\qquad

Home assignment 1

Determine the buckling force $p_{\text {cr }}$ of the beam shown by using one beam element. Displacements are confined to the $x z$-plane. The cross-section properties A, I and Young's modulus of the material E are constants.

Solution template

The virtual work expressions for the buckling analysis in $x z$ - plane consist of the internal parts for the beam bending and bar modes and the coupling (stability expression) between them
$\delta W^{\mathrm{int}}=-\left\{\begin{array}{l}\delta u_{z 1} \\ \delta \theta_{y 1} \\ \delta u_{z 2} \\ \delta \theta_{y 2}\end{array}\right\}^{\mathrm{T}} \frac{E I_{y y}}{h^{3}}\left[\begin{array}{cccc}12 & -6 h & -12 & -6 h \\ -6 h & 4 h^{2} & 6 h & 2 h^{2} \\ -12 & 6 h & 12 & 6 h \\ -6 h & 2 h^{2} & 6 h & 4 h^{2}\end{array}\right]\left\{\begin{array}{l}u_{z 1} \\ \theta_{y 1} \\ u_{z 2} \\ \theta_{y 2}\end{array}\right\}, \delta W^{\mathrm{int}}=-\left\{\begin{array}{l}\delta u_{x 1} \\ \delta u_{x 2}\end{array}\right\}^{\mathrm{T}} \frac{E A}{h}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left\{\begin{array}{l}u_{x 1} \\ u_{x 2}\end{array}\right\}$,
$\delta W^{\text {sta }}=-\left\{\begin{array}{l}\delta u_{z 1} \\ \delta \theta_{y 1} \\ \delta u_{z 2} \\ \delta \theta_{y 2}\end{array}\right\}^{\mathrm{T}} \frac{N}{30 h}\left[\begin{array}{cccc}36 & -3 h & -36 & -3 h \\ -3 h & 4 h^{2} & 3 h & -h^{2} \\ -36 & 3 h & 36 & 3 h \\ -3 h & -h^{2} & 3 h & 4 h^{2}\end{array}\right]\left\{\begin{array}{c}u_{z 1} \\ \theta_{y 1} \\ u_{z 2} \\ \theta_{y 2}\end{array}\right\}$ where $N=E A\left(\frac{u_{x 2}-u_{x 1}}{h}\right)$.
$\delta W^{\mathrm{ext}}=\left\{\begin{array}{l}\delta u_{X 1} \\ \delta u_{Y 1} \\ \delta u_{Z 1}\end{array}\right\}^{\mathrm{T}}\left\{\begin{array}{l}F_{X} \\ F_{Y} \\ F_{Z}\end{array}\right\}+\left\{\begin{array}{l}\delta \theta_{X 1} \\ \delta \theta_{Y 1} \\ \delta \theta_{Z 1}\end{array}\right\}^{\mathrm{T}}\left\{\begin{array}{l}M_{X} \\ M_{Y} \\ M_{Z}\end{array}\right\}$.

The non-zero displacement/rotation components of the structure are $u_{z 2}=u_{Z 2}$ and $u_{x 2}=u_{X 2}$ so that the expressions simplify to (keep the symbolic form N for the normal force in the coupling term)

Bending term: $\delta W^{\mathrm{int}}=-\delta u_{Z 2} 12 \frac{E I}{L^{3}} u_{Z 2}$,
Bar term: $\delta W^{\text {int }}=-\delta u_{X 2} \frac{E A}{L} u_{X 2}$,
Coupling term: $\delta W^{\text {sta }}=-\delta u_{Z 2} \frac{6}{5} \frac{N}{L} u_{Z 2}$,

Normal force: $N=E A \frac{u_{X 2}}{L}$,

Point force term: $\delta W^{\mathrm{ext}}=-p \delta u_{X 2}$.

Virtual work expression is the sum of the element contributions. When the expression is manipulated into the standard form, and the expression for the normal force N is substituted into the matrix of the representation, the outcome is
$\delta W=-\left\{\begin{array}{l}\delta u_{X 2} \\ \delta u_{Z 2}\end{array}\right\}^{\mathrm{T}}\left(\left[\begin{array}{cc}\frac{E A}{L} & 0 \\ 0 & 12 \frac{E I}{L^{3}}+\frac{6}{5} \frac{E A u_{X 2}}{L^{2}}\end{array}\right]\left\{\begin{array}{l}u_{X 2} \\ u_{Z 2}\end{array}\right\}-\left\{\begin{array}{c}-p \\ 0\end{array}\right\}\right)$.

Principle of virtual work and the fundamental lemma of variation calculus imply the non-linear algebraic equation system
$\left[\begin{array}{cc}\frac{E A}{L} & 0 \\ 0 & 12 \frac{E I}{L^{3}}+\frac{6}{5} \frac{E A u_{X 2}}{L^{2}}\end{array}\right]\left\{\begin{array}{l}u_{X 2} \\ u_{Z 2}\end{array}\right\}-\left\{\begin{array}{c}-p \\ 0\end{array}\right\}=0$.

As the connection between the bar and bending modes is one-sided, the first equation associated with the bar mode can be solved for the axial displacement
$u_{X 2}=-\frac{p L}{E A}$.

When the solution is substituted there, the bending equation simplifies to the homogeneous form
$\left(12 \frac{E I}{L^{3}}-\frac{6}{5} \frac{p}{L}\right) u_{Z 2}=0$.

A non-trivial (non-zero) solution $u_{Z 2} \neq 0$ is possible only if the multiplier vanishes. This occurs when the external force
$p_{\text {cr }}=10 \frac{E I}{L^{2}}$.

