Name

Home assignment 2

Student number

Beam structure of the figure is loaded by force p acting on node 2. Determine

the buckling force p.. of the structure using two beam elements. Displace-

ments are confined to the xz—plane. Cross-sectional properties of the beam @

structure 4 and / and Young’s modulus of the material £ are constants.

Solution template

The normal forces of the beams can be deduced without any calculations: N =0 for beam 1 and
N =—p for beam 2 (negative value means compression). Therefore, it is enough to consider only

the bending and coupling terms for the structure. The non-zero displacement/rotation components
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are Oy, and Oy3. Element contributions, taking into account the beam bending mode and the inter-

action of the bar and beam bending modes, are given by
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Virtual work expression is sum of the element contributions
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Principle of virtual work and the fundamental lemma of variation calculus imply the equation system
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A linear homogeneous equation system may have a non-trivial solution (something that is non-zero)
only if the matrix is singular. The critical value of the loading parameter p , making the solution non-
unique, is given by the condition
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