YYT-C3002
 Application Programming in Engineering

Spring 2019, period III, 5 credits (BSc)

Topic 7
Matlab programming for finite element methods (FEM)

Jarkko Niiranen
Assistant Professor
Department of Civil Engineering
School of Engineering
Aalto University
Lecture 10-12, Exercise 12-14, Tuesday, January 29, 2019

Notes on the course material for topic 7

The lecture material contains extra material (clearly indicated) which can be skipped.
The exercise material contains (1) assignments for independent studies and (2) assignments accomplished in the exercise class as guided tours:
$>$ Theory exercise 7.1 (independent reading task)
$>$ Theory exercise 7.2 (independent task with guidelines and hints given in the lecture session)
\checkmark Computer exercise 7.1 (accomplished in the exercise session)
\checkmark Computer exercise 7.2 (accomplished in the exercise session)
$>$ Computer exercise 7.3 (independent hand-calculation and programming tasks)
$>$ Computer exercise 7.4 (independent programming task with guidelines and hints given in the exercise session)
$>$ Computer exercise 7.5 (web tutorial with step-by-step guidelines)
The total workload of a one-period course (6 weeks plus an examination week, 133 hours, 5 cr) is divided by six weeks roughly as follows (20 hours per week):
$>$ lectures ($2 \times 2=4$ hours per week)
$>$ self studies for the lecture material ($2 \times 2=4$ hours per week)
$>$ exercise classes ($2 \times 2=4$ hours per week)
> self studies for home assignments ($2 \times 4=8$ hours per week) The leftover is dedicated to the seventh week: final examination (3 hours) and preparation for the examination (10 hours).

A
 MOTIVATION TO

computational engineering

Motivation to computational engineering

The world is full of data - think about
$>$ World Wide Web (www)
$>$ Facebook (Fb)
$>$ Internet of Things (loT).

Data scientists/analysts collect, aggregate and analyze data - in order to form information and models for design and decisions making - by developing and utilizing algorithms (by means of mathematics, computer science and the "laws" of applications fields (such as population growth models or economic models).

Data science utilizes the classical tools of statistics and stochastics (for analyzing the political and economical behavior of people, for instance) and the modern trends of data mining (DM), machine learning (ML), artificial intelligence (AI) etc.

Motivation to computational engineering

The tools of data analysis are - definitely - demanding and scientific but the nature and origin of data (vote, like, purchase) is often very simple.

In computational engineering, most often, data originates from and is related to complex physical systems (such as buildings or machines) and the "laws" of the application field are quite complex (such as structural or fluid dynamics).

Actually, computational engineering (such as computational mechanics or computational fluid dynamics is in large extent different than other computational sciences (such as data science or even computational modeling such as geometric modeling) although the same components and terms are typically present:
> modeling and simulation
> data structures and algorithms
> data analysis and visualization
> high-performance computing
"The computational engineer uses the computer and mathematical algorithms to solve physics-based equations to make predictions and simulate scenarios."

Motivation to computational engineering

Sizing optimization

Shape optimization

Topology optimization

- Equation

Equation form:
Study controlled
Show equation assuming
Study 1, Time Dependent
$\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}-\nabla \cdot \sigma=\mathbf{F}_{v}$
$\rho C_{\mathrm{p}} \frac{\partial T}{\partial t}+\rho C_{\mathrm{p}} \mathbf{u} \cdot \nabla T=\nabla \cdot(k \nabla T)+Q$

Weighted Residual Formulations Consider a general representation of a
governing equalion on a region V
$L u=P$
L is a differential operator
cg. For Axial elemcnt $\quad \frac{d}{d x}\left(\left\lvert\, \& A \frac{d x}{d x}\right.\right)=0$
I. $=\frac{d}{d: A^{d}}()$

BACK
TO
basic material

7.0 Familiar with Matlab or finite element methods?

How much have you used Matlab - how about FEM?

7 Matlab programming for finite element methods (FEM)

Contents

1. General Matlab features for computational engineering
2. Strong form and weak form for 1D and 2D model problems
3. Finite element formulations for 1D and 2D model problems

Learning outcome

A. Understanding of the main principles of Matlab programming
B. Ability to apply Matlab features to 1D and 2D finite element model problems

References

7.1 General Matlab features for computational engineering

MATLAB (MATrix LABoratory) is a (technical) computing (easy-to-use) environment for high-performance numeric computation and visualization based on MATLAB programming language.

7.1 General Matlab features for computational engineering

MATLAB (MATrix LABoratory) is a (technical) computing (easy-to-use) environment for high-performance numeric computation and visualization based on MATLAB programming language.

In MATLAB, problems and solutions are expressed in familiar mathematical notation. >> $\mathrm{y}=\cos (\mathrm{x})$

MATLAB actually is all of the following things:
> Language
> Working environment
> Graphics tools
> Mathematical function library
> Application Program Interface (API)

Remark. The Octave language is quite similar to Matlab so that most programs are easily portable. Octave is distributed under the terms of the GNU General Public License.

7.1 General Matlab features for computational engineering

MATLAB language:

> a high-level matrix/array language
> with control flow statements, functions, data structures, input/output, and object-oriented programming features

$\mathrm{a}=1$;

if $a==1$
disp('Is 1')
elseif $\mathrm{a}==2$
> allows programming in small and large scale (memory and processor time)

MATLAB working environment:

> a set of tools and facilities managing the variables in your workspace
> importing and exporting data
> tools for developing, managing, debugging, and profiling M -files (applications)

MATLAB Graphics tools:

> high-level commands for two-dimensional and three-dimensional data visualization, image processing, animation, and presentation graphics
> low-level commands for customizing the appearance of graphics
> allows building Graphical User Interfaces (GUI) on applications

7.1 General Matlab features for computational engineering

The MATLAB mathematical function library:

> a vast collection of computational algorithms
> elementary functions like sum, sine, cosine, and complex arithmetic
> more sophisticated functions like matrix inverse,

$\cos (x)$	Cosine	$\operatorname{abs}(x)$	Absolute value
$\sin (x)$	Sine	$\operatorname{sign}(x)$	Signum function
$\tan (x)$	Tangent	$\max (x)$	Maximum value
$\operatorname{acos}(x)$	Arc cosine	$\min (x)$	Minimum value
$\operatorname{asin}(x)$	Arc sine	$\operatorname{ceil}(x)$	Round towards $+\infty$
$\operatorname{atan}(x)$	Arc tangent	floor (x)	Round towards $-\infty$
$\exp (x)$	Exponential	$\operatorname{round}(x)$	Round to nearest integer
$\operatorname{sqrt}(x)$	Square root	$\operatorname{rem}(x)$	Remainder after division
$\log (x)$	Natural logarithm	$\operatorname{angle(x)}$	Phase angle
$\log 10(x)$	Common logarithm	$\operatorname{conj}(x)$	Complex conjugate

The MATLAB Application Program Interface (API):

> library allowing one to write C and Fortran programs that interact with MATLAB (call C, C++, or Fortran programs, defined as MEX-files, from the MATLAB command line as if they were built-in functions)
> facilities for calling routines from MATLAB (dynamic linking)
> facilities for calling MATLAB as a computational engine facilities for reading and writing MAT-files (which allows one to access and change variables directly in a MAT-file, without having to load the
 variables into memory)

HISTORY
extra material

7.1 General Matlab features for computational engineering

MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects, which together represent the state-of-the-art in software for matrix computation.

7.1 General Matlab features for computational engineering

> LINPACK is a software library for performing numerical linear algebra on digital computers. It was written in Fortran by Jack Dongarra, Jim Bunch, Cleve Moler, and Gilbert Stewart, and was intended for use on supercomputers in the 1970s and early 1980s.
> EISPACK, written in Fortran as well, is a software library for numerical computation of eigenvalues and eigenvectors of matrices.
> Both packages originated from Argonne National Laboratory, has always been free, and aims to be portable, robust and reliable.

EISPACK and LINPACK

- EISPACK
- Design for the algebraic eigenvalue problem, $A x=\lambda x$ and $A x=\lambda B x$
$>$ work of J . Wilkinson and colleagues in the 70's $>$ Fortran 77 software based on translation of ALGOL
- LINPACK
>Design for the solving systems of equations, $A x=b$.
$>$ Fortran 77 software using the Level1 BLAS.

7.1 General Matlab features for computational engineering

> LAPACK (Linear Algebra Package) is a standard software library for numerical linear algebra.
> The original goal of the LAPACK project was to make the widely used EISPACK and LINPACK libraries run efficiently on shared-memory vector and parallel processors.

- LAPACK routines are written so that as much as possible of the computation is performed by calls to the Basic Linear Algebra Subprograms (BLAS).
> The LAPACK project has been sponsored in part by MathWorks and Intel.

LAPACK

- Linear Algebra library in Fortran 77 (binding to c) $>$ State of the art numerical routines
> Extensive coverage
$>$ Solution of systems of equations
> Solution of eigenvalue problems
- Block algorithms
$>$ Parameterized for memory hierarchies "Built on the Level 1, 2, and 3 BLAS
> Efficient on a wide range of computers " RISC, Vector, SMPs
- User interface provides similar calls in:
$>$ Single, Double, Complex, Double Complex
- Used by vendors: HP-48G to Teraflop/s Machines

BACK
TO
basic material

7.1 General Matlab features for computational engineering

MATLAB fundamentals

In MATLAB, every object is a complex matrix in which real entries are displayed as real and integer as integer (numbers are 1×1 matrices).

Variables.

$>$ no need to (cannot) declare in advance
$>$ no need to specify type
$>$ can switch from one type to another
> assign value with ' $=$ '
To define a complex number, use either i or j :

```
>> c=2+i*7
```

$c=2.0000+7.0000 I$
>> $d=(1+j * 3)^{\wedge} 3$
$d=-26.0000-18.0000 i$

To access the real and imaginary parts, use the commands real and imag.

7.1 General Matlab features for computational engineering

Vectors.

A vector of equispaced elements can be generated using the general format:

```
[{beginning number} : {step increment} : {last number}]
```

If the step is 1 then it can be omitted:

```
[{beginning number} : {last number}]
```

To define a row or column vector, respectively, with three entries:

```
>> x=[ll0 20 30}
```

$\mathrm{X}=$

10
20
30

You can define a negative incremental step size, if the beginning number is smaller than the last number.

7.1 General Matlab features for computational engineering

Matrices.

To define an $\mathrm{n} \times \mathrm{m}$ matrix A :
>> $A=\left[\begin{array}{llllll}1 & 2 & 3 ; & 4 & 5\end{array}\right]$
$\mathrm{A}=$

1	2	3
4	5	6

To find the size (i.e, the number of rows and columns) of a matrix:
>> [n,m]=size(A);
Operations matrix algebra can be defined in a natural way (with proper dimensions):

```
>> A*B;
>> A-B;
>> A+B;
```

Many other commands exist too:

```
>> transpose(A); A';
>> inv(A)
>> det(A)
>> eig(A)
```


7.1 General Matlab features for computational engineering

For defining submatrices:
$>$ the ith row is $\mathrm{A}(\mathrm{i},:)$
$>$ the jth column is $A(:, j)$
$>A(i: j, p: q)$ gives a part of the matrix $A($ with $i<j<n, p<q<m)$
$>A([i k j],[p q])$ gives a part of the matrix $A($ with $i, j, k<n, p, q<m)$
Try the following commands:

```
>> B=eye(3)
>> C=ones (2,3)
>> D=diag([1 5 6 8])
>> E=zeros (3,2)
>> F=rand (1,5)
>> G=randn (5,1)
```

In many applications, as in finite element methods, system matrices are sparse matrices, or even band matrices. Therefore, for efficiency, one needs to define them in the following form:
$>A=\operatorname{sparse}(n, m)$

7.1 General Matlab features for computational engineering

Hadamard (or "dot") operations.
Hadamard multiply .* works as
$\mathrm{C}=\mathrm{A} . * \mathrm{~B}$ has entries $\mathrm{c}(\mathrm{i}, \mathrm{j})=\mathrm{a}(\mathrm{i}, \mathrm{j}) \mathrm{b}(\mathrm{i}, \mathrm{j})$
>> A = [2 2; 2 2];
$>C=A .{ }^{*} A$
C $=$
$4 \quad 4$

Hadamard divide ./ works as
c=A./в has entries c(i,j)=a(i,j)/b(i,j)
с=A. \backslash в has entries $c(i, j)=b(i, j) / a(i, j)$
Hadamard exponentiate .^ works as
$\mathrm{C}=A . \wedge \mathrm{B}$ has entries $\mathrm{c}(\mathrm{i}, \mathrm{j})=\mathrm{a}(\mathrm{i}, \mathrm{j})^{\wedge}\{\mathrm{b}(\mathrm{i}, \mathrm{j})\}$
$C=A . \wedge r$ has entries $c(i, j)=a(i, j)^{\wedge} r$, where r is a number.
$c=r . \wedge_{A}$ has entries $c(i, j)=r \wedge\{a(i, j)\}$

7.1 General Matlab features for computational engineering

Vectorization.

Many tasks that may be implemented with loop structures can be more efficiently executed with vectorization:

Let us Generate a signal function $y=\sin (x)^{\wedge} 2$:
>> $x=0: p i / 12: 4 * p i ;$
$\gg y=\sin (x) . \wedge 2 ;$
Let's view the signal function pointwise:
>> stem (x,y)
Let's label the axis and give a title for the figure:
>> xlabel('x'); ylabel('y'); title('Signal Function')
A. Let's calculate the average signal value by a for-loop:

```
>> S=0;
>> for k=1:length(y)
    S=S+y(k);
    end
    avg=S/length(y)
```

B. Let's calculate the average signal value more efficiently by "vectorizing":
>> avg=sum(y)/length (y)

7.1 General Matlab features for computational engineering

Printing to screen.

1. Type the variable or expression without semicolon.
>> $x=0: 0.2: 1$
$\mathrm{x}=$

$$
\begin{array}{llllll}
0 & 0.2000 & 0.4000 & 0.6000 & 0.8000 & 1.0000
\end{array}
$$

2. Use the disp function.
>> disp(x)
3. Use fprintf (sends output to screen or a file).
```
>> fprintf(1, 'value of x is %7.1f \n', x)
```

value of x is 0.0
value of x is 0.2
value of x is 0.4
value of x is 0.6
value of x is 0.8
value of x is 1.0
4. Use sprintf (sends output to a string variable) .

7.1 General Matlab features for computational engineering

File import/export.

Variables can be saved from the Matlab workspace with the save command:
>> save filename
The file will be a MAT-file (*.mat) and is readable only by Matlab.
To import the variables use the load command:
>> load filename
The file must be in Matlab's path (see the path command) or the current directory should be set to the directory containing the file (see the M-file help).

For importing data from files, see a list of commands used for io:
>> help iofun
These low-level commands deal with ASCII files, etc.
You can check the current directory and see a list of available *.m and *.mat files:
>> pwd
>> what
You can change the directory the cd command.

7.1 General Matlab features for computational engineering

Printing to a file.

Open a file, write to it, close the file:

```
>> fid = fopen(filename, 'w')
>> fprintf(fid, 'string %s and integer %d\n', str, int)
>> fclose(fid)
```

Create a text file called exp.txt containing a short table of the exponential function.

```
>> x = 0:0.2:1;
>> y = [x; exp(x)];
>> fid = fopen('exp.txt','w');
>> fprintf(fid,'%6.2f %12.8f\n',y);
>> fclose(fid);
```

Examine the contents of exp.txt:

```
>> type exp.txt
    0.00 1.00000000
    0.20 1.22140276
    0.40 1.49182470
    0.60 1.82211880
    0.80 2.22554093
    1.00 2.71828183
```


7.1 General Matlab features for computational engineering

Operators.

There are lots of mathematical operators defined: just type help matlab/ops for a list of the basic operators.

Built-in functions.

There are lots and lots and lots of mathematical built-in functions: just type help matlab/elfun for the list of functions.

Efficient coding requires using operators and built-in functions.

$\cos (x)$	Cosine
$\sin (x)$	Sine
$\tan (x)$	Tangent
$\operatorname{acos}(x)$	Arc cosine
$\operatorname{asin}(x)$	Arc sine
$\operatorname{atan}(x)$	Arc tangent
$\exp (x)$	Exponential
$\operatorname{sqrt}(x)$	Square root
$\log (x)$	Natural logarithm
$\log 10(x)$	Common logarithm

$\operatorname{abs}(x)$	Absolute value
$\operatorname{sign}(x)$	Signum function
$\max (x)$	Maximum value
$\min (x)$	Minimum value
$\operatorname{ceil}(x)$	Round towards $+\infty$
$\operatorname{floor}(x)$	Round towards $-\infty$
$\operatorname{round}(x)$	Round to nearest integer
$\operatorname{rem}(x)$	Remainder after division
$\operatorname{angle}(x)$	Phase angle
$\operatorname{conj}(x)$	Complex conjugate

File Edit Debug Desktop Window Help
 Shortcuts \square How to Add \square What's New
(1) New to MATLAB? Watch this Video, see Demos, or read Getting Started. \times >> help matlab/ops 0 operators and special characters.

7.1 General Matlab features for computational engineering

Elementary functions are evaluated in an element/point/entry wise sense:

```
>> x=linspace(0,10*pi,200);
>> y=sin(x);
>> plot(y)
```

A list of commands worth checking out:

```
>> help conv
>> help sum
>> help roots
>> help fft
>> help fliplr
>> help sound
>> help max
>> help min
>> help abs
>> help length
>> help real
>> help for
>> help num2str
>> help disp
>> help pause
>> help whos
```


7.1 General Matlab features for computational engineering

Toolboxes.

MATLAB features a family of application-specific solutions called toolboxes comprehensive collections of MATLAB functions (M-files).

PDEToolbox is a simple tools for simple model problems of Partial Differential Equations (PDE) solved by using simple tools of Finite Element Methods (FEM).

M-files.

For writing your own programs, use m-files:
> use any regular ASCII text editor
> Open a file with the extension *.m

- Edit line by line the sequence of Matlab commands you want to include in your program.
> Save the file and execute the program by typing the name of the file (without .m) on the Matlab command line.

7.1 General Matlab features for computational engineering

Example program written in the file signals.m:

```
% This is a program that generates a clean and noisy signal
x=linspace(0,10*pi, 200);
% Compute and plot the clear signal in Fig. 1
y=sin(x);
figure(1); Plot(X,Y); hold on;
% Compute the noise
z=0.3*rand (1,200) ;
% Add the noise to the signal
Y}=y+
% Plot the noisy signal in Fig.l
plot (X,Y); grid
% Finalize the figure
title('Clean And Noisy Sinusoid')
xlabel ('x')
Ylabel ('y')
hold off;
```


Hint. For seeing the time elapsed for certain parts of your program code:

```
>> time = clock; x = A*b; pause(10); time = etime(clock,time)
>> t = cputime; x = A*b; e = cputime - t
```


7.1 General Matlab features for computational engineering

User-defined functions.

User defined functions work just like commands in Matlab.
Functions have the following format:
function [returned_variable_1, returned_variable_2, ...]= function_name(arugments)
The variables defied in a function are local and only available within the function, see:
>> help function
Example saved in file stat.m:
function [mean,stdev] = stat(x)
$\mathrm{n}=$ length(x);
mean $=$ sum(x) / n;
stdev $=\operatorname{sqrt}(\operatorname{sum}((x-m e a n) . \wedge 2) / n)$;

The usual programming language statements can be used in M-files: for-end, if-else-break-end, while-end.

7.2 Strong forms and weak forms for 1D and 2D model problems

Strong form. The differential equation and boundary conditions for an elastic bar/rod/column in tension/compression read as follows: Find u such that

7.2 Strong forms and weak forms for 1D and 2D model problems

Strong form. The differential equation and boundary conditions for an elastic bar/rod/column in tension/compression read as follows: Find u such that

u axial displacement (unknown function)
E Young's modulus (given material data)
A cross-sectional area (given geometrical data)
b axial body load (given loading data)
L length (given geometrical data)
u_{0} axial end point displacement (given essential/geometric boundary data)
N_{L} axial end point force (given natural/force boundary data).

7.2 Strong forms and weak forms for 1D and 2D model problems

Weak form. Find u such that it satisfies $u(0)=u_{0}$ and

$$
\int_{0}^{L} E A u^{\prime} v^{\prime} \mathrm{d} x=N_{L} v(L)+\int_{0}^{L} b v \mathrm{~d} x,
$$

for all test functions v satisfying $v(0)=0$.
Remark. Why do we formulate the problem in a weak, or variational, form?
The finite element method (FEM) is based on the weak form which actually present the problem in a form of energy balance:

1. the left hand side corresponds to strain energy (stored energy, internal energy) (the derivative of the axial displacement is the axial strain);
2. the right hand side corresponds to loading energy (external energy) (work done by a force equals to the product of the force and the corresponding displacement).

HOW TO

DERIVE THE WEAK FORM?
extra material

7.2 Strong forms and weak forms for 1D and 2D model problems

0. Start from the differential equation (1) and use the boundary conditions (2) and (3):
(1) $-\left(E A u^{\prime}\right)^{\prime}(x)=b(x) \quad 0<x<L$
(2) $u(0)=u_{0}$
(3) $\left(E A u^{\prime}\right)(L)=N_{L}$

What shall we do
with the differential equation and the boundary conditions

- one page with a few lines is enough -
in order to reach the integral form below?
Do some problem solving work for a few minutes...
\Rightarrow (1) $\int_{0}^{L}\left(E A u^{\prime}\right)(x) v^{\prime}(x) \mathrm{d} x=N_{L} v(L)+\int_{0}^{L} b(x) v(x) \mathrm{d} x$
(2) $u(0)=u_{0}$

7.2 Strong forms and weak forms for 1D and 2D model problems

1. Multiply the differential equation (1) by a (smooth) test function (specified later):

$$
-\left(E A u^{\prime}\right)^{\prime}(x)=b(x) \Rightarrow-\left(E A u^{\prime}\right)^{\prime}(x) v(x)=b(x) v(x), \quad 0<x<L
$$

2. Integrate over the domain (interval):

$$
\Rightarrow \quad-\int_{0}^{L}\left(E A u^{\prime}\right)^{\prime}(x) v(x) \mathrm{d} x=\int_{0}^{L} b(x) v(x) \mathrm{d} x
$$

3. Integrate by parts (the left hand side) for moving one derivative from u to v :

$$
\Rightarrow \quad-\left(\underline{\left(E A u^{\prime}\right)(L)} v(L)+\left(E A u^{\prime}\right)(0) \underline{v} v(0)+\int_{0}^{L} E A u^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{L} b v \mathrm{~d} x\right.
$$

4. Utilize the natural boundary condition (3): $\left(E A u^{\prime}\right)(\underline{L})=N_{L}$
5. Set a zero essential boundary condition (2) for the test function: $v(0)=0$

$$
\Rightarrow \quad \int_{0}^{L} E A u^{\prime} v^{\prime} \mathrm{d} x=N_{L} v(L)+\int_{0}^{L} b v \mathrm{~d} x
$$

7.2 Strong forms and weak forms for 1D and 2D model problems

Weak form. Find u such that it satisfies $u(0)=u_{0}$ and

$$
\int_{0}^{L} E A u^{\prime} v^{\prime} \mathrm{d} x=N_{L} v(L)+\int_{0}^{L} b v \mathrm{~d} x,
$$

for all v satisfying $v(0)=0$.
Remark. Note that the solution and the test function, respectively, have to satisfy the boundary conditions $u(0)=u_{0}, v(0)=0$ and, in principle, regularity conditions as well:

$$
\int_{0}^{L}\left(u^{\prime}\right)^{2} \mathrm{~d} x<\infty, \quad \int_{0}^{L}\left(v^{\prime}\right)^{2} \mathrm{~d} x<\infty .
$$

Then the solution and the test function are called kinematically admissible.
Remark. By starting from the weak form, we could correspondingly derive the strong form (integrating by parts "backwards").

BACK

 TObasic material

7.2 Strong forms and weak forms for 1D and 2D model problems

Generalization of the 1D bar extension weak form to 1D heat diffusion:

$$
\begin{aligned}
& \int_{0}^{L} E A u^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{L} b v \mathrm{~d} x \rightarrow \int_{0}^{L} k T^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{L} f v \mathrm{dx} \\
& \stackrel{E A, b, L}{\bullet=u_{0} \quad \Omega} \quad T \stackrel{k, f, L}{=} \quad \Omega
\end{aligned}
$$

Generalizations of the 1D heat diffusion weak form to 2D heat diffusion:

$$
\begin{aligned}
& \int_{0}^{L} k T^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{L} f v \mathrm{dx} \rightarrow \int_{\Omega} k \nabla T \cdot \nabla v \mathrm{~d} \Omega=\int_{\Omega} f v \mathrm{~d} \Omega \\
& T \stackrel{k, f, L}{\bullet=T_{0} \quad \Omega}
\end{aligned}
$$

A
 MOTIVATION FROM
 exercises...

Home exercise 7.2

Let us consider a vertically gravity-loaded (statically determined) beam with bending moment M as the primary variable:

Formulate the weak form of the problem (serving as a basis for FE formulations).
Hint: First, find out the strong form, i.e., the differential equation and boundary conditions, of the problem by recalling your previous studies (or Wikipedia).

Since the strong form of the problem is analogous to the one of the bar (or the heat diffusion) problem, you can simply imitate the weak form of the bar problem (or the heat diffusion problem).

Possible computer exercise - Matlab

(i) Implement the finite element method with linear basis functions for the vertically loaded beam in MATLAB with the following initial data: ...

Possible computer exercise - Matlab

(i) Implement the finite element method with linear basis functions for the vertically loaded beam in MATLAB with the following initial data: ...

Possible computer exercise - Matlab

(i) Implement the finite element method with linear basis functions for the vertically loaded beam in MATLAB with the following initial data: ...

Possible computer exercise - Matlab

(i) Implement the finite element method with linear basis functions for the vertically loaded beam in MATLAB with the following initial data: ...

Possible computer exercise - Matlab

(i) Implement the finite element method with linear basis functions for the vertically loaded beam in MATLAB with the following initial data: ...

BACK

 TObasic material

7.3 Finite element formulations for 1D and 2D model problems

1D bar in tension/compression:

Divide the solution interval (domain) into n subintervals e_{i} (elements) with nodes x_{i} and element size $h_{i}=x_{i}-x_{i-1}$:

In each element, the displacement field is approximated by (linear) polynomial basis functions which are now functions of the x-coordinate.

7.3 Finite element formulations for 1D and 2D model problems

This results in an equation system (initialize $\mathrm{K}=\operatorname{sparse}(\mathrm{m}, \mathrm{m})$ in Matlab etc.)

$$
K d=f
$$

with the stiffness matrix \boldsymbol{K} (computable for $i, j=1, \ldots, n$), force vector \boldsymbol{f} (computable for $i=1, \ldots, n$) and the displacement vector \boldsymbol{d} (unknown for $i=1, \ldots, n$):

$$
\begin{aligned}
& \boldsymbol{K}=\left[K_{i j}\right], \quad K_{i j}=\int_{0}^{L} E A \phi_{i}{ }^{\prime} \phi_{j}^{\prime} \mathrm{d} x, \\
& \boldsymbol{f}=\left[f_{i}\right], \quad f_{i}=\int_{0}^{L} b \phi_{i} \mathrm{~d} x+N_{L} \phi_{i}(L)-u_{0} \int_{0}^{L} \frac{\mathrm{~d} \phi_{i}}{\mathrm{~d} x} A E \frac{\mathrm{~d} \phi_{0}}{\mathrm{~d} x} \mathrm{~d} x, \quad \boldsymbol{d}=\left[d_{j}\right]
\end{aligned}
$$

Remark. The stiffness matrix is (very often) symmetric (due to derivative orders) and its entries are concentrated in a narrow diagonal band forming a band matrix (due to local trial and test functions). These features can can be utilized in computer impelementation - implying small amounts of memory needs and quick processing.
Remark. Test and trial functions have to be (only) once locally differentiable (and will be then integrated over the domain) and (only) locally evaluable on the boundary.

7.3 Finite element formulations for 1D and 2D model problems

Generalization to 2D heat diffusion:

Divide the solution area (domain) into n subdomains, elements e_{i} (triangles, quadrangles, ...) with nodes $\boldsymbol{x}_{j}=\left(x_{j}, y_{j}\right)$ and element size $h_{i}=\operatorname{diam}\left(e_{i}\right)$:

In each element, the temperature field is approximated by (linear) polynomial basis functions.

All functions are now functions of the plane coordinates x and y (instead of x alone). Accordingly, all integrals are now domain integrals (instead of line integrals).

7.3 Finite element formulations for 1D and 2D model problems

This finally results (details in the extra material) in an algebraic equation system

$\boldsymbol{K} \boldsymbol{d}=\boldsymbol{f}$

with the "stiffness" matrix (computable for $i, j=1, \ldots, m-p$), "force" vector (computable for $i=1, \ldots, m-p$) and the "displacement" vector (unknown for $i=1, \ldots, m-p$):

$$
\begin{aligned}
& \boldsymbol{K}=\left[K_{i j}\right], \quad K_{i j}=\int_{\Omega}\left(k \nabla \phi_{j}\right) \cdot \nabla \phi_{i} \mathrm{~d} \Omega, \\
& \boldsymbol{f}=\left[f_{i}\right], \quad f_{i}=\int_{\Omega} f \phi_{i} \mathrm{~d} \Omega-\int_{\Gamma_{q}} q_{0} \phi_{i} \mathrm{ds}-\sum_{x_{j} \in \Gamma_{T}} T_{0}\left(\boldsymbol{x}_{j}\right) K_{i j}, \\
& \boldsymbol{d}=\left[d_{j}\right],
\end{aligned}
$$

Remark. The final equation system - matrix times vector equals vector - is analogous to the 1D case. This is one of the powerful features of the finite element method (or mathematics in general).

HOW TO
 DERIVE THE FINITE ELEMENT SYSTEM?
 extra material

7.3 Finite element formulations for 1D and 2D model problems

1. Divide the solution interval (domain) into n subintervals e_{i} (elements) with nodes x_{i} and the element size $h_{i}=x_{i}-x_{i-1}$:

2. Choose a trial function for the finite element approximation as a sum

$$
u_{h}(x)=\phi_{0}(x) d_{0}+\phi_{1}(x) d_{1}+\cdots+\phi_{n}(x) d_{n}=\sum_{j=0}^{n} \phi_{j}(x) d_{j}
$$

with suitable local basis functions ϕ_{i} of some polynomial order (now linear)

The unknown scalar values $d_{i}=u_{h}\left(x_{i}\right)$ are called the degrees of freedom.

7.3 Finite element formulations for 1D and 2D model problems

Ensure that the trial function satisfies the essential boundary conditions:

$$
u_{0}=u_{h}(0)=\phi_{0}(0) d_{0}+\phi_{1}(0) d_{1}+\cdots+\phi_{n}(0) d_{n}=d_{0}
$$

3. Choose a test function of a similar form (Galerkin method) with the corresponding condition:

$$
\begin{aligned}
& v(x)=\phi_{0}(x) c_{0}+\phi_{1}(x) c_{1}+\cdots+\phi_{n}(x) c_{n}=\sum_{i=0}^{n} \phi_{i}(x) c_{i} \\
& 0=v(0) \Rightarrow c_{0}=0
\end{aligned}
$$

4. Insert the functions - trial and test - into the weak form:

$$
\begin{aligned}
& \int_{0}^{L} E A u_{h}{ }^{\prime} v^{\prime} \mathrm{d} x=N_{L} v(L)+\int_{0}^{L} b v \mathrm{~d} x
\end{aligned}
$$

7.3 Finite element formulations for 1D and 2D model problems

This results in an equation system (initialize $K=\operatorname{sparse}(m, m)$ in Matlab etc.)

$$
\boldsymbol{K} \boldsymbol{d}=\boldsymbol{f}
$$

with the stiffness matrix \boldsymbol{K} (computable for $i, j=1, \ldots, n$), force vector \boldsymbol{f} (computable for $i=1, \ldots, n$) and the displacement vector \boldsymbol{d} (unknown for $i=1, \ldots, n$):

$$
\begin{aligned}
& \boldsymbol{K}=\left[K_{i j}\right], \quad K_{i j}=\int_{0}^{L} E A \phi_{i}{ }^{\prime} \phi_{j}^{\prime} \mathrm{d} x, \\
& \boldsymbol{f}=\left[f_{i}\right], \quad f_{i}=\int_{0}^{L} b \phi_{i} \mathrm{~d} x+N_{L} \phi_{i}(L)-u_{0} \int_{0}^{L} \frac{\mathrm{~d} \phi_{i}}{\mathrm{~d} x} A E \frac{\mathrm{~d} \phi_{0}}{\mathrm{~d} x} \mathrm{~d} x, \quad \boldsymbol{d}=\left[d_{j}\right]
\end{aligned}
$$

7.3 Finite element formulations for 1D and 2D model problems

5. Use an appropriate solver for the equation system ($\mathrm{d}=\mathrm{K} \backslash \mathrm{f}$ in Matlab):

$$
\boldsymbol{d}=\boldsymbol{K}^{-1} \boldsymbol{f} \Rightarrow u_{h}(x)=\sum_{j=1}^{n} \phi_{j}(x) d_{j}
$$

6. Recover (and postprocess) the stress quantities and visualize:

$$
\Rightarrow \quad N_{h}(x)=\left(E A u_{h}\right)^{\prime}(x)=\sum_{j=1}^{n}\left(E A \phi_{j}\right)^{\prime}(x) d_{j} \quad \Rightarrow \quad \sigma_{h}(x)=\frac{N_{h}(x)}{A(x)}
$$

7. Evalute possible error indicators, change the discretization (steps 1-4) ... rerun ...

Remark. Steps 1-7 are automated - by means of mathematics and programming:

1. Elements e_{i}

2-3. Basis functions ϕ_{i}
4. Matrix entries $K_{i j}, f_{i}$
$\boldsymbol{K} \boldsymbol{d}=\boldsymbol{f}$
$u_{h}(x)$
5. Equation solution
6. Visualization
7. Error evaluation

QUESTIONS?

ANSWERS"

LECTURE BREAK!

