YYT-C3002
Application Programming in Engineering

Spring 2019, period Ill, 5 credits (BSc)

Topic 7
Matlab programming for finite element methods (FEM)

Jarkko Niiranen
Assistant Professor

Department of Civil Engineering
School of Engineering
Aalto University

Lecture 10-12, Exercise 12-14, Tuesday, January 29, 2019

Notes on the course material for topic 7

The lecture material contains extra material (clearly indicated) which can be skipped.

The exercise material contains (1) assignments for independent studies and (2)

assignments accomplished in the exercise class as guided tours:

» Theory exercise 7.1 (independent reading task)

» Theory exercise 7.2 (independent task with guidelines and hints given in the lecture session)

v/ Computer exercise 7.1 (accomplished in the exercise session)

v/ Computer exercise 7.2 (accomplished in the exercise session)

» Computer exercise 7.3 (independent hand-calculation and programming tasks)

» Computer exercise 7.4 (independent programming task with guidelines and hints given in the exercise session)
» Computer exercise 7.5 (web tutorial with step-by-step guidelines)

The total workload of a one-period course (6 weeks plus an examination week, 133
hours, 5 cr) is divided by six weeks roughly as follows (20 hours per week):
» lectures (2 x 2 = 4 hours per week)
» self studies for the lecture material (2 x 2 = 4 hours per week)
» exercise classes (2 x 2 = 4 hours per week)
» self studies for home assignments (2 x 4 = 8 hours per week)
The leftover is dedicated to the seventh week: final examination
(3 hours) and preparation for the examination (10 hours).

YYT-C3002 / 2019 / Jarkko Niiranen 2

A
MOTIVATION
TO

computational englneering

Motivation to computational engineering

The world is full of data — think about
» World Wide Web (www)

» Facebook (Fb)

» Internet of Things (loT).

But which kind of data? Most often, quite simple data — think about
» www: words, pictures, videos,...

> Fb: likes for words, pictures, videos,...

> loT: sensor values for coordinates, temperatures, hours,...

Data scientists/analysts collect, aggregate and analyze data — in order to form
information and models for design and decisions making — by developing and
utilizing algorithms (by means of mathematics, computer science and the “laws” of
applications fields (such as population growth models or economic models).

Data science utilizes the classical tools of statistics and stochastics (for analyzing the
political and economical behavior of people, for instance) and the modern trends of
data mining (DM), machine learning (ML), artificial intelligence (Al) etc.

YYT-C3002 /2018 /JN 4

Motivation to computational engineering

The tools of data analysis are — definitely — demanding and scientific but the nature
and origin of data (vote, like, purchase) is often very simple.

In computational engineering, most often, data originates from and is related to
complex physical systems (such as buildings or machines) and the "laws” of the
application field are quite complex (such as structural or fluid dynamics).

Actually, computational engineering (such as computational mechanics or
computational fluid dynamics is in large extent different than other computational
sciences (such as data science or even computational modeling such as geometric
modeling) although the same components and terms are typically present:

» modeling and simulation

» data structures and algorithms
» data analysis and visualization
» high-performance computing

“The computational engineer uses the computer and mathematical algorithms to
solve physics-based equations to make predictions and simulate scenarios.”

YYT-C3002 /2018 / JN 5

Motivation to computational engineering

~ Equation

Equation form:

[Study controlled - l

Show equation assuming:

[Study 1. Time Dependent ']

..] i d*u L
Sizing optimization o V.o=Fy

JaT

g:C,E

+ pCpuNT =V - (kVT) +9Q

—

Last Time
Weighted Residual Formulations

Shape optimization

rential operator

? —

fu

Topology optimization

YYT-C3002 /2018 / JN 6

1al

7.0 Familiar with Matlab or
finite element methods?

Demao of the capabilities of the ARROW function in 3-D

® —>qlx)=ax |—[>- R
[
————— X
4
2
N - ']\ %) r’;“\
, 0=x; (U 2) x3 @) xeL
® i L i ® i L]
) 1 1 5 hy S 3 1
-6 3
3 e Ny
-+ laesl minimur- g =
o gmb_aimmmurﬁ'
a1 o
2 2
y -3 3 % ‘
1 2 3 4

How much have you used Matlab
— how about FEM?

node 27 at §=n=(=0

20006

{4006

~

56006

8e.006.

® displacement node
O pore pressure node SN

YYT-C3002 / 2017 / Jarkko Niiranen 8

/ Matlab programming for
finite element methods (FEM)

Contents

1. General Matlab features for computational engineering

2. Strong form and weak form for 1D and 2D model problems
3. Finite element formulations for 1D and 2D model problems

Learning outcome

A. Understanding of the main principles of Matlab programming

B. Ability to apply Matlab features to 1D and 2D finite element model problems
References

Wg. Can Do It!

One-Dimensional
Finite Elements

Finite
Element

MATLAB Codes

for Finite

Procedures "
- - Element Analysis

YYT-C3002 / 2018 / Jarkko Niiranen 9

/.1 General Matlab features
for computational engineering

MATLAB (MATrix LABoratory) is a (technical) computing (easy-to-use) environment

for high-performance numeric computation and visualization based on MATLAB

programming language.

4

@ ED:' L L] Find Fiies & E

MATLABE R2013a

SHORTCUTS FIGURE

- oEEN|

9 = @ | El IE E E | IE E EISearch Diocumentation DE

f ritie('z")

Lz, New Variable |« Analyze Code @ {0} Preferences 2 (% Community
Open Variable « t> Run and Time Set Path = uest Support
New New Open |i-|Compare Import Save 5 = &) Layout @ B S
Seript - Data [/ Clear v [/ ClearCommands v w i Paralel v v 0]AddOns v
FILE VARIABLE CODE ENVIRONMENT REEQURCES
<A = & & L v G » ProgramFiles » MATLAB » R2D13a # v P
Current Folder @ |=7 Editor - cplxdemo.m) Figures - Figure 1 Workspace G
MName = Figure 1 = Name = Value
appdata Z Ba ans 2
bin BE‘Z <31x61 complex dou...
etc
extern
help
java
lib
licenses BT
el
er T
notebook :
polyspace
resources < >
rhw
runtime Command History @
imulink EF¥-— ZUL3-UB-1% 186129 —— -
s ~Ver
toolbox ~MEmOTY
uninstall ~gpuDevice
B \lc:nstebbdc:t Command Window = ~mupadwelcome
._‘Ea:n = et CPLXGRID generates a polar coordinate complex grid. Z2 = CPLXGRID(m) i= an 2 ~edit cplxdemo
|| trademarks, . I
(m+1) -by- (2*m+1) complex polar grid. wedit cplugrid.m
Details R
~doc
~hel. lot
colormap (hav (64)) elp plo
Select a file to view details Z = cplxgrid(30): ~clear
cplumap(z, 2) 1+l
v echodemo cplxdemo v

YYT-C3002 /2016 /JN

10

/.1 General Matlab features
for computational engineering

MATLAB (MATrix LABoratory) is a (technical) computing (easy-to-use) environment
for high-performance numeric computation and visualization based on MATLAB
programming language.

In MATLAB, problems and solutions are expressed in familiar mathematical notation.
>> y = cos (x)

MATLAB actually is all of the following things:

» Language

» Working environment
» Graphics tools o
» Mathematical function library MAI LAB

> Application Program Interface (API) e inel S

Remark. The Octave language is quite similar to Matlab so that most -
programs are easily portable. Octave is distributed under the terms of
the GNU General Public License.

YYT-C3002 /2016 / IN 11

https://www.gnu.org/software/octave/license.html

a=1;

MATLAB language: it amt

. . disp(’Is 1?)
> a high-level matrix/array language elsediifs:a(:i N
> with control flow statements, functions, data structures, else

disp(’I don’’t know’)

iInput/output, and object-oriented programming features end
» allows programming in small and large scale (memory and processor time)

MATLAB working environment:
> a set of tools and facilities managing the

variables in your workspace e e [
» importing and exporting data e | e
» tools for developing, managing, debugging, | - i
and profiling M-files (applications) . s

MATLAB Graphics tools:
» high-level commands for two-dimensional and three-dimensional data -
visualization, image processing, animation, and presentation graphics
» low-level commands for customizing the appearance of graphics il Al
» allows building Graphical User Interfaces (GUI) on applications T

YYT-C3002 /2016 / IN 12

The MATLAB mathematical function library: i e
. . . sin(x) Sine sign(x) Signum function
» a vast collection of computational algorithms vanCo - Tangent mex() Masimum value
acos(x) Arc cosine min (x) Minimum value
H H : H asin(x) Arc sine ceil(x) Round towards +~c
» elementary functions like sum, sine, cosine, and nhy Bwtmgnt Ml Sntum
. . exp(x) Exponential round(x) Round to nearest integer
CO m p I eX arlth m etl C sqrt (x) S}]uaro root rem(x) Remainder after division
log(x) Natural logarithm | angle(x) Phase angle
> m O re SO p h isti Cated fu n Cti O n S | i ke m atrix i nve rse log10(x) Common logarithm | conj (x) Complex conjugate
]

matrix eigenvalues, Bessel functions, and fast Fourier transforms

The MATLAB Application Program Interface (API):

> library allowing one to write C and Fortran programs that interact with MATLAB
(call C, C++, or Fortran programs, defined as MEX-files, from the MATLAB
command line as if they were built-in functions)

> facilities for calling routines from MATLAB e
(dynamic linking)

» facilities for calling MATLAB as a computational
engine facilities for reading and writing MAT-files
(which allows one to access and change variables
directly in a MAT-file, without having to load the
variables into memory)

A I'r’"’-x\];

YYT-C3002 /2016 / IN

13

1al

MATLAB was originally written to provide easy access to matrix software developed
by the LINPACK and EISPACK projects, which together represent the state-of-the-art
in software for matrix computation.

2 »
g ® Matlab History

In the 1970’s, Cleve Moler “Professor of Math & Computer
Science, Chief Author of MatLab and one of the Founders of
Mathworks.Inc” participated in developing (EISPACK) and
(LINPACK). Those were collection of Fortran subroutines for
solving linear equations and Eigen value problems.

Later, when teaching courses in mathematics, Moler wanted
his students to be able to use LINPACK and EISPACK
without requiring knowledge of Fortran, so he developed the

first MATLAB in 1977 as an interactive system to access
LINPACK and EISPACK.

YYT-C3002 /2016 / IN 15

» LINPACK is a software library for performing numerical linear algebra on digital
computers. It was written in Fortran by Jack Dongarra, Jim Bunch, Cleve Moler,
and Gilbert Stewart, and was intended for use on supercomputers in the 1970s
and early 1980s.

» EISPACK, written in Fortran as well, is a software library for numerical
computation of eigenvalues and eigenvectors of matrices.

» Both packages originated from
Argonne National Laboratory,
has always been free, and aims to be
portable, robust and reliable.

EISPACK and LINPACK

+ EISPACK
¥ Design for the algebraic eigervalue problem,
Ax = Ax and Ax = ABx.
»work of J. Wikinson and colleagues in the 70%s.

»Fortran 77 software based on translation of
ALGOL.

+ LINPACK

¥ Design for the solving systems of equations,
Ax =b.
¥ Fortran 77 software using the Level1 BLAS.

YYT-C3002 /2018 / JN 16

https://en.wikipedia.org/wiki/Argonne_National_Laboratory

» LAPACK (Linear Algebra Package) is a standard software library for numerical
linear algebra.

» The original goal of the LAPACK project was to make the widely used EISPACK
and LINPACK libraries run efficiently on shared-memory vector and parallel
processors.

» LAPACK routines are written so that as much as possible of the computation is
performed by calls to the Basic Linear Algebra Subprograms (BLAS).

» The LAPACK project has been sponsored LAPACK
in part by MathWorks and Intel.

+ Linear Algebra library in Fortran 77 (binding to ¢
» State of the art numerical routines
» Extemsive coverage
> Solution of systems of equations
[Application] > Solution of eigenvalue problems
+ Block algorithms
» Parameterized for memory hierarchies

ScaLAPACK

A Band Matrix » Built on the Level 1, 2, and 3 BLAS
Aﬁ = f_}' > Efficient on a wide range of computers
" » RISC, Vector, SMPs
+ User interface provides similar calls in:
N > Single, Double, Complex, Double Complex
+ Used by vendors: HP-48& to Terafiop/s Machines

YYT-C3002 /2018 / JN 17

http://www.mathworks.com/
https://software.intel.com/en-us/intel-mkl

1al

MATLAB fundamentals

In MATLAB, every object is a complex matrix in which real entries are displayed as
real and integer as integer (numbers are 1 x 1 matrices).

Variables.

» no need to (cannot) declare in advance
» no need to specify type

» can switch from one type to another

» assign value with '='

To define a complex number, use either i or j:
>> c=2+1i*7

c = 2.0000 + 7.00001

>> d=(1+3*3) "3

d = -26.0000 -18.00001

To access the real and imaginary parts, use the commands real and imag.

YYT-C3002 /2016 /JN 19

Vectors.
A vector of equispaced elements can be generated using the general format:

[{beginning number} : {step increment} : {last number}]
If the step is 1 then it can be omitted:
[{beginning number} : {last number}]

To define a row or column vector, respectively, with three entries:
>> x=[10 20 30]

X:

10 20 30
>> x=[10,; 20; 30]

X:

10
20
30

You can define a negative incremental step size, if the beginning number is smaller
than the last number.

YYT-C3002 /2016 / IN 20

Matrices.

To define an n x m matrix A:
>> A=[1 2 3; 4 5 6]

1 2 3
4 5 6

To find the size (i.e, the number of rows and columns) of a matrix:

>> [n,m]=size (A);

Operations matrix algebra can be defined in a natural way (with proper dimensions):
>> A*B;
>> A-B;
>> A+B;

Many other commands exist too:
>> transpose (A); A’;

>> inv (A)

>> det (A)

>> eig (A)

YYT-C3002 /2016 / IN 21

For defining submatrices:

» the ith row is A(i,:)

» the jth column is A(:,))

> A(iz],p:q) gives a part of the matrix A (with i<j<n, p<gq<m)

> A([i kjl,[p q]) gives a part of the matrix A (with i,j,k<n, p,q<m)

Try the following commands:
>> B=evye (3)

>> C=ones (2, 3)

>> D=diag([1 5 6 8])

>> E=zeros (3, 2)

>> F=rand(1l,5)

>> G=randn (5, 1)

In many applications, as in finite element methods, system matrices are sparse

matrices, or even band matrices. Therefore, for efficiency, one needs to define them

in the following form:

>> A = sparse(n,m)

YYT-C3002 /2016 /JN

22

Hadamard (or “dot”) operations.
Hadamard multiply .* works as
c=a.+*B has entries c(i,j)=a(i,))b(i,))
>> A = [2 2; 2 2]1;

>> C = A.*A

C:

4 4
4 4

Hadamard divide ./ works as
c=a./8 has entries c(i,j)=a(i,j)/b(i,))
c=a.\5 has entries c(i,j)=b(i,j)/a(i,))

Hadamard exponentiate . works as
c=a.~B has entries c(i,))=a(i,j){b(i,))}

c=a.~r has entries c(i,j))=a(i,j)”*r , where r is a number.

c=r.~a has entries c(i,j)=ra(i,j)}

YYT-C3002 /2016 /JN

23

Vectorization.

Many tasks that may be implemented with loop structures can be more efficiently
executed with vectorization:

Let us Generate a signal function y = sin(x)"2:
>> x=0:p1/12:4*pi;

>> y=sin (x) ."2;

Let's view the signal function pointwise:

>> stem(x, V)

Let’s label the axis and give a title for the figure:
>> xlabel ('x'"); vylabel('y'); title('Signal Function')

A. Let’s calculate the average signal B. Let’s calculate the average signal
value by a for-loop: value more efficiently by "vectorizing”:
>> S=0; >> avg=sum (y) /length (y)
>> for k=1l:1length(y)

S=S+y (k) ;

end

avg=S/length (y)

YYT-C3002 /2016 /JN

24

Printing to screen.

1. Type the variable or expression without semicolon.
>> x = 0:0.2:1
X =

0 0.2000 0.4000 0.6000 0.8000 1.0000

2. Use the disp function.
>> disp (x)

3. Use fprintf (sends output to screen or a file).
>> fprintf (1, 'value of x is %7.1f \n', x)

value of x is 0.
value of is
value of is
value of is
value of is
value of is

XXX XX
P O O o o
O W o N O

4. Use sprintf (sends output to a string variable) .

YYT-C3002 /2016 / IN

File import/export.
Variables can be saved from the Matlab workspace with the save command:

>> save filename

The file will be a MAT-file (*.mat) and is readable only by Matlab.

To import the variables use the load command:
>> load filename

The file must be in Matlab's path (see the path command) or the current directory
should be set to the directory containing the file (see the M-file help).

For importing data from files, see a list of commands used for io:
>> help iofun

These low-level commands deal with ASCII files, etc.

You can check the current directory and see a list of available *.m and *.mat files:
>> pwd
>> what

You can change the directory the cd command.

YYT-C3002 /2016 /JN 26

Printing to a file.

Open a file, write to it, close the file:

>> fid = fopen(filename, 'w')

>> fprintf (fid, 'string %s and integer %d\n', str, int)
>> fclose (fid)

Create a text file called exp.txt containing a short table of the exponential function.
>> x = 0:0.2:1;

>> vy = [x; exp(x)];

>> fid = fopen('exp.txt','w');

>> fprintf (fid, '$6.2f %12.8f\n',y);

>> fclose (fid);

Examine the contents of exp.txt:
>> type exp.txt

0.00 1.00000000
0.20 1.22140276
0.40 1.49182470
0.60 1.82211880
0.80 2.22554093
1.00 2.71828183

YYT-C3002 /2016 / IN

Operators.

There are lots of mathematical operators defined:
just type help matlab/ops for a list of the basic operators.

Built-in functions.

There are lots and lots and lots of mathematical built-in
functions: just type help matlab/elfun for the list of functions.

Efficient coding requires using operators and built-in functions.

6606 MATLAB 7.5.0 (R2007b)

File Edit Debug Desktop Window Help

D% WB 9 o & 2| 6| /applications/ma1ls) [

Shortcuts [#] How to Add [£] what's New

cos (x)
sin(x)
tan(x)
acos (x)
asin(x)
atan (x)
exp (x)
sqrt (x)
log(x)
logl10(x)

Cosine

Sine

Tangent

Arc cosine

Arc sine

Arc tangent
Exponential
Square root
Natural logarithm
Common logarithm

abs (x)
sign(x)
max (x)
min (x)
ceil (x)
floor(x)
round (x)
rem(x)
angle (x)
conj(x)

Absolute value

Signum function
Maximum value
Minimum value

Round towards +oc
Round towards —oc
Round to nearest integer
Remainder after division
Phase angle

Complex conjugate

o New to MATLAB? Watch this Video, see Demos, or read Getting Started. x
>> help matlab/ops
oOperators and special characters.
Arithmetic operators.
plus - Plus +
- Unary plus +
- Minus -
- Unary minus
- Matrix multiply
- Array multiply
- Matrix power
- Array power -
- Backslash or left matrix divide \
- slash or right matrix divide /7
- Left array divide Y
- Right array divide -/
- Kronecker tensor product kron
ators.
Equal -
Not egual -
Less than <
- Greater than >
- than or equal <=
- Greater than or egual =
Logical operators.
relop - Short-circuit logical AND 12
relop - Short-circuit logical OR 1
and - Element-wise logical AND &
or - Element-wise logical OR |
not - Logical NOT -
xor - Logical EXCLUSIVE OR
any - True if any element of vector is nonzero
all - True if all elements of vector are nonzero
Special characters.
colon - Coloen 2
paren - Parentheses and subscripting (W]
paren - Brackets 11
paren - Braces and subscripting i}
punct - Functicn handle creation €
punct Decimal point
punct - Structure field access
punct - Parent directory
punct - Continuation
punct - Separator
punct - Semicolon
punct - Comment %
punct - Invoke cperating system command !
punct - Assignment =
punct - Quote
transpose - Transpose
ctranspose - Complex conjugate tramspose '
horzcat - Horizontal concatenation 1
- vertical concatenation 11
- Subscripted assignment 1el ban
- Subscripted reference {1}
- Subscript index
twise operators.
n - Bit-wise AND.
bitcmp - Complement bits.
i - Bit-wise OR.
- Maximum floating point integer.
- Bit-wise XOR.
- Set bit.
- Get bit.
bitshift - Bit-wise shift.
Set operators.
unicn - Set union.
unique - Set unique.
intersect - Set intersection.
Setdiff - Set difference.
setxor - Set exclusive-or.
Ismember - True for set member.
See alsc arith, relop, slash, function handle.
>>
[star] 4

YYT-C3002 / 2018 / Jarkko Niiranen

28

Elementary functions are evaluated in an element/point/entry wise sense:
>> x=linspace (0,10*pi,200);

>> y=sin (x);

>> plot (y)

A list of commands worth checking out:
>> help conv

>> help sum T A AR A
>> help roots QB-fH /H fﬁ /1
>> help fft [[[[
>> help fliplr QGW h ﬁ E ! h ﬁ h
>> help sound 04f 5 ﬁ 5 ﬂ 5 ! E
>> help max . | | - -

0.2 | | | ' | I |
>> help min | | ' | | | | |

' | | |
>> help abs i h ! % H h ! h
>> help length 02r | ﬁ H f H ! ﬂ
>> help real -0.4 | h f E f h f h
>> help for P Y N
>> help numZ2str hf h I h ; h}
>> help disp 08 E} R/ H/ Ef
>> help pause -1 S : \ i

>> help whos

YYT-C3002 /2016 / IN

Toolboxes.
MATLAB features a family of application-specific solutions called toolboxes —
comprehensive collections of MATLAB functions (M-files).

PDEToolbox is a simple tools for simple model problems of Partial Differential
Equations (PDE) solved by using simple tools of Finite Element Methods (FEM).

M-files.
For writing your own programs, use m-files:

> use any regular ASCII text editor
» Open a file with the extension *.m

» Edit line by line the sequence of Matlab commands you want to include in your
program.

» Save the file and execute the program by typing the name of the file (without .m)
on the Matlab command line.

YYT-C3002 /2016 /JN 30

Example program written in the file signals.m:

% This is a program that generates a clean and noisy signal
x=linspace (0,10*pi, 200);
% Compute and plot the clear signal in Fig. 1
y=sin (x) ; s . . Clean And Noisy Sinusoid
figure(l); plot(x,y); hold on; .
% Compute the noise ﬂ W {W \ M
z=0.3*rand (1,200) ; AN N
% Add the noise to the signal M% V % JH ﬂ F ﬂ
y=y+z oaﬁ ﬂ g ﬂ lf \ -
$ Plot the noisy signal in Fig.l - | | | ﬂ P\ H x
plot(x,y); grid Of ‘ Z f | ﬁ \ H |
s P . . | I r/ \
> Finalize the figure & M | . o 6
title('Clean And Noisy Sinusoid') wsl | J | WH} ﬁ H m m
xlabel ('x') oWy WY
T L AL
hold off; o ® 4 e @ 100 o o 8 180 200
Hint. For seeing the time elapsed for certain parts of your program code:
>> time = clock; x = A*b; pause(1l0); time = etime (clock,time)
>> t = cputime; x = A*b; e = cputime - t

YYT-C3002 /2016 / JN 31

User-defined functions.
User defined functions work just like commands in Matlab.

Functions have the following format:

function [returned variable 1, returned variable 2, ..]= function name (arugments)

The variables defied in a function are local and only available within the function,

See.
>> help function

Example saved in file stat.m:

function [mean,stdev] = stat (x)

n = length (x);

mean = sum(x) / n;

stdev = sgrt(sum((x - mean).”"2)/n);

The usual programming language statements can be used in M-files:
for-end, if-else-break-end, while-end.

YYT-C3002 /2016 /JN 32

/.2 Strong forms and weak forms
for 1D and 2D model problems

Strong form. The differential equation and boundary conditions for an elastic
bar/rod/column in tension/compression read as follows: Find U such that

(1-DE) —(EAU)'(x)=b00). 0<x<L £y an by N,

e ng)ZHO‘ >> >>>>
(3-nBC) (EAU')(L)=N, = > > > x,u(x)

YYT-C3002 / 2018 / Jarkko Niiranen 33

7.2 Strong forms and weak forms
for 1D and 2D model problems

Strong form. The differential equation and boundary conditions for an elastic
bar/rod/column in tension/compression read as follows: Find U such that

(1-DE) —(EAU)'(x)=b00). 0<x<L £y an by N,

(3-nBC) (EAU')(L)=N, O . iL—>— X, U(x)

E Young's modulus (given material data)

A crosssectional area (given geometrical data)
b axialbody load (given loading data)

L length (given geometrical data)

U, axialend pointdisplacement (given essential/geometric boundary data)

N, axial end point force (given natural/force boundary data).

YYT-C3002 / 2017 / Jarkko Niiranen 34

Weak form. Find U such that it satisfies U(0) = U, and
L L
_[EAu'v'dx =N, v(L) + J.b v dx,
0 0

for all test functions V satisfying V(0) =0.
Remark. Why do we formulate the problem in a weak, or variational, form?

The finite element method (FEM) is based on the weak form which actually present
the problem in a form of energy balance:

1. the left hand side corresponds to strain energy (stored energy, internal energy)
(the derivative of the axial displacement is the axial strain);

2. the right hand side corresponds to loading energy (external energy)
(work done by a force equals to the product of the force and the corresponding
displacement).

YYT-C3002 / 2018 / Jarkko Niiranen 35

HOW TO
DERIVE THE WEAK FORM?

extra material

0. Start from the differential equation (1) and use the boundary conditions (2) and (3):
M) -(EAu')'(x)=b(x) O0<x<L
(2) u(0) =u,
(3) (EAU)(L)=N_

What shall we do
with the differential equation and the boundary conditions
— one page with a few lines is enough —
in order to reach the integral form below?

Do some problem solving work
for a few minutes...

= (1 JL'(EAu')(x) v'(x)dx =N v(L) + jb(x)v(x)dx

(2) u(0)=u,

YYT-C3002 / 2018 / Jarkko Niiranen 37

1. Multiply the differential equation (1) by a (smooth) test function (specified later):
—(EAU")'(x)=b(x) = —(EAU')'(x)v(x)=b(x)v(x), 0<x<L

2. Integrate over the domain (interval):
L L
= —[(EAU'Y () v(x)dx = [b(x) v(x) dx
0 0

3. Integrate by parts (the left hand side) for moving one derivative from u to v:

L L
= jEAu'v'dx:NLv(L) + jbvdx
0 0

YYT-C3002 / 2017 / Jarkko Niiranen 42

Weak form. Find U such that it satisfies U(0) = U, and
L L
_[EAu'v'dx =N, v(L) + J.b v dx,
0 0

for all v satisfying v(0)=0.

Remark. Note that the solution and the test function, respectively, have to
satisfy the boundary conditions U(0) =U,, V(0) =0 and, in principle,
regularity conditions as well:

L L

[y dx<oo, [(v)?dx<on.

0 0

Then the solution and the test function are called kinematically admissible.

Remark. By starting from the weak form, we could correspondingly derive the
strong form (integrating by parts "backwards”).

YYT-C3002 / 2018 / Jarkko Niiranen

43

1al

Generalization of the 1D bar extension weak form to 1D heat diffusion:
L L L L
jEAu'v'dx:jbvdx —> jkT'v'dx:jfvdx
0 0 0 0

EA D, L . k, f,L
UO Q T:TO Q

u

Generalizations of the 1D heat diffusion weak form to 2D heat diffusion:
L L
jkT'v'dx:J' fvdx — jkVT -Vde:j fvdQ
0 0 Q Q

T =T,

k, f,L
T, Q Q K, f

T

YYT-C3002 / 2018 / Jarkko Niiranen

exerclses...

Home exercise 7.2

Let us consider a vertically gravity-loaded (statically determined) beam with bending

moment M as the primary variable: B,H,L,p
IRy s vy bbb d----> X
YAN
X=0 ¢ X=L
. ---» X, M
M=M, £ M=m,

Formulate the weak form of the problem (serving as a basis for FE formulations).

Hint: First, find out the strong form, i.e., the differential equation
and boundary conditions, of the problem by recalling your previous
studies (or Wikipedia).

Since the strong form of the problem is analogous to the one of the
bar (or the heat diffusion) problem, you can simply imitate the weak §
form of the bar problem (or the heat diffusion problem).

YYT-C3002 / 2018 / Jarkko Niiranen 48

Possible computer exercise = Matlab

(i) Implement the finite element method with linear basis functions for the
vertically loaded beam in MATLAB with the following initial data: ...

2 elements
200
180 R
160 - R
§ 140 - .
..E.. 120 |
[==
£
b=t 1001 . . . \ |
£ // discretization N
2 8 , error \
© y \
S 60f \ i
)
(03] / \\
40 B / \ N
/ \
/
20/, Exact solution \\ .
/ — © — FEM-solution \
m 1 1 1 1 \J
0 0.2 04 0.6 0.8 1
Lenght x (m)
<+—— glement 1 > < element2 ———»

YYT-C3002 / 2017 / Jarkko Niiranen

49

Possible computer exercise = Matlab

(i) Implement the finite element method with linear basis functions for the
vertically loaded beam in MATLAB with the following initial data: ...

200

3 elements

180

=y

o2}

o
T

-

D

o
T

-

N

o
T

100 -

Bending moment M (Nm)
& 8 8

N
o
T

~

Exact solution
— © — FEM-solution

0.2

0.4 0.6
Lenght x (m)

0.8

YYT-C3002 / 2017 / Jarkko Niiranen

50

Possible computer exercise = Matlab

(i) Implement the finite element method with linear basis functions for the
vertically loaded beam in MATLAB with the following initial data: ...

4 elements
200
7 N
180 7 N
7 N
160 g RN
—_ N
§ 140 -
= \
= 120} ! \
q:’ / \
/ \
E 1001 , \
£ / \
o 80 \
":E: / \
[60+ / \
2 / \
/ \
40 B / \
! \
20 /1 Exact solution \\
— © — FEM-solution
m 1 1 1 1 \J
0 0.2 04 0.6 0.8 1
Lenght x (m)

YYT-C3002 / 2017 / Jarkko Niiranen

51

Possible computer exercise = Matlab

(i) Implement the finite element method with linear basis functions for the
vertically loaded beam in MATLAB with the following initial data: ...

5 elements
200
-7 A\
180 7 N .
7 \
160 - / N 7
—_ / \
/7 \
§ 140+ / N i
~ A\
..E.. 120 i
[==
o / A
E 1001 A \ .
£ / \
o 80 / \ |
= / \
©
i / \]
‘E, 60 / \
/ \
40 B /i \ N
A \
20t/ Exact solution \
— © — FEM-solution
m 1 1 1 1 \J
0 0.2 0.4 0.6 0.8 1
Lenght x (m)

elementl element2 element3 element4 element5

YYT-C3002 / 2017 / Jarkko Niiranen 52

Possible computer exercise = Matlab

(i) Implement the finite element method with linear basis functions for the
vertically loaded beam in MATLAB with the following initial data: ...

200

6 elements

180

=y

o2}

o
T

-

D

o
T

-

N

o
T

100 -

Bending moment M (Nm)

60 !
40' /

201

80 !

Exact solution
— © — FEM-solution

e

0.2

0.4 0.6
Lenght x (m)

0.8

=&

YYT-C3002 / 2017 / Jarkko Niiranen

53

1al

7.3 Finite element formulations
for 1D and 2D model problems

1D bar in tension/compression:

Divide the solution interval (domain) into N subintervals €, (elements) with
nodes X, and elementsize h =X —X._,:

e, e e

I n
| 1
I 1

X, =0 Xi 4 X. X, =L

In each element, the displacement field is approximated by (linear) polynomial
basis functions which are now functions of the x-coordinate.

14, 4 B &
TS
X, =0 X; X 1 x =L

YYT-C3002 / 2017 / Jarkko Niiranen

55

This results in an equation system (initialize K = sparse (m, m)in Matlab etc.)
Kd=f

with the stiffness matrix K (computable fori,j = 1, ..., n), force vector f (computable
fori=1, ..., n) and the displacement vector d (unknown forj =1, ..., n):

K=K,] K= f EAG' 4,'dx,

f=[f] f :JL'b 4 dx + NL¢i(L)—uof%AE%dx, d=[d]

Remark. The stiffness matrix is (very often) symmetric (due to derivative orders) and
its entries are concentrated in a narrow diagonal band forming a band matrix (due to
local trial and test functions). These features can can be utilized in computer
impelementation — implying small amounts of memory needs and quick processing.

Remark. Test and trial functions have to be (only) once locally differentiable (and will
be then integrated over the domain) and (only) locally evaluable on the boundary.

YYT-C3002 / 2017 / Jarkko Niiranen 56

Generalization to 2D heat diffusion:

Divide the solution area (domain) into N subdomains, elements €; (triangles,
quadrangles, ...) with nodes X; = (X;,Y;) and element size h, =diam(g,):

Xy Xy Xy

or j or

X, e X,

In each element, the temperature field is approximated by (linear) polynomial basis
functions.

All functions are now functions of the plane coordinates x and y (instead of x alone).
Accordingly, all integrals are now domain integrals (instead of line integrals).

YYT-C3002 / 2018 / Jarkko Niiranen 57

This finally results (details in the extra material) in an algebraic equation system

Kd=f
with the "stiffness” matrix (computable for i, = 1, ..., m-p), "force” vector (computable
fori=1, ..., m-p) and the "displacement” vector (unknown fori= 1, ..., m-p):
K=[K;} Ky=[(kvg) Vg da
f=[f] f =jQ f ¢ dQ—Lq 0,& ds—zxjerTTo(xj)Kij,
d=[d]
Remark. The final equation system — matrix times vector equals vector — is

analogous to the 1D case. This is one of the powerful features of the finite element
method (or mathematics in general).

YYT-C3002 /

2018 / Jarkko Niiranen 58

HOW TO
DERIVE THE FINITE ELEMENT SYSTEM?

extra material

1. Divide the solution interval (domain) into N subintervals €, (elements)
with nodes X; and the element size h. =X —X. ,:
€ €, €

X, =0 Xi 4 X. X, =L
2. Choose a trial function for the finite element approximation as a sum
n
Uh(X) = ¢0(X)do + ¢1(X)d1 T o F ¢n(x)dn = Zj:0¢j(x)dj

with suitable local basis functions @ of some polynomial order (now linear)

X 14, ¢ b 4,
#(x;) =3,

XO — O Xi Xi+1 Xn — L

The unknown scalar values d. =U, (X.) are called the degrees of freedom.

YYT-C3002 / 2017 / Jarkko Niiranen

Ensure that the trial function satisfies the essential boundary conditions:
Uy =U,(0) =¢,(0)d, + ¢(0)d; + - + 4,(0)d, =d,

3. Choose a test function of a similar form (Galerkin method) with the
corresponding condition:

V(X) = g (X)Co + A (X)C, + - + B (X)C, =D (X)C
0=v(0) =¢,=0

4. Insert the functions — trial and test — into the weak form:

L L
_[EAuh'v'dx = N, v(L) + _[bvdx
0 0

YYT-C3002 / 2017 / Jarkko Niiranen

This results in an equation system (initialize K = sparse (m, m)in Matlab etc.)
Kd=f

with the stiffness matrix K (computable fori,j = 1, ..., n), force vector f (computable
fori=1, ..., n) and the displacement vector d (unknown forj =1, ..., n):

K=K,] K= f EAG' 4,'dx,

L

b ¢ dx+ N, ¢i(L)—UOI%AE%dX, d :[dj]

f=|f| f
1] [ae

I
O e

YYT-C3002 / 2017 / Jarkko Niiranen 68

5. Use an appropriate solver for the equation system (d = K\ £ in Matlab):

d=K*f = U, (X) = er]:l¢j (X)dj

6. Recover (and postprocess) the stress quantities and visualize:

= Nh(X):(EAUh)'(X)=Z?:1(EA¢j)'(x)dj N O'h(X):Nh(X)

A(X)

7. Evalute possible error indicators, change the discretization (steps 1-4) ... rerun ...

Remark. Steps 1-7 are automated — by means of mathematics and programming:

1. Elements €, 5. Equation solution

2-3. Basis functions ¢, 6. Visualization

4. Matrix entries K., f.

i 7. Error evaluation

YYT-C3002 / 2017 / Jarkko Niiranen

12

QUESTIONS?

ANSWERS”

LECTURE BREAK!

