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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 6:

O Heat exchange mechanisms, balance laws and constitutive equations of isotropic

thermo-mechanics, variation form of energy balance
O Stationary thermo-mechanical FEA with solid, plate, and beam elements

O Virtual work densities of solid, plate, and beam models
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MULTIPHYSICS FEA

Finite element method is the standard numerical method for solid mechanics, but it applies
(almost) as well to the full set of balance laws in Eulerian and Lagrangian descriptions.
Then the principle of virtual work needs to be replaced by more generic variational forms.
As an example, the principle of virtual power for an incompressible Newton’s fluid is

given by 6P =0 Vov and Vo p where (boundary and possible stabilising terms omitted)
SP= —jQ LUV SV : wdQ+jQ 5v-(f—pv-vv)dV—jQ (5% V) pdV —jQ Sp(V-¥)dV .

In FEA, solution domain is divided into elements and flow velocity v and pressure p are
interpolated inside the element by using the nodal values and the virtual power expression
is build out of the element contributions. The final outcome is a non-linear algebraic

equation system for the unknown velocity and pressure nodal values.
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FLOW IN A CAVITY




5.1 THERMOMECHANICAL PROBLEM

Mechanical properties depend on temperature ¢ which has, therefore, an effect on the
constitutive equations. Finite element analysis taking into account temperature as an

unknown function

O Requires (a) the balance law of energy in addition to the balance laws for mass,
momentum, and moment of momentum and (b) constitutive equations for stress and

heat flux in terms of strain and temperature.
O Principle of virtual work needs to be replaced by a more generic variation principle

O Otherwise, analysis follows the lines of a pure displacement problem with temperature

as an additional known or unknown function.
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BALANCE LAWS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1) €

Entropy growth (Thermodynamics 2)
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BALANCE OF ENERGY

The rate of change of the kinetic and internal energy equals the external force power and

the added heat power, 1.¢., U+T = By + PQ where

Internal energy U = IQ pedV
. |
Kinetic energy 7 = IQ 5 pv-vdV

Power of forces B = IQ ]7-\7a’V+IaQ t -vdA

Power of heat P, = j sdV + I hdA
0" Jo o0

Temperature, heat and internal energy are concepts of continuum mechanics that do not

have direct counterparts in particle mechanics (force and displacements have).
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BOUNDARY VALUE PROBLEM

Given an the 1nitial equilibrium setting, the aim is to find the new stationary temperature
and displacement when external forces, heating or boundary condition are changed in

SOMeE mannecr.

Q74

Balance of momentun V.o + f =0 1n Q,

Balance of energy —V-g+s=0 in Q,

—_

Displacement BC:s 7-6=¢ or =g on0Q,

Temperature BC:s 7n-g=h or 3=9 on 0Q.

Constitutive equations of the form ¢($) and &(u,3) are needed for a closed equation

system in terms of displacement and temperature.
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ISOTROPIC HOMOGENEOUS MATERIAL

The generalized Hooke’s law, taking into account the change of temperature A3 =9 —-9°,
and the Fourier law of heat conduction for an isotropic homogeneous material are (stress is

assumed to vanish at the initial geometry) is given by

(.. —aAS | 1 v v][on| [rw | (0, ) g, ] (09 /0x)
<gyy_aA‘9>:E -v 1 —v|jo, <yyz>:5<ayz>, and (g, r=—kq08/0y
|22 —OAS v v Lo, (Vzx | (O zx ) 19z ) (09/02]

in which Young’s modulus E, Poisson’s ratio v, shear modulus G=E/(2+2v), thermal
expansion coefficient «, and thermal conductivity & depend on the material. The forms
for the uni-axial and planar stress and strain relationships can be deduced from the generic

forms.
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EXAMPLE. Derive the stress-strain-temperature relationship of isotropic homogeneous

material under (a) the xy —plane stress and (b) uni-axial stress conditions. Start with the

generic strain-stress-temperature relationship.

G)CX gxx E 1

Answer (0, r=[E];\¢&y, >—aA91_v< 1+ and o, =E(e,, —aAY)
y 0
LX) LAY S
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e Under the plane stress assumption, only o, 0,,, and o, are non-zeros. The

relationship for the in-plane normal stress resultants follows from the generic strain-

temperature-stress relationship modified according to the kinetic assumption:

£, —OAY | 1 v 0 ||oy o E s i 1)
<‘9yy_aA‘9>:E -v 1 0 10y 1 <= <ayy>:[E]G<gyy>—aA91_v<1>.
Yy 0 0 2(I+v) Oy Oy Yy 0]

e Under the uni-axial stress assumption, only o, is non-zero. The relationship follows
directly from the generic strain-stress-temperature relationship. Inversion gives the

stress-strain-temperature relationship for the uni-axial case

1
gxx_aAQZEGxx & o, =E(g,,—0AY). €
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MATERIAL PARAMETERS

Material p [kg/m’] E [GN/m?] v [1]
Steel 7800 210 0.3
Aluminum 2700 70 0.33
Copper 8900 120 0.34
Glass 2500 60 0.23
Granite 2700 65 0.23
Birch 600 16 -
Rubber 900 102 0.5
Concrete 2300 25 0.1
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MATERIAL PARAMETERS

Material k[N/(Ks)] a [pm/ mK] c [J/kgK]
Steel 45...50 12...13 520
Aluminum 205...240 23...24 900
Copper 385...400 17

Glass, ordinary  0.8...1 8...9 800
Granite 0.7...0.9

Wood 0.1...0.2 30 1300
Rubber 0.2 0.1

Concrete 1 12 850
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VARIATIONAL FORM

The variational form of stationary heat conduction problem is derived in the same manner
as the principle of virtual work. According to the principle SP=8P™ +5P™' =0 V9.

The variational expression consists of

059/ ox) " (89/éx)

sp™ =jQ 1069 /dy" ki08/8ysav,
059/0z) |09/ 6z)

SPt = j s69dV + j h69dA .
Q 15,9

Finite element method is applied in the usual manner by considering temperature as the

unknown. The physical dimensions [6 P]= Nm/(Ks) and [6/]= Nm differ!
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The local form of energy balance is first multiplied by 69 followed by integration over

the domain. Integration by parts in the flux term gives equivalent representations
-V.g+5s=0 <
jQ 5(=V -G +s)dV = jQ (VEY -G +595)dV — jaQ 597 -GdA=0 V9.

Assumption 69 = 0 (temperature specified) or 7 -5 + 4 =0 (heat flux specified) on o2

gives the final form

j v5.9-(7dV+j 59st+[ S9hdA=0 V59 €
Q Q 15.9)

which 1s more convenient in numerical calculations than the local form. The
variational form lacks a clear physical interpretation although the meaning is clear

from the mathematical viewpoint.
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VIRTUAL POWER DENSITIES

The integrands of the variational form represent the model in the same manner as the
virtual work densities of principle of virtual work. Also, the derivation of the simplified

forms for slender bodies etc. follows the steps used in the virtual work expressions.
. T () . \T ¢ \
009 /0x| |q, 009/ Ox 09 /0x
Internal part: Spgy =4083/0y; 1q, =—1069/dy; ki09/oy
(008 / 0z q, 068/ 0z |08/ 0z

'S

ext ext

External parts: op5 =08s and opsn =09h.

Thermal conductivity & [N/(Ks)], added heat s per unit volume and time [N/ (mzs)],

and added heat 4 per unit area and time [ N/ (ms)] may depend on position.
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5.2 THERMOMECHANICAL FEA

O Model the structure as a collection of beam, plate, etc. elements. Derive the element
contributions SW° and SP° in terms of nodal displacements/rotation components of

the structural coordinate system and temperature.

O Sum the element contributions to end up with the variational expression for the
structure. Re-arrange to get oW +10P = _5al (Ka—F) (7 is a dimensionally correct

but otherwise arbitrary constant)

O Use the principle oW +16P =0 Voa and the fundamental lemma of variation calculus
to deduce Ka—F = 0. Solve the linear algebraic equations for the nodal displacements,
rotations, and temperatures. Due to the one-sided coupling of the stationary problem,

solving the temperature first is always possible.
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BAR

Assuming that v=0, w=0, ¢ =0 and a linear interpolation to the axial displacement u(x)

and temperature $(x)

L N f

592 Al-ld 92 | uxl»'gl - : ux2>'92

5ch1_ 5”x1 T% -1 -1 A‘91 :
B 5l/lx2 2 | | Atgz ’

T
5 PCXt — 5‘91 A_Sh 1
5% | 2 (1]

Heat flux through the end-planes is treated by point elements in the same manner as

traction on the end-plates by point forces and moments.
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EXAMPLE 5.1. The bar of the figure consists of three linear elements of identical
lengths. Determine the stationary temperatures & at node 2 and Y5 at node 3 when the
end temperature is $° and heat generation s per unit volume are constants. Take only the

heat conduction in the bar into account. Problem parameters £, 4, and k are constants.
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e Element contributions for the temperature distribution problem are (temperature is not

affected by displacement)

T
e 3 5 3 {20
5% nl-1 11| 5% [ 2 1

e When the actual nodal values of the problem are substituted there, the element

contributions simplify to

o {2 e 4

2 o 2

o o)
% 1 1(|%] 6 |1
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p3__[0% T(%1 -1 ‘93_£1)
o L|-1 1]l9| 6 1|

e Variational expression for a structure is the sum over the element contributions

e T R
s L -1 2% L ]9 6 |2

e Variational principle 6P=0 Vda and the fundamental lemma of variation calculus

imply a linear equation system and thereby the solution

_ o 2
T T R S T
L|-1 2||%] L | 6 |2 9, 9 k|1
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EXAMPLE 5.2. The bar of the figure consists of two elements having same material
properties. Stress 1s zero, when the temperature in the wall and bar is $°. Determine the
stationary displacement uy, and temperature &, at node 2, when the temperature of the
right end is increased to 29°. Take only the heat conduction in the bar into account. Use

two linear elements. Problem parameters £, A4, k, and  are constants.

L/?2 L/2

Answer uy, = —%La&'o and 9 :%‘90
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Element contributions for the thermo-mechanical problem needed in this case are (no

heat production, nor external distributed forces, and A3 =9 —-39°).
T T
syt — _ Ou EA 1 -1 uy ’ Sl _ Suy | aEAl-1 -1 0 |
5ux2 h _1 1 uxz 5ux2 2 1 1 ‘92 _90

T
0% | hi|-1 1|H
The nodal values for bar 1 are u,1 =0, u,» =uy,, A =0, and A =9, —9°. The

element contributions SW™ + 5W P! and § P™ simplify to

T T
sl - 0 2EA| 1 —1|] O N 0 aFEA| -1 -1 0 -
5MX2 L —1 | Ux) 5MX2 2 | | \92—\90
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2FA aFEA
Uyo +OUx) 5 (% —8°),

SW'=—Suy,

0! 1 —17(9°
A

e The nodal values for bar 2 are u,3=0, u,=uy,, AY=29°-9°=39°, and
A9y =3 —9°. The element contributions W™ + SWP' and §P™ simplify to

T T 5
5W2 _ 5MX2 2FEA 1 —1 MXZ 4 5MX2 O[EA -1 -1 \92 —\9 N
0 L |-1 1 0 0 2 1 1 g°

2FA aEA
Uy —OUy? 7‘92»

T
5P2:_{5‘92} %{1 _1}{‘92}:—592%(92—290).

SW? =—5uy,

0 L |-1 11|28°
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e Variational expression for the structure are sums of the element contributions

AEA EA
Uyn + 22 99,

SW =W +5W? = —Suy( ;

SP=6P' +5P* =-69, %(292 ~399).

e Variational principle 6W +1t0P =0 Voa and the fundamental lemma of variation

calculus imply the equations

4FA aFEA 2kA
Uy, +——9°=0 and —(2% -39°)=0 <
[ dx2 Tt 7 (29, )
S :%‘90 and uy, =—%L9°. €
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In Mathematica notation, the problem description is given by

| type properties geometry
1 ‘ BAR ({E, a, k}, {A}, {0,0,00}}  Line[{1, 2}]
2 BAR {{E, a, k}, {A}, {0, 0, 00} } Line[{2, 3}]
{XJYJZ} {UXJUYJUZ} {@XJ@YJ@Z} S
1 {0, 0, 0} {0, 0, 0} {0, 0, 0} 50
2 | {5,0,0] {uX[2],@,0}  {0,0,0) o[2]
3 {L, 9, 9} {0, 0, 0} {0, 0, 0} 2 90

1 390
{uxm oD Lace, 0[2) - T}
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5.2 ELEMENT CONTRIBUTIONS

Variational expressions for the elements combine the density expressions of a model and

approximations depending on the element shape and type. To derive the expression for an

element:

O

Start with the densities owgy', Swa, Swe 1, SpSt, and S p&Sof the model. If not

given in the formulae collection, derive the expressions starting from the 3D versions.

Represent the unknown functions by interpolation of the nodal displacements,

rotations, and temperatures. Substitute the approximations into the density expressions.

Integrate the densities over the domain occupied by the element to end up with

SW =SW™ L st L sWP! and P = SP™ + 5P
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacements and rotations in terms of shape functions. In thermo-mechanical analysis,

temperature is represented in the same manner by using nodal temperatures.

Approximation U= NTa, V= NTa, ey 9= N'a Mu?mys af the snmefarm!

Shape functions N ={N;(x,y,z) N,o(x,y,z) ... N, (X,y,Z)}T

Parameters a={a; a, ... an}T
Nodal parameters ae{u,,u o Z,ex,ey, 0,,9} may be just displacement or rotation

components or a mixture of them (as with the Bernoulli beam model). Nodal parameters

may represent also temperature.
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SOLID

The model does not contain any kinetic or kinematic assumptions. Virtual work densities

of the internal and external distributed forces o wglt and o

ext

wg  are the same as in pure

displacement analysis. The additional terms are

(06ulox)’
SwiPl =2 o6v /oy |
d5w/ oz
(669 6x
Spit=—1059/ oy}
069/ 6z

EaAS
1-2v

3

(09 /ox)

k109 / oy

.

09/ 0z

tdA

0Q)

The solution domain can be represented, e.g., by tetrahedron elements with linear

interpolation of u(x, y,z), v(x,y,z), w(x,y,z) and 3(x,y,z).
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EXAMPLE 5.3 Consider a tetrahedron of edge length L on a horizontal floor. Determine
displacement u,3 when temperature is increased by constant A9 and before that stress
vanishes. Assume that uy3 =uy3; =0 and that the bottom surface is fixed. Stress vanishes

at the 1nitial geometry when u,3; = 0. Material parameters £, v =0, and « are constants.

Answer: uy3 =LaAS

b

b
Ry
e
e
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e Only the shape function N3 =z/L of node 3 is needed as the other nodes are fixed.

Approximations to the displacement components are

u=0,v=0,and w:%um, giving (2—W=%=O, anda—wzlum.
X

e As temperature 1s known, it 1s enough to consider the displacement problem. With the

approximation, the internal and coupling densities simplify to (v =0)

(o0 ! p (1-v v v [ 0 p
Swyl=—4{ 0 | v 1-v v |§ 0 (=——uy30uy;,
(1+v)(1-2v) I?
(Ouyy /L Vv v 1=v|lug /L
s O \T Algf\ 5
5wg’1:< 0 >Ea 11V =223 pong.
1-2v
k5uz3/LJ k1)
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e Virtual work expressions are integrals of the densities over the volume. Here, the

densities are constants and it is enough to multiply by the volume L’/6

Swnt = jQ SWEAV = —Su,, %ELum,

SWP = Sw'dV = Sug; %LzEaAS.

e Variational principle (here principle of virtual work) SW = sW™ + W P! = 0 implies
that

1 1
—gELuZ3+gL2EaA9:O & uyy=LoAY. €
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that
the material coordinate system is placed at the geometric centroid, and material properties

do not depend on the transverse coordinate,

T 2 AN
oou /o 1 o ow/ 0o 1
s =00 L [ Agar LE L O LT A g 2R L
o0ov/ oy 1-v |1 825w/8y2 1-v |1

(069/ox)" [89/ox
Spit—_1659/0y! kio9/oyy, SpSt=569s and SpSy =59h.
069/0z) |09/6z]

V

Approximation to the transverse displacement depends only on the planar coordinates but

temperature and its approximation may depend on all the coordinates.
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The constitutive equations of a linearly elastic isotropic material and kinetic

assumption o,, =0 give the non-zero stress components

() () 1 () \ (2 2 )
O x € vx i 1 €. ou / Ox 0w/ ox
_ . _ 2 2
<ny>_[E]G<gyy>—aA91_v<1>w1th<gyy>_< ov /oy s+z4 0w/ oyT b,
kaxy j/xy \O) k}/xy) kau/ay—i_a‘}/ax) 282W/axay

The generic expression of 5w8t simplifies to a sum of thin slab, bending and
interaction parts. Assuming that material properties do not depend on z, and that the
origin of the material coordinate system is placed at the geometric mid-plane, virtual
work density of internal forces consists of the internal parts of the plate thin-slab and

bending modes o6 wglt and the coupling parts for the thin-slab and bending modes (the

integral is over the thickness)
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e As temperature is not assumed to be constant in the thickness direction, variational
expression for the temperature calculation 1s based on the generic expressions.

Therefore, also the approximation, e.g., of the type
9(x,y,z)=N' (x,y)a(z) where a(z)=ay+a,z

is used for the actual domain of the plate.
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EXAMPLE 5.4 Consider the triangular thin slab shown. Determine displacements u y
and uy;, when temperature is increased by constant A3 and before that stress vanishes.
Use a linear approximation and assume plane stress conditions. Thickness of the slab is ¢

and material parameters £, v, and a are constants.

Yy

1
Answer “xi = — L+ LaA S
MYI 2 1
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e The active degrees of freedom are u,| =uy| and u,; =uy;. The linear shape functions

Ny=(L-x-y)/L, Ny=x/L and N3=y/L can be deduced from the figure.

Therefore, approximations are

1 1
u:Nluxlzz(L—x—y)qu and v = Nju,, :Z(L_X_J’)UYI =

au__qu au__qu 8v__uY1 and @__m
Ox L~ oy L ox L oy L

e Densities of internal and coupling terms simplify to

. \T - -

_5MX1 ) P 1 v 0 ( —Ux1 )
5wgt:—< —Ouy o t2 v 1 0 T Uy ¢ &
—O0uU 1 —ou L=y 0 0 (I-v)/2||—-uyi—u
| X1 Y1) B X1~ 4y
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T
Sypiit _ OU yq ( Et |1 v N Et 1 1) Uy i
5”Y1 1—V2 v 1 2(1+V) 1 1 Uy L2 ’

e Integration over the element gives (densities are constants)

T
5Wint:J‘ 5WintdA:— 5MX1 ( Et 1 v N Et 1 1) Uxi
QT Suyy | 20—v2y|v 1] 40+v)[1 1 up [’

T
5 1
sl = [ swdlaa=—1"" X! LEal gl L,
Q Suy [ 21-v7 1

e Variation principle oW =0 wint 4 s =0 VSa and fundamental lemma of variation

calculus imply the equilibrium equations
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Et

(2(1—\/2)

-

Uxi
kqu J

B
1

l1+v

} Et {11
_|_
41+v)|1 1

1
LaAS{l}. &

i

—AS

Uy

1/A-v)+1/2 v/(-v)+1/2T"
vIA=v)+1/2 1/(1=v)+1/2
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EXAMPLE 5.5 The simply supported plate of the figure is assembled at constant
temperature 39°. Find the transverse displacement when the upper side temperature is 49°
and that of the lower side 2.9°. Assume that temperature in plate is linear in z. Use the
polynomial approximation w(x,y)=a(xy/ LZ)(I —x/L)(1—y/L). Problem parameters E,

v, p, a and t are constants.

Answer w(x,y)= —%0&90(1 + v) L 2

(1 ——)(1 - —)

Week 6-40



Assuming that the material coordinate system is chosen so that the linear plate bending
and thin slab modes decouple, the bending mode virtual work densities of the internal

and coupling parts are

( \T ( 3
o> 5w/ ox’ 1y o 1| &*w/ox?
. 3 g
Swit=_3 a%sw/av? | Dlv 1 0 ! 0%w/dy? |+ where p=L :
121-y?
20°5wiexay| L0 0 (A=v)/2]125%y/ oxoy
2swiont) aE (1
Swi = | 2794z .
0°5w/ oy’ I-v (1

Approximation to the transverse displacement and its derivatives are

w(x,y)=az—§<1—%)a—%) =
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2 2 2
8—2——2a—(1——) W :—2a—(1——) Ow
Ox r 8y L~ Oxoy

1 X y
=—a—({1-2—-)(1-2=).
—(1-2)01-22)

e Temperature difference and its weighted integral over the thickness (integral of the

coupling term)

1 z 1 =z z
AF=9(z)-33°=(———)23°+(—+—-)49°-39°=-28° =
(2) (2 t) (2 t) t

/2
j ZA9dz = j ’ z%ZQOdZ — %9%2

—t/2

e When the approximation is substituted there, virtual work expressions of the internal

and coupling terms simplify to
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1L E
45 1212 1—2

Wlnt_J‘ J‘ S mtdxdy— _Sa

b

SWePl = j j 5prldxdy——5aéla—E9°2

e Virtual work expression is the sum of the internal and coupling parts

SW = St 4 ser! = _sa(22 L CE ., L 2E gop2y
451212142 91—y

e Principle of virtual work 6/ =0V da and the fundamental lemma of variation calculus

give

2
a:—%agoaw)_ = w(x, y)——%a9°(1+v)L i

—( ——)(1 - —)
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BEAM

Virtual work densities combine the bar, bending, and torsion modes. Assuming that
material properties are constants and the material coordinate system is placed so that the

first and the cross moments of the cross section vanish

f \T
dou / dx (1) 089/ ax) " (69/ox)

Swd' = Ea( d*ov/dx® ; [A9{-ytdd, SpS' =—1069/dy} k{08/dy|, and
\d25w/dx2) =3 ka59/az) \59/52)

SpSt =695 and SpSy =69h.

Approximation to the transverse displacement depends only on the axial coordinate but

temperature and its approximation may depend on all the coordinates.
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The displacement components of the Bernoulli beam model are

u, =u—(dw/dx)z—(dv/dx)y, uyzv—¢z and u,=w+¢y. With the kinetic

assumption o, =0 ,,, =0, stress and strain components take the forms

Yy
(a’u_dzwz_dzvy\
e 3 _ - ( 3 P . A 2 2
O xx E 0 0]ley ! Exx "o d¢ “
100 =10 G 0 {yy r—EaA3{0r where (7, =+ _ZE -
o] L0 0 Gy, . Vxz d¢
y_
dx

Assuming that material properties are constants and the material coordinate system is

placed so that the first and the cross moments of the cross section vanish, the virtual
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work density of the coupling term simplifies to (after integration over the cross

section)

d*Sw d’sv

dou 5 zASdA —
dx

swe! = Ea (== j AJdA -

j yA9dA). €

As temperature is not assumed to be constant in the thickness direction, variational
expression for the temperature calculation 1s based on the generic expressions.

Accordingly, the approximation depends on all the coordinates. Approximation of the

type

3 (x,p,z)= Nt (x)a(y,z) where a(y,z)=ap+a,y+a.z
is one of the possibilities.
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BAR MODE

Assuming that v=0, w=0, ¢ =0 and a linear interpolation to the axial displacement u(x)

and temperature $(x)

L N f

592 Al-ld 92 | uxl»'gl - : ux2>'92

5ch1_ 5”x1 T% -1 -1 A‘91 :
B 5l/lx2 2 | | Atgz ’

T
5 PCXt — 5‘91 A_Sh 1
5% | 2 (1]

Heat flux through the end-planes is treated by point elements in the same manner as

traction on the end-plates by point forces and moments.
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e Bar model assumes that v(x) = w(x) =0 or that coupling between the bar and bending

modes vanish. After integration over the cross section, the generic expressions for the

3D case simplify to

suilt = 9O p g sext —sur., swi =LY Eans,
dx dx dx

spmt = 08,449 5 et _ 55,
dx dx

in which cross-sectional area A4, Young’s modulus E, external force per unit length
/., thermal conductivity &, coefficient of thermal expansion o, and heat production

rate per unit length s may depend on x.

e Linear interpolants to the axial displacement and temperature are
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=t {hx x}{”xl}, §=Lih-a x}{jlz},and A9 =1t x}{ijl}.

Uy) 2

e After substituting the approximations into the densities and integration over the

domain occupied by the element with the assumedly constant material properties
S T

5ch1 _ Uy | aEA| -1 —1]]AG
5l/lx2 2 | | Atgz ’

T T
e (S ) ]
5% nl-1 11| 5% 2 |1
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BENDING MODES

Assuming a cubic interpolation to w(x) and v(x) and linear interpolation to the

“coefficients” of the representation A3(x,z) =AG,(x)+ ASy (x)y +A8,(x)z, the coupling

term

1 1 1 1
(Suy ) 7 (Su_y)" 7
spenl __) 90 | Ela| -1 0 A, _<50y1> El ol 1 0 |[AY,
Suyy| > | 1 1Ay [dun| > |1 _1](A9,
50, h h 50, h h
" J I O 1 ] " J I O —1_

Under the assumptions used, the displacement-temperature coupling of the bar and the

bending modes can be treated by adding a coupling term for each mode.
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e Cubic interpolants to the transverse displacements and the “Taylor series” type linear

approximation to the temperature difference are

(-020+28)| (u]  [0-820+28)] [uy

N I O N (R B Tl
(3-26)% | |42 (3-28)% | |Uz2
ey | 02l | gy | 02

T
5 A [ " g A9y2 £ [ a9, h

e When the approximation is substituted there, integration of the density over the cross

sections gives the coupling expression (notice that the first term of the temperature

approximation contributes to the bar mode only).
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