Aalto University
School of Engineering

Uncertainty and error propagation
 Jaakko Madetoja

31.1.2019

Advanced Spatial Analytics
Slides on quality and uncertainty by Kirsi Virrantaus

Contents

- Concepts in uncertainty; quality
- Error
- Error propagation
- Analytic methods
- Stochastic methods
- Example

Learning goals

After this lecture, you are able to

- explain the difference between internal and external quality
- describe what analytic and stochastic error propagation mean
- run error propagation with your own data (no tools available, coding required!)

Reading materials

- Madetoja, J. 2018. Error propagation in geographically weighted regression. Chapter 3.2-3.4. https://aaltodoc.aalto.fi/handle/123456789/29575
- Devillers,R., Jeansoulin,R. 2006. Fundamentals of Spatial Data Quality. Chapter 2 \& 3.

Core concepts in uncertainty

Quality

- Internal quality - sisäinen laatu (producer)
- The relationship between the data that has been produced and the data that should have been produced; the error between them
- External quality - ulkoinen laatu (user)
- The relationship between the data that has been produced and various user needs; there can be various users and varying user needs

Criteria for internal quality (from ISO standard)

Completeness (täydellisyys)

- presence and absence of features, attributes and relationships

Logical consistency (looginen eheys)

- degree of adherence to logical rules of data structure, attributes or relationships

Positional accuracy (sijaintitarkkuus)

- Accuracy of the position of the features

Temporal accuracy (ajallinen tarkkuus)

- Accuracy of the temporal attributes, temporal relationships or features

Thematic accuracy (ominaisuustietotarkkuus)

- Accuracy of quantitative attributes and the correctness of non-quantitative attributes and of the classifications of features and their relationships

External quality concepts and criteria

- the same data product can be of different quality to different users
- "fitness for use" (in Juran and American standard NCDCDS), "fitness for purpose"
- The qualitative quality elements
- history (processing history, lineage), usage (for what purpose the data was created), use experiences(for what purposes the data has been used)
- Various sets of criteria to analyze external quality
- See in Devillers \& Jeansoulin, page 40

Modeling the crisp and imprecise reality - more concepts

- models of reality are approximations
- no-model is completely 1:1 accurate
- "all models are wrong but some are useful" (Box 76)
- there is always error at present
- the umbrella term is uncertainty
- covers many different aspects
- when the truth is obtainable
- the term used is "accuracy" and "error"
- when the truth can not be recovered
- the term used is "imprecision"(epätäsmällisyys)

Examples

- true values can be found, for
- man-made objects like buildings, which have "crisp" boundaries that can be defined by using points (coordinates)
- true values can not be found, for
- boundaries of different vegetation areas or soil types; no crisp boundaries but "transition zones" between
- boundaries of some geographical concepts, like "mountain"; where does it begin (slope?)
- also there can be a confusion with definitions; one concept can have several definitions
- example: "swamp", at least three different definitions exist (agriculture, soil science, mapping)

Error

- Error = the difference between the real value and the modelled (or measured) value
- If the real value was known, we would simply add it to the data
- Real value unknown, but we have an idea about its distribution; error as random variable

Taking error into account

- Error affects every (?) analysis
- Problem: If we do not take error into account, we assume that it is zero.
(Gilman et al., 2015)

12

Taking error into account

Common ways to consider error in (spatial) analysis:

- Preprocessing: Delete clearly erroneous observations

- Estimate and report the amount of error in the input data

"must be used very cautiously" (Epprecht et al. 2008)

Error propagation (virheen kasautuminen)

- The effect of errors of input data on output values of an operation or function (compare with sensitivity analysis)
- Methods can be divided in two:
- Analytic methods
- Exact
- Approximate
- Stochastic methods

Analytic error propagation

- Calculate the effect of variation in input data to the result of an analysis (or function) using algebra
- For example, variables A and B, and their standard deviations σ_{A} and σ_{B}
- $f=A+B, \sigma_{f}{ }^{2}=\sigma_{A}{ }^{2}+\sigma_{B}{ }^{2}$
- $f=A^{B}, \sigma_{f}{ }^{2} \approx\left[\left(\frac{B}{A} \sigma_{A}\right)^{2}+\left(\ln (A) \sigma_{B}\right)^{2}\right]$
- Algebra gets really difficult with complex analysis or functions

Analytic error propagation

- Solution to complex functions: approximate function around a value with Taylor series and calculate error propagation using a simpler function
- Pros:
- Simpler formulas
- Cons:
- Original function needs to differentiable
- Only an approximation, result gets worse away from the value

Stochastic error propagation

- Solution to the problems with analytic methods
- Monte Carlo simulation:

1) Take a realization from the distribution of input values
2) Calculate the analysis using the realization and store the result
3) Repeat n times

- Used often in geoinformatics; can be done with complex processes

Example

- The GWR tutorial from the exercises: explaining the proportion of educated population using other variables
- How do the results change when error in the input data is taken into account?
- Madetoja, J. 2018. Error propagation in geographically weighted regression

1) Error distribution

- First step: defining error distributions
- Can be done
- using algebra
- using simulations
- using expert knowledge
- comparing with more accurate data
- Metadata relating to accuracy is often insufficient

Example

- Positional accuracy: unknown error for borders of polygons; likely small
- Attribute accuracy:
- Data from 1990 census; information on sampling and response rates available
- Assuming random sampling and response, standard deviation $\sigma=\sqrt{\frac{1}{n} p(1-p)}$

2) Analysis, example

1) Realizations: take a random value using standard deviation, and add it to the data

- Errors assumed to follow normal distribution, but with min. o \% and max. 100 \%

2) Calculate the entire GWR process (incl. OLS) for the realization
3) Save the results; repeat from step 1

Spatially autocorrelated errors

- If errors are spatially autocorrelated, utilize SAR-process:

$$
\boldsymbol{X}=\rho \boldsymbol{W} \boldsymbol{X}+\boldsymbol{\varepsilon} \quad \Rightarrow \quad \boldsymbol{X}=(\boldsymbol{I}-\rho \boldsymbol{W})^{-1} \boldsymbol{\varepsilon}
$$

- ε is the realizations, W is weights matrix, ρ is autocorrelation parameter
- The method has originally been developed for raster data, but can be applied to irregular points if W is normalized

3) Choosing n, accuracy of Monte Carlo simulation

- The bigger the n , the more accurate the simulation, i.e. the closer the calculated uncertainty to the real uncertainty
- The bigger the n , the longer the simulation takes

Visualization of the results

- When the result of the analysis is only one value, the examination is easy

Visualization of the results

- When the result is more complex, more thought is required

transform the map into a value

Visualization of the results

Map of negative_coef_sum_PctPov
negative_coef_sum_PctPov: Percentage of simulations that result in a negative significant coefficient value for the variable PctPov

- How about location?

Visualization of the results

- Calculation of river network from DEM, 100 simulations (Hengl et al., 2010)

Final result

- The distribution of output needs to be compared to the accepted level of uncertainty
- The previous examples were the largest uncertainties in the study; generally the results were fairly accuracte

Computing in practise

- Research was made using the statistical software R
- The Georgia example above took 6 minutes for 1000 simulations; Laos case (9000 points, 20 variables) took 7 days for 100 simulations
- R code published online https://github.com/jaakkomadetoja/epgwr

References

- Heuvelink, G. B. (1998). Error propagation in environmental modelling with GIS. CRC Press.
- Epprecht, M., Minot, N., Dewina, R., Messerli, P., \& Heinimann, A. (2008). The geography of poverty and inequality in the Lao PDR. Swiss National Centre of Competence in Research (NCCR) North-South, Geographica Bernensia, and In-ternational Food Policy Research Institute (IFPRI).
- Gilman, E., Keskinarkaus, A., Tamminen, S., Pirttikangas, S., Röning, J., \& Riekki, J. (2015). Personalised assistance for fuel-efficient driving. Transportation Research Part C: Emerging Technologies, 58, 681-705.
- Hengl, T., Heuvelink, G. B. M., \& Loon, E. (2010). On the uncertainty of stream networks derived from elevation data: the error propagation approach. Hydrology and Earth System Sciences, 14(7), 1153-1165.

