from contents MRSIGNER



Did you learn:

 What are example instances of hardware 
platform security?
 Fixed function TEEs: Trusted Platform Module 

(TPM)
 Programmable TEEs:
 ARM TrustZone
 Intel Software Guard Extensions (SGX)

 Standardized interfaces for using TEEs

Contributors: Jan-Erik Ekberg, Kari Kostiainen, Thomas Nyman, N. Asokan, Ferdinand Brasser, 
Ahmad-Reza Sadeghi



Plan for the course

 Lecture 1: Platform security basics
 Lecture 2: Case study – Android OS Platform Security
 Lecture 3: Mobile platform security
 Lecture 4: Hardware security enablers
 Lecture 5: Usability of platform security
 Lecture 6: Summary and outlook
 Lecture 7: SE Android policies
 Lecture 8: Machine learning and security
 Lecture 8: IoT Security


	Hardware Security Enablers
	You will be learning:
	Slide Number 3
	Trusted Computing Group�TPM / TPM2
	Trusted Platform Module (TPM)
	Platform Configuration Registers (PCRs)
	TPM Remote Attestation
	Sealing
	Isolated Execution with TPMs
	TPM authorization
	Authorization example: university admissions
	Authorization (policy) in TPM 1.2
	TPM 2.0
	University admissions 2.0
	Authorization (policy) in TPM 2.0
	Authorization Policy Example
	Enforcing the example policy
	TPM2 Policy Session Contents
	TPM2 Policy Command Examples
	TPM2 Deferred Policy Example
	Other policy commands 
	Policy disjunction
	Policy conjunction
	External Authorization
	Let’s try this out
	Enforcing policy
	Exercise 3
	Android Keystore
	Mobile TEE deployment
	Slide Number 30
	Key Store implementation: example
	Android Key Store
	What protects hardware platform security?
	Slide Number 34
	Slide Number 35
	ARM TrustZOne
	Slide Number 37
	Slide Number 38
	TrustZone example (1/2)
	TrustZone example (2/2) 
	TZ-enabled CPUs
	Secure state entry/exit in TrustZone
	Internet of resource constrained things
	Workhorses for small IoT devices
	Characteristics of a resource constrained IoT system
	TrustZone-M (ARMv8-M)
	Secure state entry/exist in TZ-M
	TrustZone-A vs. TrustZone-M
	Global Platform
	Global Platform (GP)
	GP TEE System Architecture
	Interaction with Trusted Application
	TEE Client API example
	TEE Internal Core API example
	Slide Number 55
	GP standards summary
	TEE standards and specifications
	Standards summary
	Intel Software Guard Extensions (SGX)
	Intel Software Guard Extensions
	How does SGX work?
	SGX – Create Enclave
	Enclave Creation – Details
	Enclave Entry and Exit – Details
	Attestation in SGX
	Enclave Identity
	Initial State
	Sealing Identity
	Local Attestation
	Remote Attestation
	Intel Enhanced Privacy ID (EPID)
	Sealing
	Did you learn:
	Plan for the course

