
Assignment project: CS-E5885 - Modeling Biological Networks

(Spring 2019)

1 General information

Assignment name: Comparing simulation algorithms for computing dynamics of biochemical reactions.

Goal: This assignment aims at giving students a hands-on experience on strategies for simulation of bio-

logical networks. The student is required to implement and compare four different simulation strategies: 1)

the Gillespie SSA, 2) the Poisson approximation method, 3) the chemical Langevin method (CLE), and 4) the

deterministic simulation method. The Gillespie SSA is an exact simulation algorithm which produces an exact

dynamics of the state. The Poisson approximation method and chemical Langevin method are approximate

stochastic algorithms. The major difference between these algorithms is that the former treats the state as a

discrete quantity, while the latter considers the state as a continuous quantity. The deterministic simulation

is a highest coarse-grained algorithm which considers the dynamical behavior of the state as an deterministic

and continuous quantity. The student will compare these algorithm both in terms of simulation accuracy and

computational performance.

Report: Complete the above tasks and write about 3 (or more) page report briefly describing your implementa-

tions and summarizing your results, findings and other observations. Include a separate cover page containing

your full names and student numbers.

Deadline: The deadline for the report is Monday, 25 Feb. (Finnish time zone). Return your report the course

webpage.

Professor in charge: Harri Lähdesmäki

Academic contact person for further information on the project: Vo Hong Thanh (Email: thanh.vo@aalto.fi.

Office hour: Thursday, 14:00 - 15:00, Room: B328).

2 Description of simulation algorithms

We consider a well-mixed biological network consisting of N chemical species S1, . . . , SN interacting through

M reactions R1, . . . , RM . The state of the system at time t is expressed by a vector X(t) = (X1(t), . . . ,XN (t))
where Xi(t) denotes the discrete copy numbers (also known as population) of species Si, i = 1, . . . , N , at the

time t. Each reaction Rj , j = 1, . . . ,M , denotes a possible transition of the system state. Reaction Rj has a

general form

Rj : v1jS1 + ...+ vNjSN → v′1jS1 + ...+ v′NjSN (1)

The species involved on the left side of the arrow are called reactants while the ones on the right side are called

products. The non-negative integer vij and v′ij , respectively, are called stoichiometric coefficients which denote

how many molecules of a reactant are consumed to produce a product. The amount of change in the state

1

caused by a firing of the reaction Rj is expressed by the state change vector vj , a N -vector in which the ith
element equal to v′ij − vij shows how many Si molecules are consumed or produced by the reaction.

Suppose that the system starts at the initial state X(0) = x0 at time t = 0. The focus of this project is

to predict the state X(t) of the reaction network at a particular time t > 0. Mathematically, consider a time

interval [0, t]. Let Nj(t) be the number of firings of reaction Rj , j = 1, . . . ,M , in the time interval [0, t]. Each

firing of Rj will change the state by amount vj . The net effect of Rj to the state in the time interval [0, t] is

thus Nj(t)vj . The dynamics of the state X(t) can be written as:

X(t) = x0 +

M
∑

j=1

Nj(t)vj (2)

Eq.2 gives the mathematical framework for simulating biochemical reactions. The accuracy of an simulation

algorithm for estimating the state X(t) in Eq.2 will depend on how the algorithm calculates Nj(t).

2.1 Gillespie stochastic simulation algorithm

The number of firings Nj(t), j = 1, . . . ,M , by this simulation approach is exactly simulated. The sequence

of firings of reactions will be ordered according to their firing times and the state X(t) will be updated one-by-

one. The derivation of Nj(t) is based on the so-called fundamental premise of the stochastic chemical kinetics

that states that the probability of a reaction Rj initiated in the next infinitesimal time interval [t, t+ dt) can be

expressed by aj(X(t)dt, where aj(X(t) is called the reaction propensity (also known as intensity or hazard

rate in other contexts). The formula of the propensity function aj(X(t) with the mass-action kinetics is given

by

aj(X(t)) = cj
∏

i

(

Xi(t)

vij

)

= cj
∏

i

Xi(t)!

vij !(Xi(t)− vij)!
(3)

where cj is called stochastic rate constant.

Under the premise, Nj(t) denotes a Poisson process with state-dependent rate aj(X(t)). The number of

firings Nj(t) of reaction Rj in the time interval [0, t] is thus:

Nj(t) ∼ Poi

(

∫ t

0
aj(X(t)

)

, with j = 1, . . . ,M (4)

Substitute Nj(t) in Eq. (4) into Eq. (2), it gives

X(t) = x0 +
M
∑

j=1

Poi

(

∫ t

0
aj(X(t))

)

vj (5)

Eq. (5) provides the rigorous framework for stochastic simulation and an algorithm that exactly simulates X(t)
enforced by the equation is called an exact simulation algorithm.

The Gillespie stochastic simulation algorithm (SSA) (often referred to as the direct method) is an exact

simulation algorithm for sampling X(t) given by Eq. (5). The algorithm makes use following facts. First,

aj(X(t)) changes only if state changes. Hence, before the next reaction firing, aj(X(t)) remains unchanged

at a value and in the following, we will denote this value as aj = aj(X(t)). Second, because Nj(t), j =
1, . . . ,M , are independent Poisson processes with rate aj , the next firing time of a reaction assuming that no

reactions firings before is exponential distribution with rate a0 =
∑M

j=1 aj and the reaction that fires at that

time is the one with probability aj/a0. Algorithm 1 outlines the steps of the Gillespie algorithm.

2

Algorithm 1 Gillespie SSA - Direct method

Input: a biochemical reaction network of M reactions in which each reaction Rj , j = 1, . . . ,M , is accompa-

nied with the state change vector vj and the propensity function aj
Output: a trajectory of the reaction network starting at time t = 0 with state x0 and ending at time Tmax

1: initialize time t = 0 and state X = x0

2: compute propensity aj for j = 1, . . . ,M at state X

3: compute total propensity a0 =
∑M

j=1

4: while (t < Tmax) do

5: generate two random numbers r1, r2 ∼ U(0, 1)
6: compute τ = (1/a0) ln(1/r1)
7: select minimum index µ such that

∑µ
j=1 aj > r2a0

8: set time t = t+ τ
9: update state X = X + vµ

10: compute propensity aj for j = 1, . . . ,M at state X

11: update total propensity a0 =
∑M

j=1

12: end while

2.2 Poisson approximation method

This simulation approach approximately calculated Nj(t), j = 1, . . . ,M . Here we focus on a particular

algorithm called Poisson approximation algorithm. Assume that in a time interval [t, t + ∆t], the change

in the propensity function aj(X(t)) is negligibly small, i.e., aj(X(t′)) ≈ aj for t′ ∈ [t, t + ∆t] and j =
1, . . . ,M . Mathematically, let 0 < ǫ ≪ 1 be an error control parameter. The constant propensity assumption

is approximately satisfied if |aj(X(t′)) − aj| ≤ ǫ for all j = 1, . . . ,M and t′ ∈ [t, t + ∆t]. The existence

of the leap interval ∆t is called the leap condition. We assume such a leap condition is existed. Otherwise,

we can enforce this by repeatedly reducing the current selected time interval ∆t, e.g., by a half, until the leap

condition is satisfied. Under the leap condition, the number of firings Nj(∆t) of reaction Rj in the time interval

[t, t+∆t] is

Nj(∆t) ∼ Poi(aj∆t), with j = 1, . . . ,M (6)

and the update of the state in the time interval [t, t+∆t] is

X(t+∆t) = X(t) +
M
∑

j=1

Poi
(

aj∆t
)

vj (7)

Based on Eq. (6) and Eq. (7), the Poisson approximation method will discretize the simulation time into

interval of length ∆t. For each time interval [t, t + ∆t], it generates the number of firings Nj(∆t) of Rj ,

j = 1, . . . ,M , by sampling a Poisson-distributed random number with rate aj∆t. Then the state is updated by

Eq. (7). We outline the steps of the Poisson approximation method in Algorithm 2.

3

Algorithm 2 Poisson approximation method

Input: a biochemical reaction network of M reactions in which each reaction Rj , j = 1, . . . ,M , is accompa-

nied with the state change vector vj and the propensity function aj , the error control parameter 0 < ǫ ≪ 1
Output: a trajectory of the reaction network starting at time t = 0 with state x0 and ending at time Tmax

1: initialize time t = 0 and state X = x0

2: while (t < Tmax) do

3: compute propensity aj for j = 1, . . . ,M at state X
4: choose discrete time ∆t satisfying leap condition

5: generate M Poisson-distributed random number nj with j = 1, . . . ,M from Poi(aj∆t)

6: update X = X +
∑M

j=1 njvj
7: set t = t+∆t
8: end while

2.3 Chemical Langevin method

The chemical Langevin method (CLE) is a further approximation of the Poisson approximation method. As-

sume that we can find the time interval ∆t that both satisfies the leap condition, i.e., propensity aj(X(t)) is

approximately constant over [t, t + ∆t), j = 1 . . .M , and an additional condition: aj∆t ≫ 1. The Poisson

distribution Poi(aj∆t) under the condition that aj∆t ≫ 1 can be approximated by a Normal distribution with

the same mean and variance aj∆t. It is

Poi(aj∆t) ≈ N(aj∆t, aj∆t) = aj∆t+
√

aj∆tN(0, 1) (8)

in which N(µ, σ2) denotes a Normal distribution with mean µ and variance σ2. The derivation of Eq. (8)

relies on the conversion of a Normal distribution N(µ, σ2) to the standard unit Normal distribution N(0, 1),
i.e., N(µ, σ2) = µ+ σN(0, 1).

The state update after time interval ∆t, under the CLE assumption, is thus

X(t+∆t) = X(t) +
M
∑

j=1

Poi(aj∆t)vj

= X(t) +

M
∑

j=1

ajvj∆t+

M
∑

j=1

√

aj∆tN(0, 1)vj (9)

Eq. (9) is called the chemical Langevin equation (CLE), hence the name of the method. The equation provides

the mathematical basis for the CLE method described in Algorithm 3. We note that because the state update

in Eq. (9) involves the computation of the square root
√

aj∆t, the state X(t) in CLE is no longer an integer

vector. This is an important difference between the Posson approximation and CLE method. The state X(t)
during the simulation by CLE must be represented as a vector of floating point numbers and then is converted

back to integer values at the end of the simulation. We also remark that the CLE method in Algorithm 3 is

equivalent to the Euler-Maruyama method in stochastic differential equation (SDE).

4

Algorithm 3 Chemical Langevin method

Input: a biochemical reaction network of M reactions in which each reaction Rj , j = 1, . . . ,M , is accompa-

nied with the state change vector vj and the propensity function aj , the error control parameter 0 < ǫ ≪ 1
Output: a trajectory of the reaction network starting at time t = 0 with state x0 and ending at time Tmax

1: initialize time t = 0 and state X = x0

2: choose discrete time ∆t satisfying leap condition and aj∆t ≫ 1
3: while (t < Tmax) do

4: compute propensity aj for j = 1, . . . ,M at state X
5: generate M unit normal-distributed random number nj ∼ N(0, 1)

6: update X = X +
∑M

j=1 aj∆tvj +
∑M

j=1 njvj
√

aj∆t
7: set t = t+∆t
8: end while

2.4 Deterministic simulation

The deterministic simulation is a highest coarse-grained algorithm. It has been used widely in simulation of

biochemical reactions in the literature. In the following, we provide a short derivation of the deterministic

simulation using the same framework we have developed so far.

Consider Eq. (9). If the last term (called the noise term) becomes negligibly small compared with the

second one, i.e.,
√

aj∆t ≪ aj∆t, we can omit this term. The equation becomes

X(t+∆t) = X(t) +

M
∑

j=1

ajvj∆t (10)

Subtracting X(t) in both sides of Eq. (10), then taking the limit of ∆t → 0, we get a set of ordinary differential

equations (ODEs) with a general form:
d[X(t)]

dt
= F ([X(t)]) (11)

where now the state [X(t)] denotes the molar concentration of species (not the discrete copy numbers) and F
is a function of state. The molarity is measured as the mole of the substance per litre and is denoted by M. Let

V be the volume of the chemical reactor and NA = 6.02 × 1023 be the Avogardo’s number. The conversion

between the population Xi of a species Si to its molar concentration [Xi] is:

[Xi] =
Xi

NAV
(12)

We list some examples of conversions of chemical reactions into ODEs in Table 1.

We note that the deterministic rate constant kj of a reaction Rj is not the stochastic rate constant cj . In

general, cj is the probability of firing per second of the reaction (unitless), while kj depends on the type of the

reaction. Table 2 provides the formulas for calculating deterministic reaction rate constants for the reactions

considered in Table 1.

We present in Algorithm 4 a simple deterministic simulation algorithm called the forward Euler method for

solving ODE in Eq. (11). The student, however, is encouraged to implement advanced algorithms, e.g., Heun’s

method, Runge-Kutta method, which allow producing a more accurate simulation result.

The principle of the forward Euler method is to discretize the simulation time [0, t] into short time intervals

of length ∆t. Let [X(t)] be the concentration of species at time t. The concentration of species at time t+∆t]
is computed as:

[X(t+∆t)] = [X(t)] + ∆t · F([X(t)]) (13)

The steps for implementing the forward Euler method in Eq. (13) are detailed in Algorithm 4.

5

Table 1: Conversion of biochemical reactions to ODEs according to the law of mass action ([·] indicates con-

centrations, kj indicates the deterministic reaction rate constant)

Reaction Rate ODEs

∅
kj
−→ A kj

d[A]
dt

= kj

A
kj
−→ B k[A] d[A]

dt
= −kj [A];

d[B]
dt

= kj [A]

A+B
kj
−→ C kj[A][B] d[A]

dt
= d[B]

dt
= −kj [A][B]; d[C]

dt
= kj [A][B]

A+A
kj
−→ B kj[A]

2 d[A]
dt

= −2kj [A]
2;

d[B]
dt

= kj[A]
2

A+B + C
kj
−→ D kj[A][B][C] d[A]

dt
= d[B]

dt
= d[C]

dt
= −kj [A][B][C]; d[D]

dt
= kj [A][B][C]

Table 2: Calculating deterministic reaction rate constants from the stochastic one cj (NA indicates the Avoga-

rdo’s number, V indicate the size of the biochemical volume where reactions occur)

Reaction Deterministic rate constant Unit

∅
cj
−→ A kj = cj/(NAV) concentration · time−1

A
cj
−→ B kj = cj time−1

A+B
cj
−→ C kj = cjNAV concentration−1 · time−1

A+A
cj
−→ B kj = cjNAV/2 concentration−1 · time−1

A+B + C
cj
−→ D kj = cj(NAV)2 concentration−2 · time−1

Algorithm 4 Deterministic simulation - Forward Euler method

Input: a system of ODEs d[X]/dt = F(t, [X]) corresponding to a biochemical reaction system, the initial

state [X0] of the system with species concentrations at time 0, the simulation ending time Tmax and the

discretization stepsize ∆t.
Output: a trajectory of the biochemical system expressed in terms of molecule concentrations with discretiza-

tion stepsize ∆t.
1: initialize time t = 0 and state [X] = [X0]
2: while (t < Tmax) do

3: update [X] = [X] + ∆t · F([X])
4: update t = t+∆t
5: end while

3 Student’s Tasks

The student is required to perform the following tasks:

• implement four algorithmic approaches described in Sect. 2.1 - 2.4 with a preferred language (e.g., Mat-

lab, R, Python, Julia, C++, Java).

• run the simulation algorithms on the Dimerisation kinetics (Sect. 7.2 in [2]), the Michaelis-Menten

enzyme kinetics (Sect. 7.3 in [2]), the auto-regulatory genetic network (Sect. 7.4 in [2]) and the lac

operon (Sect. 7.5 in [2]). The populations of species (average +/- standard deviation for stochastic

6

algorithms) are plotted and compared. For stochastic approach, the populations of species should be

averaged by at least 100 independent runs.

• plot and compare the runtimes (i.e., CPU times) of simulation algorithms in simulating models in the

previous task. For stochastic approach, the performance of a algorithm should be averaged by at least

100 independent runs.

The student can also implement more efficient methods of the algorithms described above (see, e.g., [1]). In

this case, please justify your choice of method(s). If you choose to use a method that is not yet covered in this

project description, you will need to provide a more comprehensive description of the computational method

in your report as well as full reference to the publication/book/webpage/other material where the method is

introduced.

References

[1] Luca Marchetti, Corrado Priami, and Vo Hong Thanh. Simulation Algorithms for Computational Systems Biology.

Springer, 2017.

[2] Darren J. Wilkinson. Stochastic Modelling for Systems Biology. CRC Press, 2nd edition, 2011.

7

