GIS-E3010 Least-Squares Methods in Geoscience

Lecture 7, activation 1
Derive a minimum norm inner constraint matrix E, when we use a $3 D$ transformation. If we later add inner constraints $E^{\top} \ddot{\Delta}=0$ to the normal equation, we can remove the datum defect. The equation of 3 D transformation (image observation are invariants to this transformation) is

$$
\left[\begin{array}{l}
d X \\
d Y \\
d Z
\end{array}\right]=\left[\begin{array}{l}
d t_{X} \\
d t_{Y} \\
d t_{Z}
\end{array}\right]+\left[\begin{array}{ccc}
0 & -d \chi & d \beta \\
d \chi & 0 & -d \alpha \\
-d \beta & d \alpha & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+d \lambda\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

In which $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}$ and t_{z} are translations
Tip: Write matrix-vector form open as a group of equations. Then build the correction vector $\ddot{\Delta}$ using corrections of unknown parameters:

$$
\ddot{\Delta}=\left[\begin{array}{lllllll}
d t_{X} & d t_{Y} & d t_{Z} & d \alpha & d \beta & d \chi & d \lambda
\end{array}\right]^{T}
$$

Then build matrix E as a coefficient matrix for this vector. You can think that you have to make partial derivation of functions with respect to all corrections of unknown parameters. After you have completed matrix E for one point, extend it to cover two points.

Solution:
E-matrix for one point

$$
\begin{aligned}
& {\left[\begin{array}{l}
d X \\
d Y \\
d Z
\end{array}\right]=\left[\begin{array}{l}
d t_{X} \\
d t_{Y} \\
d t_{Z}
\end{array}\right]+\left[\begin{array}{ccc}
0 & -d \chi & d \beta \\
d \chi & 0 & -d \alpha \\
-d \beta & d \alpha & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+d \lambda\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=} \\
& \Leftrightarrow\left\{\begin{array}{l}
d X=d t_{X}-d \chi Y+d \beta Z+d \lambda X \\
d Y=d t_{Y}+d \chi X-d \alpha Z+d \lambda Y \\
d Z=d t_{Z}-d \beta X+d \alpha Y+d \lambda Z
\end{array}\right. \\
& \Leftrightarrow\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & Z & -Y & X \\
0 & 1 & 0 & -Z & 0 & X & Y \\
0 & 0 & 1 & Y & -X & 0 & Z
\end{array}\right]\left[\begin{array}{l}
d t_{X} \\
d t_{Y} \\
d t_{Z} \\
d \alpha \\
d \beta \\
d \chi \\
d \lambda
\end{array}\right]=E \ddot{\Delta}
\end{aligned}
$$

E-matrix for two points:

$$
E=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & Z_{1} & -Y_{1} & X_{1} \\
0 & 1 & 0 & -Z_{1} & 0 & X_{1} & Y_{1} \\
0 & 0 & 1 & Y_{1} & -X_{1} & 0 & Z_{1} \\
1 & 0 & 0 & 0 & Z_{2} & -Y_{2} & X_{2} \\
0 & 1 & 0 & -Z_{2} & 0 & X_{2} & Y_{2} \\
0 & 0 & 1 & Y_{2} & -X_{2} & 0 & Z_{2}
\end{array}\right]
$$

