Aalto University School of Electrical Engineering

## Brief Recap of Chapter 3 of Brown et al. (2014)

Simo Särkkä

## Contents of Chapter 3 "Rotating Reference Frames and Resonance"

3.1 Rotating Reference Frames

3.2 The Rotating Frame for an RF Field
3.2.1 Polarization
3.2.2 Quadrature
3.3 Resonance Condition and the RF Pulse
3.3.1 Flip-Angle Formula and Illustration
3.3.2 RF Solutions
3.3.3 Different Polarization Bases
3.3.4 Laboratory Angle of Precession

## Introduction

- Interaction of magnetic moment with external magnetic field can be seen as rotation about the field
- In static field, it is constant precession with Larmor frequency
- We consider adding a perpendicular, radiofrequency (rf) field
- The rf field tips the magnetic moment away from the static field
- After tipping, the magnetic moments precess at an angle w.r.t. static field.
- The rf field (pulse) is typically tuned to the Larmor frequency
- Useful to work in rotating frame


## Rotating Reference Frames

- Consider a reference frame ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) rotating with Larmor frequency
- The rotation is clockwise, around $z$-axis
- In this frame the spin appears static
- Mathematically, rotation is described as

$$
\frac{d \vec{C}}{d t}=\vec{\Omega} \times \vec{C}
$$

- In our case we have

$$
\vec{\Omega}=-\gamma B_{0} \hat{z}
$$



## Rotating Reference Frames

- Recall that in the laboratory frame we have

$$
\frac{d \vec{\mu}}{d t}=\gamma \vec{\mu} \times \vec{B}
$$

- For the rotating frame we have

$$
\frac{d \vec{\mu}}{d t}=\left(\frac{d \vec{\mu}}{d t}\right)^{\prime}+\vec{\Omega} \times \vec{\mu}
$$

- This gives the equation for the magnetic moment in rotating frame:

$$
\left(\frac{d \vec{\mu}}{d t}\right)^{\prime}=\gamma \vec{\mu} \times \vec{B}_{e f f}
$$

- The 'effective magnetic field' is

$$
\vec{B}_{e f f}=\vec{B}+\frac{\vec{\Omega}}{\gamma}
$$

- When $\vec{\Omega}=-\gamma B_{0} \hat{z}$ this gives $(d \vec{\mu} / d t)^{\prime}=0$


## Linearly and circularly polarized rf fields

- Assume that a proton spin is aligned with $B_{0} z^{\prime}$.
- We wish to use an rf field $B_{1}$ to tip the spin.
- A linearly polarized field has the form

$$
\vec{B}_{1}^{l i n}=b_{1}^{l i n} \cos \omega t \hat{x}
$$

- In rotating coordinate system this is

$$
\vec{B}_{1}^{\text {lin }}=\frac{1}{2} b_{1}^{\text {lin }}\left[\hat{x}^{\prime}(1+\cos 2 \omega t)+\hat{y}^{\prime} \sin 2 \omega t\right]
$$



- Bad, because only half of energy is available for tipping (see the book): $\left\langle\vec{B}_{1}^{\text {in }}\right\rangle_{\text {primed }}=\frac{1}{2} b_{1}^{\text {lin }} x^{\prime}$
- A left-circularly polarized (quadrature) field has the form

$$
\vec{B}_{1}^{c i r}=B_{1}(\hat{x} \cos \omega t-\hat{y} \sin \omega t)
$$

- In primed frame this is the following (which is good):

$$
\vec{B}_{1}^{c i r}=B_{1} \hat{x}^{\prime}
$$

## Resonance Condition and the RF Pulse

- Assume a circularly polarized rf pulse with angular rate $\omega$.
- The magnetic moment equation is then

$$
\begin{aligned}
\left(\frac{d \vec{\mu}}{d t}\right)^{\prime} & =\vec{\mu} \times\left[\hat{z}^{\prime}\left(\omega_{0}-\omega\right)+\hat{x}^{\prime} \omega_{1}\right] \\
& =\gamma \vec{\mu} \times \vec{B}_{e f f}
\end{aligned}
$$

- Where $\omega_{0}=\gamma B_{0}$ and $\omega_{1} \equiv \gamma B_{1}$
- The effective magnetic field is

$$
\vec{B}_{e f f} \equiv\left[\hat{z}^{\prime}\left(\omega_{0}-\omega\right)+\hat{x}^{\prime} \omega_{1}\right] / \gamma
$$

- When rf pulse is in resonance, we have $\omega=\omega_{0}$
- Then the z'-term above disappears.


## Flip-Angle Formula and Illustration

- The cornerstone equation of motion:

$$
\left(\frac{d \vec{\mu}}{d t}\right)^{\prime}=\omega_{1} \vec{\mu} \times \hat{x}^{\prime} \quad\left(\text { when } \omega=\omega_{0}\right)
$$

- Rotates with angular velocity $\omega_{1} \equiv \gamma B_{1}$ around $x^{\prime}$-axis.
- When applied for time $\tau$ we get the flip angle

$$
\Delta \theta=\gamma B_{1} \tau
$$

- For example, 1.0 ms pulse of strength $5.9 \mu \mathrm{~T}$ gives approximately $90^{\circ}$ flip angle:

2.675 e 8 * $5.9 \mathrm{e}-6$ * $1 \mathrm{e}-3$ * $180 / \mathrm{pi}=90.4$


## RF Solutions

- In rotating frame we now have

$$
\vec{B}_{1}=B_{1} \hat{x}^{\prime}
$$

- Thus the magnetic moment is given by

$$
\left(\frac{d \vec{\mu}}{d t}\right)^{\prime}=\omega_{1} \vec{\mu} \times \hat{x}^{\prime}
$$



- The solution to this equation can be expressed in forms

$$
\begin{aligned}
\mu_{x^{\prime}}(t) & =\mu_{x^{\prime}}(0) \\
\mu_{y^{\prime}}(t) & =\mu_{y^{\prime}}(0) \cos \phi_{1}(t)+\mu_{z^{\prime}}(0) \sin \phi_{1}(t) \\
\mu_{z^{\prime}}(t) & =-\mu_{y^{\prime}}(0) \sin \phi_{1}(t)+\mu_{z^{\prime}}(0) \cos \phi_{1}(t)
\end{aligned}
$$

$$
\phi_{1}(t)=\omega_{1} t
$$

$$
R_{x^{\prime}}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right)
$$

- More generally we have $\phi_{1}(t)=\int_{t_{0}}^{t} d t^{\prime} \omega_{1}\left(t^{\prime}\right)$ and $\omega_{1}(t)=\gamma B_{1}(t)$


## Home Work Problem 1

## Problem 3.1

A static field points uniformly along the positive $z$-axis. A classical spinning particle, with positive gyromagnetic ratio $\gamma$ and fixed magnetic moment magnitude $\mu$, has its spin initially in the direction of the static field. A circularly polarized rf field points along the $\hat{y}^{\prime}$ axis with time-dependent amplitude $B_{1 y^{\prime}}(t)$ (e.g., the rf field may be turned off at a later time) applied on-resonance starting at $t=0$.
a) Give expressions analogous to Equation (3.33) on p. 46 for all three magneticmoment vector components in the rotating (prime) reference frame for $t>0$. Your answer will be in terms of a definite integral.
b) Show that the equation of motion (2.24) on p. 28 is satisfied by your answer in (a) for $\vec{B} \rightarrow B_{1 y^{\prime}} \hat{y}^{\prime}$.
c) Find the generalization of Equation (2.35) on p. 33 needed for this timedependent case.

## Home Work Problem 1 (Eqs.)

$$
\begin{align*}
\mu_{x^{\prime}}(t) & =\mu_{x^{\prime}}(0) \\
\mu_{y^{\prime}}(t) & =\mu_{y^{\prime}}(0) \cos \phi_{1}(t)+\mu_{z^{\prime}}(0) \sin \phi_{1}(t) \\
\mu_{z^{\prime}}(t) & =-\mu_{y^{\prime}}(0) \sin \phi_{1}(t)+\mu_{z^{\prime}}(0) \cos \phi_{1}(t) \tag{3.33}
\end{align*}
$$

with

$$
\begin{equation*}
\phi_{1}(t)=\omega_{1} t \tag{3.34}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \vec{\mu}}{d t}=\gamma \vec{\mu} \times \vec{B} \tag{2.24}
\end{equation*}
$$

$$
\begin{align*}
\frac{d^{2} \mu_{x}}{d t^{2}} & =-\omega_{0}^{2} \mu_{x} \\
\frac{d^{2} \mu_{y}}{d t^{2}} & =-\omega_{0}^{2} \mu_{y} \tag{2.35}
\end{align*}
$$

## Different Polarization Bases and Representations

- The left-circular polarization that we have is

$$
\hat{x}^{l e f t}=\hat{x} \cos \omega t-\hat{y} \sin \omega t=\hat{x}^{\prime}
$$

- We could also consider right-circular version:

$$
\hat{x}^{\text {right }}=\hat{x} \cos \omega t+\hat{y} \sin \omega t
$$

- This turns out to average to zero and is thus useless.
- We can also express these in complex form:

$$
\begin{aligned}
& B_{1}^{l e f t} \equiv B_{1}^{L}=B_{1} e^{-i \omega t} \\
& B_{1}^{r i g h t} \equiv B_{1}^{R}=B_{1} e^{i \omega t}
\end{aligned}
$$

- The linear polarization is then given as

$$
B_{1}^{l i n}=B_{1}^{L}+B_{1}^{R}=2 B_{1} \cos \omega t
$$

## Laboratory Angle of Precession

- For off-resonance we have

$$
\vec{B}_{e f f}=\left(B_{0}-\frac{\omega}{\gamma}\right) \hat{z}+B_{1} \hat{x}^{\prime}
$$

- The angle between $B_{\text {eff }}$ and $B_{0}$ :

$$
\begin{gathered}
\cos \theta=\frac{B_{0}-\omega / \gamma}{B_{\text {eff }}}=\frac{\omega_{0}-\omega}{\omega_{e f f}} \\
\sin \theta=\frac{\omega_{1}}{\omega_{e f f}} \\
\omega_{e f f}=\gamma B_{\text {eff }}=\gamma \sqrt{\left(B_{0}-\omega / \gamma\right)^{2}+B_{1}^{2}}=\sqrt{\left(\omega_{0}-\omega\right)^{2}+\omega_{1}^{2}}
\end{gathered}
$$

- The magnetic moment precesses
 around $B_{\text {eff }}$ with angular frequency $\omega_{\text {eff }}$


## Home Work Problem 2

## Problem 3.2

Show that

$$
\hat{x}^{\text {right }}=\hat{x}^{\prime} \cos 2 \omega t+\hat{y}^{\prime} \sin 2 \omega t
$$

using steps like those used in deriving (3.21). Also show that the time average

$$
\frac{1}{T} \int_{0}^{T} \hat{x}^{r i g h t}(t) \mathrm{d} t
$$

approaches zero as $T \rightarrow \infty$.

