\qquad
\qquad

Home assignment 2

Beam structure of the figure is loaded by force p acting on node 2 . Determine the buckling force $p_{\text {cr }}$ of the structure using two beam elements. Displacements are confined to the $x z$-plane. Cross-sectional properties of the beam structure A and I and Young's modulus of the material E are constants.

Solution template

The normal forces of the beams can be deduced without any calculations: $N=0$ for beam 1 and $N=-p$ for beam 2 (negative value means compression). Therefore, it is enough to consider only the bending and coupling terms for the structure. The non-zero displacement/rotation components are $\theta_{Y 2}$ and $\theta_{Y 3}$. Element contributions, taking into account the beam bending mode and the interaction of the bar and beam bending modes, are given by

$$
\begin{aligned}
& \delta W^{1}=-\left\{\begin{array}{c}
0 \\
\delta \theta_{Y 2} \\
0 \\
\delta \theta_{Y 3}
\end{array}\right\}^{\mathrm{T}} \frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & -6 L & -12 & -6 L \\
-6 L & 4 L^{2} & 6 L & 2 L^{2} \\
-12 & 6 L & 12 & 6 L \\
-6 L & 2 L^{2} & 6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
0 \\
\theta_{Y 2} \\
0 \\
\theta_{Y 3}
\end{array}\right\} \Rightarrow \\
& \delta W^{1}=-\left\{\begin{array}{l}
\delta \theta_{Y 2} \\
\delta \theta_{Y 3}
\end{array}\right\}^{\mathrm{T}}\left[\begin{array}{cc}
4 \frac{E I}{L} & 2 \frac{E I}{L} \\
2 \frac{E I}{L} & 4 \frac{E I}{L}
\end{array}\right]\left\{\begin{array}{c}
\theta_{Y 2} \\
\theta_{Y 3}
\end{array}\right\}, \\
& \delta W^{2}=-\left\{\begin{array}{c}
0 \\
0 \\
0 \\
\delta \theta_{Y 2}
\end{array}\right\}^{\mathrm{T}}\left(\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & -6 L & -12 & -6 L \\
-6 L & 4 L^{2} & 6 L & 2 L^{2} \\
-12 & 6 L & 12 & 6 L \\
-6 L & 2 L^{2} & 6 L & 4 L^{2}
\end{array}\right]+\frac{-p}{30 L}\left[\begin{array}{cccc}
36 & -3 L & -36 & -3 L \\
-3 L & 4 L^{2} & 3 L & -L^{2} \\
-36 & 3 L & 36 & 3 L \\
-3 L & -L^{2} & 3 L & 4 L^{2}
\end{array}\right]\right)\left\{\begin{array}{c}
0 \\
0 \\
0 \\
\theta_{Y 2}
\end{array}\right\} \Rightarrow \\
& \delta W^{2}=-\delta \theta_{Y 2}\left(4 \frac{E I}{L}-\frac{p}{30} 4 L\right) \theta_{Y 2}=-\left\{\begin{array}{l}
\delta \theta_{Y 2} \\
\delta \theta_{Y 3}
\end{array}\right\}^{\mathrm{T}}\left[\begin{array}{cc}
4 \frac{E I}{L}-\frac{p}{30} 4 L & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{c}
\theta_{Y 2} \\
\theta_{Y 3}
\end{array}\right\} .
\end{aligned}
$$

Virtual work expression is sum of the element contributions
$\delta W=\delta W^{1}+\delta W^{2}=-\left\{\begin{array}{l}\delta \theta_{Y 2} \\ \delta \theta_{Y 3}\end{array}\right\}^{\mathrm{T}}\left[\begin{array}{cc}8 \frac{E I}{L}-\frac{p}{30} 4 L & 2 \frac{E I}{L} \\ 2 \frac{E I}{L} & 4 \frac{E I}{L}\end{array}\right]\left\{\begin{array}{c}\theta_{Y 2} \\ \theta_{Y 3}\end{array}\right\}$.

Principle of virtual work and the fundamental lemma of variation calculus imply the equation system

$$
\left[\begin{array}{cc}
8 \frac{E I}{L}-\frac{p}{30} 4 L & 2 \frac{E I}{L} \\
2 \frac{E I}{L} & 4 \frac{E I}{L}
\end{array}\right]\left\{\begin{array}{c}
\theta_{Y 2} \\
\theta_{Y 3}
\end{array}\right\}=0
$$

A linear homogeneous equation system may have a non-trivial solution (something that is non-zero) only if the matrix is singular. The critical value of the loading parameter p, making the solution nonunique, is given by the condition
$\operatorname{det}\left[\begin{array}{cc}8 \frac{E I}{L}-4 \frac{L p}{30} & 2 \frac{E I}{L} \\ 2 \frac{E I}{L} & 4 \frac{E I}{L}\end{array}\right]=\left(8 \frac{E I}{L}-4 \frac{L p}{30}\right) 4 \frac{E I}{L}-\left(2 \frac{E I}{L}\right)^{2}=0 \quad \Leftrightarrow \quad p_{\text {cr }}=\frac{105}{2} \frac{E I}{L^{2}}$.

