
R programming

… and extensions

YYT-C3002 - Application
Programming in Engineering

Marko Kallio

31 Jan 2019

https://mycourses.aalto.fi/course/view.php?id=22596

Today

I assume you already know something of R – no absolute basics!

• Background on R

• Basic concepts

• Objects

• Functions

• Extending R via functions

• Extending R via packages

R language

R has origins in statistics

• Open source implementation of S language (think of matlab /

octave)

• First version in 1993 by Ross Ihaka and Robert Gentleman

• Popular analysis tool among statisticians and data scientists

• FOSS

R language

Like matlab, R is

• Programming language

• Programming environment

• Function library

• Application Program Interface (API)

• Designed for interactive use

R language

R is a procedural programming language with support for

functional and object-oriented workflows.

• Everything in R is an object

• Every function or data structure can be modified

R language

R has built in interoperability capabilities between languages.

• C

• C++

• FORTRAN

Through packages

• Python (e.g. via reticulate)

• SQL

• more…

Data structures and types

Structures Types

• Logical

• Integer

• Double (numeric)

• Character

• (Complex)

• (Raw)

Dimension Homogeneous Heterogeneous

1d Atomic vector List

2d Matrix Data frame

nd Array

Functions

Call functions with function(arguments)

• sum(1:5)

• mean(c(1, 3, 5, 6, 8, 10))

Find function usage help with

• help(function)

• ?function

Function definition

Define the function

function_name <- function(arg1, arg2) {

do something

}

Call the function

function_name(arg1 = data1, arg2 = data2)

Multiple dispatch (methods)

A function can have different behaviour depending on the input!

Test it!

plot(1:10)

plot(matrix(1:10, ncol=2))

plot(density(runif(100, 0,100)))

Multiple dispatch (methods)

New methods can be created by defining a function which looks

for methods

function_name <- function(arg1, arg2) {

UseMethod(“function_name”)

}

And defining a new method for objects of class

function_name.class <- function(arg1, arg2) { do something }

Extending R

R extensions

One of the best selling points of R are user generated packages!

• On 30.1.2019 there were 13 589 packages available in CRAN
• + more hosted elsewhere, e.g. on GitHub

Packages are easily obtained from CRAN:

• install.packages(“package_name”)

Or (using another package, devtools) from GitHub:

• devtools::install_github(“GitHub_repository”)

CRAN

Packages in CRAN go through rigorous testing

• Package developers must ensure that the package works in
different environments (mac, windows, linux…)

• Users can just use

CRAN tests are technical, there is no scientific curation of package

content!

Extending R for your own use

- functions

1. write a function

2. save the function definition in an R script

3. source the script in a new R sessions

source(“path_to/my_function.R”)

4. load the libraries used in the function

Extending R for your own use

- packages

Much more work than simply defining functions. However,

• Packages can be loaded regardless of your working directory!

• All required libraries will be installed on package installation!

• No need to preload libraries to use the functions!

• Can be distributed to other users!

Package example:

hydrostreamer

Hydrostreamer is a package developed to downscale runoff

products, and to estimate river discharge at an arbitrary river

segment.

Currently distributed via GitHub:

http://github.com/mkkallio/hydrostreamer

http://github.com/mkkallio/hydrostreamer

(Minimal) Package structure

RStudio project internal files (not part of a package)

R code goes here

GitHub related file

List of files in the folder not part of the package

Package description

Package namespace (functions exposed to a user)

R project file (not part of a package)

DESCRIPTION

These will be installed with the package

If these packages are installed, the package can do more than

just the core functionality

DESCRIPTION:

hydrostreamer

Imports 15 other packages – required

for core functionality

Suggests 3 packages – not required,

but add functionality

Depends on R version >= 3.4.0 –

cannot be installed for older versions

Functions in the package

Documentation

Function name and arguments

What the function does

What the function returns

Using functions from other
packages

We must pass an explicit reference to the package!!!

example::sum_two_vectors(arg1, arg2)

Package name

Function name

Documentation using roxygen2

Heading

Description

Details

Arguments

What the function returns

Give the user direct access to the function

Documentation via roxygen2

Run devtools::document()

The example in the earlier slide gives the following output:

NAMESPACE

roxygen2 handles the namespace for you! It handles all those

lines which precede function definition, and which start with #’

• Namespace gets populated based on the tag @export (among
others)

NAMESPACE:

hydrostreamer

Overall 60 different functions,

methods, or function imports from

other packages.

Checking and installing package

R has built in program to inspect potential package.

In RStudio you can run it via menu build/check package..

Package can be installed via build/install and restart..

After installing, the package can be loaded with

library(example)

More information

Package development is complex. However, everything needed for

package development in R can be found in the following (free)

resources:

• R packages book - http://r-pkgs.had.co.nz

• Advanced R book - http://adv-r.had.co.nz

• … and the proper manual: Writing R Extensions -

https://cran.r-project.org/doc/manuals/r-release/R-exts.html

http://r-pkgs.had.co.nz/
http://adv-r.had.co.nz/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html

