
Spring 2019, period III, 5 credits (BSc)

Topic 7

Matlab programming for finite element methods (FEM)

Jarkko Niiranen

Assistant Professor

Department of Civil Engineering

School of Engineering

Aalto University

Lecture 10–12, Exercise 12–14, Tuesday, January 29, 2019

YYT-C3002

Application Programming in Engineering

Notes on the course material for topic 7

2

The lecture material contains extra material (clearly indicated) which can be skipped.

The exercise material contains (1) assignments for independent studies and (2)

assignments accomplished in the exercise class as guided tours:
 Theory exercise 7.1 (independent reading task)

 Theory exercise 7.2 (independent task with guidelines and hints given in the lecture session)

 Computer exercise 7.1 (accomplished in the exercise session)

 Computer exercise 7.2 (accomplished in the exercise session)

 Computer exercise 7.3 (independent hand-calculation and programming tasks)

 Computer exercise 7.4 (independent programming task with guidelines and hints given in the exercise session)

 Computer exercise 7.5 (web tutorial with step-by-step guidelines)

The total workload of a one-period course (6 weeks plus an examination week, 133

hours, 5 cr) is divided by six weeks roughly as follows (20 hours per week):

 lectures (2 x 2 = 4 hours per week)

 self studies for the lecture material (2 x 2 = 4 hours per week)

 exercise classes (2 x 2 = 4 hours per week)

 self studies for home assignments (2 x 4 = 8 hours per week)

The leftover is dedicated to the seventh week: final examination

(3 hours) and preparation for the examination (10 hours).

YYT-C3002 / 2019 / Jarkko Niiranen

A

MOTIVATION

TO

computational engineering

4YYT-C3002 / 2018 / JN

The world is full of data – think about

 World Wide Web (www)

 Facebook (Fb)

 Internet of Things (IoT).

But which kind of data? Most often, quite simple data – think about

 www: words, pictures, videos,…

 Fb: likes for words, pictures, videos,…

 IoT: sensor values for coordinates, temperatures, hours,…

Data scientists/analysts collect, aggregate and analyze data – in order to form

information and models for design and decisions making – by developing and

utilizing algorithms (by means of mathematics, computer science and the “laws” of

applications fields (such as population growth models or economic models).

Data science utilizes the classical tools of statistics and stochastics (for analyzing the

political and economical behavior of people, for instance) and the modern trends of

data mining (DM), machine learning (ML), artificial intelligence (AI) etc.

Motivation to computational engineering

5YYT-C3002 / 2018 / JN

The tools of data analysis are – definitely – demanding and scientific but the nature

and origin of data (vote, like, purchase) is often very simple.

In computational engineering, most often, data originates from and is related to

complex physical systems (such as buildings or machines) and the ”laws” of the

application field are quite complex (such as structural or fluid dynamics).

Actually, computational engineering (such as computational mechanics or

computational fluid dynamics is in large extent different than other computational

sciences (such as data science or even computational modeling such as geometric

modeling) although the same components and terms are typically present:

 modeling and simulation

 data structures and algorithms

 data analysis and visualization

 high-performance computing

“The computational engineer uses the computer and mathematical algorithms to

solve physics-based equations to make predictions and simulate scenarios.”

Motivation to computational engineering

6YYT-C3002 / 2018 / JN

Motivation to computational engineering

BACK

TO

basic material

7.0 Familiar with Matlab or

finite element methods?

8

How much have you used Matlab

– how about FEM?

YYT-C3002 / 2017 / Jarkko Niiranen

9

Contents

1. General Matlab features for computational engineering

2. Strong form and weak form for 1D and 2D model problems

3. Finite element formulations for 1D and 2D model problems

Learning outcome

A. Understanding of the main principles of Matlab programming

B. Ability to apply Matlab features to 1D and 2D finite element model problems

References

7 Matlab programming for

finite element methods (FEM)

YYT-C3002 / 2018 / Jarkko Niiranen

10YYT-C3002 / 2016 / JN

MATLAB (MATrix LABoratory) is a (technical) computing (easy-to-use) environment

for high-performance numeric computation and visualization based on MATLAB

programming language.

7.1 General Matlab features

for computational engineering

11YYT-C3002 / 2016 / JN

MATLAB (MATrix LABoratory) is a (technical) computing (easy-to-use) environment

for high-performance numeric computation and visualization based on MATLAB

programming language.

In MATLAB, problems and solutions are expressed in familiar mathematical notation.
>> y = cos(x)

MATLAB actually is all of the following things:

 Language

 Working environment

 Graphics tools

 Mathematical function library

 Application Program Interface (API)

Remark. The Octave language is quite similar to Matlab so that most

programs are easily portable. Octave is distributed under the terms of

the GNU General Public License.

7.1 General Matlab features

for computational engineering

https://www.gnu.org/software/octave/license.html

12YYT-C3002 / 2016 / JN

MATLAB language:

 a high-level matrix/array language

 with control flow statements, functions, data structures,

input/output, and object-oriented programming features

 allows programming in small and large scale (memory and processor time)

MATLAB working environment:

 a set of tools and facilities managing the

variables in your workspace

 importing and exporting data

 tools for developing, managing, debugging,

and profiling M-files (applications)

MATLAB Graphics tools:

 high-level commands for two-dimensional and three-dimensional data

visualization, image processing, animation, and presentation graphics

 low-level commands for customizing the appearance of graphics

 allows building Graphical User Interfaces (GUI) on applications

7.1 General Matlab features

for computational engineering

13YYT-C3002 / 2016 / JN

The MATLAB mathematical function library:

 a vast collection of computational algorithms

 elementary functions like sum, sine, cosine, and

complex arithmetic

 more sophisticated functions like matrix inverse,

matrix eigenvalues, Bessel functions, and fast Fourier transforms

The MATLAB Application Program Interface (API):

 library allowing one to write C and Fortran programs that interact with MATLAB

(call C, C++, or Fortran programs, defined as MEX-files, from the MATLAB

command line as if they were built-in functions)

 facilities for calling routines from MATLAB

(dynamic linking)

 facilities for calling MATLAB as a computational

engine facilities for reading and writing MAT-files

(which allows one to access and change variables

directly in a MAT-file, without having to load the

variables into memory)

7.1 General Matlab features

for computational engineering

HISTORY

extra material

15YYT-C3002 / 2016 / JN

MATLAB was originally written to provide easy access to matrix software developed

by the LINPACK and EISPACK projects, which together represent the state-of-the-art

in software for matrix computation.

7.1 General Matlab features

for computational engineering

16YYT-C3002 / 2018 / JN

 LINPACK is a software library for performing numerical linear algebra on digital

computers. It was written in Fortran by Jack Dongarra, Jim Bunch, Cleve Moler,

and Gilbert Stewart, and was intended for use on supercomputers in the 1970s

and early 1980s.

 EISPACK, written in Fortran as well, is a software library for numerical

computation of eigenvalues and eigenvectors of matrices.

 Both packages originated from

Argonne National Laboratory,

has always been free, and aims to be

portable, robust and reliable.

7.1 General Matlab features

for computational engineering

https://en.wikipedia.org/wiki/Argonne_National_Laboratory

17YYT-C3002 / 2018 / JN

 LAPACK (Linear Algebra Package) is a standard software library for numerical

linear algebra.

 The original goal of the LAPACK project was to make the widely used EISPACK

and LINPACK libraries run efficiently on shared-memory vector and parallel

processors.

 LAPACK routines are written so that as much as possible of the computation is

performed by calls to the Basic Linear Algebra Subprograms (BLAS).

 The LAPACK project has been sponsored

in part by MathWorks and Intel.

7.1 General Matlab features

for computational engineering

http://www.mathworks.com/
https://software.intel.com/en-us/intel-mkl

BACK

TO

basic material

19YYT-C3002 / 2016 / JN

MATLAB fundamentals

In MATLAB, every object is a complex matrix in which real entries are displayed as

real and integer as integer (numbers are 1 × 1 matrices).

Variables.

 no need to (cannot) declare in advance

 no need to specify type

 can switch from one type to another

 assign value with '='

To define a complex number, use either i or j:
>> c=2+i*7

c = 2.0000 + 7.0000I

>> d=(1+j*3)^3

d = -26.0000 -18.0000i

To access the real and imaginary parts, use the commands real and imag.

7.1 General Matlab features

for computational engineering

20YYT-C3002 / 2016 / JN

Vectors.

A vector of equispaced elements can be generated using the general format:
[{beginning number} : {step increment} : {last number}]

If the step is 1 then it can be omitted:
[{beginning number} : {last number}]

To define a row or column vector, respectively, with three entries:
>> x=[10 20 30]

x =

10 20 30

>> x=[10; 20; 30]

x =

10

20

30

You can define a negative incremental step size, if the beginning number is smaller

than the last number.

7.1 General Matlab features

for computational engineering

21YYT-C3002 / 2016 / JN

Matrices.

To define an n × m matrix A:
>> A=[1 2 3; 4 5 6]

A =

1 2 3

4 5 6

To find the size (i.e, the number of rows and columns) of a matrix:
>> [n,m]=size(A);

Operations matrix algebra can be defined in a natural way (with proper dimensions):
>> A*B;

>> A–B;

>> A+B;

Many other commands exist too:
>> transpose(A); A’;

>> inv(A)

>> det(A)

>> eig(A)

7.1 General Matlab features

for computational engineering

22YYT-C3002 / 2016 / JN

For defining submatrices:

 the ith row is A(i,:)

 the jth column is A(:,j)

 A(i:j,p:q) gives a part of the matrix A (with i<j<n, p<q<m)

 A([i k j],[p q]) gives a part of the matrix A (with i,j,k<n, p,q<m)

Try the following commands:
>> B=eye(3)

>> C=ones(2,3)

>> D=diag([1 5 6 8])

>> E=zeros(3,2)

>> F=rand(1,5)

>> G=randn(5,1)

In many applications, as in finite element methods, system matrices are sparse

matrices, or even band matrices. Therefore, for efficiency, one needs to define them

in the following form:
>> A = sparse(n,m)

7.1 General Matlab features

for computational engineering

23YYT-C3002 / 2016 / JN

Hadamard (or “dot”) operations.

Hadamard multiply .* works as

C=A.*B has entries c(i,j)=a(i,j)b(i,j)
>> A = [2 2; 2 2];

>> C = A.*A

C =

4 4

4 4

Hadamard divide ./ works as

C=A./B has entries c(i,j)=a(i,j)/b(i,j)

C=A.\B has entries c(i,j)=b(i,j)/a(i,j)

Hadamard exponentiate .^ works as

C=A.^B has entries c(i,j)=a(i,j)^{b(i,j)}

C=A.^r has entries c(i,j)=a(i,j)^r , where r is a number.

C=r.^A has entries c(i,j)=r^{a(i,j)}

7.1 General Matlab features

for computational engineering

24YYT-C3002 / 2016 / JN

Vectorization.

Many tasks that may be implemented with loop structures can be more efficiently

executed with vectorization:

Let us Generate a signal function y = sin(x)^2:
>> x=0:pi/12:4*pi;

>> y=sin(x).^2;

Let's view the signal function pointwise:
>> stem(x,y)

Let’s label the axis and give a title for the figure:
>> xlabel('x'); ylabel('y'); title('Signal Function')

A. Let’s calculate the average signal

value by a for-loop:
>> S=0;

>> for k=1:length(y)

S=S+y(k);

end

avg=S/length(y)

B. Let’s calculate the average signal

value more efficiently by ”vectorizing”:
>> avg=sum(y)/length(y)

7.1 General Matlab features

for computational engineering

25YYT-C3002 / 2016 / JN

Printing to screen.

1. Type the variable or expression without semicolon.
>> x = 0:0.2:1

x =

0 0.2000 0.4000 0.6000 0.8000 1.0000

2. Use the disp function.
>> disp(x)

3. Use fprintf (sends output to screen or a file).
>> fprintf(1, 'value of x is %7.1f \n', x)

value of x is 0.0

value of x is 0.2

value of x is 0.4

value of x is 0.6

value of x is 0.8

value of x is 1.0

4. Use sprintf (sends output to a string variable) .

7.1 General Matlab features

for computational engineering

26YYT-C3002 / 2016 / JN

File import/export.

Variables can be saved from the Matlab workspace with the save command:
>> save filename

The file will be a MAT-file (*.mat) and is readable only by Matlab.

To import the variables use the load command:
>> load filename

The file must be in Matlab's path (see the path command) or the current directory

should be set to the directory containing the file (see the M-file help).

For importing data from files, see a list of commands used for io:
>> help iofun

These low-level commands deal with ASCII files, etc.

You can check the current directory and see a list of available *.m and *.mat files:
>> pwd

>> what

You can change the directory the cd command.

7.1 General Matlab features

for computational engineering

27YYT-C3002 / 2016 / JN

Printing to a file.

Open a file, write to it, close the file:
>> fid = fopen(filename, 'w')

>> fprintf(fid, 'string %s and integer %d\n', str, int)

>> fclose(fid)

Create a text file called exp.txt containing a short table of the exponential function.
>> x = 0:0.2:1;

>> y = [x; exp(x)];

>> fid = fopen('exp.txt','w');

>> fprintf(fid,'%6.2f %12.8f\n',y);

>> fclose(fid);

Examine the contents of exp.txt:
>> type exp.txt

0.00 1.00000000

0.20 1.22140276

0.40 1.49182470

0.60 1.82211880

0.80 2.22554093

1.00 2.71828183

7.1 General Matlab features

for computational engineering

28YYT-C3002 / 2018 / Jarkko Niiranen

Operators.

There are lots of mathematical operators defined:

just type help matlab/ops for a list of the basic operators.

Built-in functions.

There are lots and lots and lots of mathematical built-in

functions: just type help matlab/elfun for the list of functions.

Efficient coding requires using operators and built-in functions.

7.1 General Matlab features

for computational engineering

29YYT-C3002 / 2016 / JN

Elementary functions are evaluated in an element/point/entry wise sense:
>> x=linspace(0,10*pi,200);

>> y=sin(x);

>> plot(y)

A list of commands worth checking out:
>> help conv

>> help sum

>> help roots

>> help fft

>> help fliplr

>> help sound

>> help max

>> help min

>> help abs

>> help length

>> help real

>> help for

>> help num2str

>> help disp

>> help pause

>> help whos

7.1 General Matlab features

for computational engineering

30YYT-C3002 / 2016 / JN

Toolboxes.

MATLAB features a family of application-specific solutions called toolboxes –

comprehensive collections of MATLAB functions (M-files).

PDEToolbox is a simple tools for simple model problems of Partial Differential

Equations (PDE) solved by using simple tools of Finite Element Methods (FEM).

M-files.

For writing your own programs, use m-files:

 use any regular ASCII text editor

 Open a file with the extension *.m

 Edit line by line the sequence of Matlab commands you want to include in your

program.

 Save the file and execute the program by typing the name of the file (without .m)

on the Matlab command line.

7.1 General Matlab features

for computational engineering

31YYT-C3002 / 2016 / JN

Example program written in the file signals.m:

% This is a program that generates a clean and noisy signal

x=linspace(0,10*pi,200);

% Compute and plot the clear signal in Fig. 1

y=sin(x);

figure(1); plot(x,y); hold on;

% Compute the noise

z=0.3*rand(1,200);

% Add the noise to the signal

y=y+z

% Plot the noisy signal in Fig.1

plot(x,y); grid

% Finalize the figure

title('Clean And Noisy Sinusoid')

xlabel('x')

ylabel('y')

hold off;

Hint. For seeing the time elapsed for certain parts of your program code:
>> time = clock; x = A*b; pause(10); time = etime(clock,time)

>> t = cputime; x = A*b; e = cputime - t

7.1 General Matlab features

for computational engineering

32YYT-C3002 / 2016 / JN

User-defined functions.

User defined functions work just like commands in Matlab.

Functions have the following format:
function [returned_variable_1, returned_variable_2, …]= function_name(arugments)

The variables defied in a function are local and only available within the function,

see:
>> help function

Example saved in file stat.m:
function [mean,stdev] = stat(x)

n = length(x);

mean = sum(x) / n;

stdev = sqrt(sum((x - mean).^2)/n);

The usual programming language statements can be used in M-files:
for-end, if-else-break-end, while-end.

7.1 General Matlab features

for computational engineering

7.2 Strong forms and weak forms

for 1D and 2D model problems

33

LNLEAu

uu

LxxbxEAu

))('(nBC)-(3

)0(eBC)-(2

0),()(''DE)-(1

0

)(),(),(xbxAxE

)(, xux
LN

L0

Strong form. The differential equation and boundary conditions for an elastic

bar/rod/column in tension/compression read as follows: Find such thatu

YYT-C3002 / 2018 / Jarkko Niiranen

7.2 Strong forms and weak forms

for 1D and 2D model problems

34

LNLEAu

uu

LxxbxEAu

))('(nBC)-(3

)0(eBC)-(2

0),()(''DE)-(1

0

data).boundary rcenatural/fo(given forcepoint end axial

data)boundary geometricessential/(given nt displacemepoint end axial

data) lgeometrica(given length

data) loading(given loadbody axial

data) lgeometrica(given area sectional-cross

 data) material(given modulus sYoung'

 function)(unknown nt displaceme axial

0

LN

u

L

b

A

E

u

Strong form. The differential equation and boundary conditions for an elastic

bar/rod/column in tension/compression read as follows: Find such thatu

YYT-C3002 / 2017 / Jarkko Niiranen

)(),(),(xbxAxE

)(, xux
LN

L0

35

Weak form. Find such that it satisfies and

for all test functions satisfying .

Remark. Why do we formulate the problem in a weak, or variational, form?

The finite element method (FEM) is based on the weak form which actually present

the problem in a form of energy balance:

1. the left hand side corresponds to strain energy (stored energy, internal energy)

(the derivative of the axial displacement is the axial strain);

2. the right hand side corresponds to loading energy (external energy)

(work done by a force equals to the product of the force and the corresponding

displacement).

7.2 Strong forms and weak forms

for 1D and 2D model problems

0)0(uu

0)0(vv

u

,d)(d''
00

L

L

L

xvbLvNxvEAu

YYT-C3002 / 2018 / Jarkko Niiranen

HOW TO

DERIVE THE WEAK FORM?

extra material

37

0

00

)0()2(

d)()()(d)('))('()1(

uu

xxvxbLvNxxvxEAu

L

L

L

0. Start from the differential equation (1) and use the boundary conditions (2) and (3):

LNLEAu

uu

LxxbxEAu

))('()3(

)0()2(

0)()('')1(

0

7.2 Strong forms and weak forms

for 1D and 2D model problems

What shall we do

with the differential equation and the boundary conditions

– one page with a few lines is enough –

in order to reach the integral form below?

Do some problem solving work

for a few minutes…

YYT-C3002 / 2018 / Jarkko Niiranen

42

L

L

L

xvbLvNxvEAu
00

d)(d''

1. Multiply the differential equation (1) by a (smooth) test function (specified later):

2. Integrate over the domain (interval):

LL

xxvxbxxvxEAu
00

d)()(d)()()''(

 LxxvxbxvxEAuxbxEAu 0),()()()('')()(''

3. Integrate by parts (the left hand side) for moving one derivative from u to v:

LL

xvbxvEAuvEAuLvLEAu
00

dd'')0()0)('()())('(

4. Utilize the natural boundary condition (3):

5. Set a zero essential boundary condition (2) for the test function: 0)0(v

7.2 Strong forms and weak forms

for 1D and 2D model problems

LNLEAu))('(

YYT-C3002 / 2017 / Jarkko Niiranen

43

Weak form. Find such that it satisfies and

for all satisfying .

Remark. Note that the solution and the test function, respectively, have to

satisfy the boundary conditions and, in principle,

regularity conditions as well:

Then the solution and the test function are called kinematically admissible.

Remark. By starting from the weak form, we could correspondingly derive the

strong form (integrating by parts ”backwards”).

.d)'(,d)'(
0

2

0

2
LL

xvxu

7.2 Strong forms and weak forms

for 1D and 2D model problems

0)0(uu

0)0(vv

u

0)0(,)0(0 vuu

,d)(d''
00

L

L

L

xvbLvNxvEAu

YYT-C3002 / 2018 / Jarkko Niiranen

BACK

TO

basic material

46

Generalization of the 1D bar extension weak form to 1D heat diffusion:

Generalizations of the 1D heat diffusion weak form to 2D heat diffusion:

0TT

fk,

7.2 Strong forms and weak forms

for 1D and 2D model problems

 dddxd''
00

vfvTkvfxvkT

LL

0TT

Lfk ,,

LLLL

vfxvkTxvbxvEAu
0000

dxd''dd''

0uu

LbEA ,,

0TT

Lfk ,,

YYT-C3002 / 2018 / Jarkko Niiranen

A

MOTIVATION

FROM

exercises…

Home exercise 7.2

48

Let us consider a vertically gravity-loaded (statically determined) beam with bending

moment M as the primary variable:

Formulate the weak form of the problem (serving as a basis for FE formulations).

Hint: First, find out the strong form, i.e., the differential equation

and boundary conditions, of the problem by recalling your previous

studies (or Wikipedia).

Since the strong form of the problem is analogous to the one of the

bar (or the heat diffusion) problem, you can simply imitate the weak

form of the bar problem (or the heat diffusion problem).

x

0x Lx

, , ,B H L

0MM

f
Mx,

0MM

YYT-C3002 / 2018 / Jarkko Niiranen

49

(i) Implement the finite element method with linear basis functions for the

vertically loaded beam in MATLAB with the following initial data: …

Possible computer exercise − Matlab

element 2element 1

discretization

error

YYT-C3002 / 2017 / Jarkko Niiranen

50

(i) Implement the finite element method with linear basis functions for the

vertically loaded beam in MATLAB with the following initial data: …

Possible computer exercise − Matlab

YYT-C3002 / 2017 / Jarkko Niiranen

51

(i) Implement the finite element method with linear basis functions for the

vertically loaded beam in MATLAB with the following initial data: …

Possible computer exercise − Matlab

YYT-C3002 / 2017 / Jarkko Niiranen

52

(i) Implement the finite element method with linear basis functions for the

vertically loaded beam in MATLAB with the following initial data: …

Possible computer exercise − Matlab

element 1 element 2 element 4 element 5element 3

YYT-C3002 / 2017 / Jarkko Niiranen

53

(i) Implement the finite element method with linear basis functions for the

vertically loaded beam in MATLAB with the following initial data: …

Possible computer exercise − Matlab

YYT-C3002 / 2017 / Jarkko Niiranen

BACK

TO

basic material

7.3 Finite element formulations

for 1D and 2D model problems

55

1D bar in tension/compression:

Divide the solution interval (domain) into subintervals (elements) with

nodes and element size :

In each element, the displacement field is approximated by (linear) polynomial

basis functions which are now functions of the x-coordinate.

ien

1ix ix Lxn 00 x

ie
1e ne

ix
1 iii xxh

YYT-C3002 / 2017 / Jarkko Niiranen

i 1i

ix 1ix Lxn 00 x

0
1 n

56

This results in an equation system (initialize K = sparse(m,m)in Matlab etc.)

with the stiffness matrix K (computable for i,j = 1, …, n), force vector f (computable

for i = 1, …, n) and the displacement vector d (unknown for i = 1, …, n):

Remark. The stiffness matrix is (very often) symmetric (due to derivative orders) and

its entries are concentrated in a narrow diagonal band forming a band matrix (due to

local trial and test functions). These features can can be utilized in computer

impelementation − implying small amounts of memory needs and quick processing.

Remark. Test and trial functions have to be (only) once locally differentiable (and will

be then integrated over the domain) and (only) locally evaluable on the boundary.

fdK

 .,d
d

d

d

d
)(d,

,d'',

0

0
0

0

0

j

L

i
iL

L

iii

L

jiijij

dx
x

AE
x

uLNxbff

xEAKK

df

K

7.3 Finite element formulations

for 1D and 2D model problems

YYT-C3002 / 2017 / Jarkko Niiranen

57

7.3 Finite element formulations

for 1D and 2D model problems

ie

jx

ie

jx

ie

jx
1x 1x

1x

Generalization to 2D heat diffusion:

Divide the solution area (domain) into subdomains, elements (triangles,

quadrangles, …) with nodes and element size :

or or or …

In each element, the temperature field is approximated by (linear) polynomial basis

functions.

All functions are now functions of the plane coordinates x and y (instead of x alone).

Accordingly, all integrals are now domain integrals (instead of line integrals).

ien
),(jjj yxx)diam(ii eh

mx mx
mx

YYT-C3002 / 2018 / Jarkko Niiranen

58

This finally results (details in the extra material) in an algebraic equation system

with the ”stiffness” matrix (computable for i,j = 1, …, m-p), ”force” vector (computable

for i = 1, …, m-p) and the ”displacement” vector (unknown for i = 1, …, m-p):

Remark. The final equation system – matrix times vector equals vector – is

analogous to the 1D case. This is one of the powerful features of the finite element

method (or mathematics in general).

fdK

 .

,)(dsd,

,d)(,

00

j

ijjiiii

ijijij

d

KTqfff

kKK

Tjq

d

xf

K

x

7.3 Finite element formulations

for 1D and 2D model problems

YYT-C3002 / 2018 / Jarkko Niiranen

HOW TO

DERIVE THE FINITE ELEMENT SYSTEM?

extra material

63

1. Divide the solution interval (domain) into subintervals (elements)

with nodes and the element size :

2. Choose a trial function for the finite element approximation as a sum

with suitable local basis functions of some polynomial order (now linear)

The unknown scalar values are called the degrees of freedom.

j

n

j jnnh dxdxdxdxxu)()()()()(
01100

i

i 1i

ix 1ix Lxn 00 x

0
1 n

ijji x)(

ien

ix

)(ihi xud

1ix ix Lxn 00 x

ie
1e ne

7.3 Finite element formulations

for 1D and 2D model problems

1 iii xxh

YYT-C3002 / 2017 / Jarkko Niiranen

67

Ensure that the trial function satisfies the essential boundary conditions:

3. Choose a test function of a similar form (Galerkin method) with the

corresponding condition:

4. Insert the functions − trial and test − into the weak form:

L

i

n

i ii

n

i iL

L

i

n

i ij

n

j j

L

L

L

h

xcbcLNxcdEA

xvbLvNxvEAu

0

00

0

00

00

d)(d''

d)(d''

0)0(0

)()()()()(

0

01100

cv

cxcxcxcxxv i

n

i inn

011000)0()0()0()0(dddduu nnh

7.3 Finite element formulations

for 1D and 2D model problems

YYT-C3002 / 2017 / Jarkko Niiranen

68

fdK

 .,d
d

d

d

d
)(d,

,d'',

0

0
0

0

0

j

L

i
iL

L

iii

L

jiijij

dx
x

AE
x

uLNxbff

xEAKK

df

K

7.3 Finite element formulations

for 1D and 2D model problems

This results in an equation system (initialize K = sparse(m,m)in Matlab etc.)

with the stiffness matrix K (computable for i,j = 1, …, n), force vector f (computable

for i = 1, …, n) and the displacement vector d (unknown for i = 1, …, n):

YYT-C3002 / 2017 / Jarkko Niiranen

72

5. Use an appropriate solver for the equation system (d = K\f in Matlab):

6. Recover (and postprocess) the stress quantities and visualize:

7. Evalute possible error indicators, change the discretization (steps 1−4) ... rerun ...

Remark. Steps 1−7 are automated − by means of mathematics and programming:

1. Elements 5. Equation solution

2−3. Basis functions 6. Visualization

4. Matrix entries 7. Error evaluation
iij fK ,

)(xuh

ie

i

fdK

)(

)(
)()(')()()'()(

1 xA

xN
xdxEAxEAuxN h

hj

n

j jhh

j

n

j jh dxxu)()(
1

1

 fKd

7.3 Finite element formulations

for 1D and 2D model problems

YYT-C3002 / 2017 / Jarkko Niiranen

QUESTIONS?

ANSWERS”

LECTURE BREAK!

