Experiments

Experiments

Collection types	Distinctions	Examples
Physical places, online	- Groups of subjects clearly separated - Groups depends on conditions - Isolating from all unneeded causes to influence results - Quantitative in nature but can also produce quantitative results	- Experiment on which styling attracts users attention to commercials - Testing medicine

Experiment is a way to see what impact one feature (condition/change) does

1. Change can come from subjects (within human nature - working environment, demographics).

- Subjects assign to groups according to the feature and given same task, object to take
- Prior to experiment information is collected to ensure that each group is unique

2. Change can come from experiment designers (condition of the task to perform, medicine to test)

- Subjects assign to groups by random. And each group gets different feature to perform
- Prior to experiment information is collected to ensure that all groups are similar

Groups

- must be isolated
- Conditions/environement should be the same, except related to the task for both groups

Results can be collected:

1. by survey (Likert scale usually, can be open questions)
2. measuring performance (time spent, questions answered, imaginary money won)

Tested:

- Usually by T test to ensure, whether results has significant difference per groups

Experiment Design

1×3

Condition	Test1 Group	Test2 Group	Control group
Coding interviews with software	10 subjects (Atlas.ti)	10 subjects (MS Word)	10 subjects (uses pen and paper)

What have we done in our experiment?

We tried to answer research question, how to influence better problem solving:
Main hypotheses: if users will get proper education how to tackle problems they will do better in problem solving
Created three groups

Test 1: To give some activity

Test 2: To give problem solving information

Control: To give nothing

Our main concentration on "Test2" as its closest to our research question.

But results needs to be isolated and compared:

Maybe its not knowledge but brain activation that allowed to solve problems in experiment (Test1 group)

Maybe its attention that users receive, and that's way they put more efforts (Control group)

The point is to isolate environment for testing one single feature

Exploratory statistics

How to get a holistic view in one picture?

Through statistics:

We want to understand our data without looking to each particular unit (or none of them at all) - distant reading.

Who are these people?
What do they do?
What do they talk about?
What do they have in common?

Data Types

Categorical:
Nominal (Male,Female; Green, Black) Ordinal (A,B; First, Second;)

Continuous

Categorical

Nominal - order is not important Male = Female Green = Black

Ordinal- order is important
First $=$ Second
Elements can be grouped under categories Male's height in cm: small[0-170], average[170-190], high[190-230]

Continuous

Interval - a number without boundaries

Person's height, Competition score

Central tendency

- Mean
- Median
- Mode

Data Points

Mean

- Add and divide by number of data

$$
\overline{\mathrm{X}}=\frac{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3} \ldots \mathrm{X}_{\mathrm{N}}}{\mathrm{~N}}
$$

> Where
> $\bar{X}=$ the mean
> $X_{1}=$ the first value
> $X_{2}=$ the second value
> $X_{3}=$ the third value
> $X_{\mathrm{N}}=$ the last value
> $\mathrm{N}=$ the number of valuse

$$
\begin{aligned}
\text { Average } & =\frac{15+45}{2} \\
& =\frac{60}{2} \\
& =30
\end{aligned}
$$

Median

- Order the set of numbers, the median is the middle number

Even Number

$$
9,3,1,8,4,3,6
$$

Order

$$
1,3,3,4,6,8,9
$$

Choose middle
$1,3,3,4,6,8,9$

Uneven Number

$$
9,3,1,8,3,7
$$

Order

$$
1,3,3,7,8,9
$$

Choose middle

Mode

- The most common number

$$
9,3,1,8,3,7
$$

$$
1,3,3,7,8,9
$$

Describing nominal data

Calculations:

- Counting number of events,
- proportions,
- percentages

Visualizing

- Bar Charts
- Pie Charts

\square Bangladesh
\square Brazil
Democratic Republic of the
\square Germany
\square Egypt
\square Ethiopia
\square France
- United Kingdom
\square Indonesia
\square Iran
\square Italy
\square Japan
$\Delta 1 / 2 \nabla$

Describing continuous data

Calculations:

- Counting number of events,
- proportions,
- Percentages,
- Mode
- Median
- Interquartile range
- Mean
- Standard deviation
- Range

Visualizing

- Histogram
- Boxplot

Distance from the center

How much variability is in the group? How spread is our data? To what extent the group is similar
???Variability???

- Range
- Standard deviation
- Interquartile range

Range

- The difference between the highest and the lowest number

$$
9,3,1,8,3,7
$$

$$
9-1=8
$$

Data Points

(Range) People ages in a party

Party1
[15, 17, 18, 14, 13, 18 ,19]
order
[$13,14,15,17,18,18,19]$
$13-19=6$

Party2
[14, 19, 7, 15, 13, 68 ,19]
order
[7, 13, 14, 15, 19, 19, 68]
$7-68=62$

Does result captures the real difference?

Standard deviation (Dispersion):

Data Points

Sum of differences between mean and each data point

$\sigma^{2}-$ population variance \underline{x} - each data point
$\underline{x}_{\text {mean }}$ - average of all data points N - number of data points
$S^{2}=\sum \frac{\left(x-x_{\text {mean }}\right)^{2}}{n-1}$
S^{2} - sample variance
n - sample number

difference between min and max

Interpreting Standard deviation

Small Std. Dev. - goal in e.g. manufacturing

Big Std. Dev. - lot of variability in dataset, potential for various explanations e.g. research
http://www.dummies.com/education/math/statistics/how-to-interpret-standard-deviation-in-a-statistical-data-set/

Interpreting Standard deviation: How to interpret the number

If Mean of people's age in the room is 35 years and Sample Standard Deviation equals to 5,
Then most of the people in the room fall within 30-40 year range.
OR
The spread is $1 / 7$ of the mean, OR 15\%

- Mean allows to see the center of the data
- Standard Deviation shows how spread with relation to the center data points are
- Usually around 68% of the data lie within 1 Standard Deviation from the Mean
- Usually around 95% of the data lie within 2 Standard Deviations from the Mean

T-Test

Checks if two means (averages) are different from each other

Is the mean difference significant?

Average height in Group 1: 168 cm
Average height in Group 2: 166 cm

T-test is used to evaluate experiment results

Increasing sleep experiment

CONTROL group

Medicatron

TREATMENT group

On average each group slept....

T-test

$$
t=\frac{\text { variance between groups }}{\text { variance within groups }}
$$

Large \boldsymbol{t} score - groups are different Small \boldsymbol{t} score - groups are identical

Control group slept - 355 minutes on average Treatment group slept - 495 minutes on average

Variance between groups $=495-355=140$

4 hours
6 hours
8 hours
10 hours

Each t-value has corresponding p-value

p-value says that the pattern produced by our (experiment) data can be produced by random data

The lower the \mathbf{p}-value the less likely the difference is caused by chance

If $p=0.05$: there is a $\mathbf{5 \%}$ chance the results are caused by chance
If $p=0.01$: there is a $\mathbf{1 \%}$ chance the results are caused by chance

Sample size affects results

If t -value $\mathbf{=} \mathbf{2 . 0}$
For two groups of 5 subjects \mathbf{p}-value $=0.04$
For two groups of $\mathbf{1 0}$ subjects \mathbf{p}-value $=0.03$

If more than 2 groups - ANOVA

Measuring relationships among variables

Represent on a 2d plot:
"Score" and "Taking the quiz it was intrinsically rewarding"

Height and Weight correlation

Height (cm)	Weight (kg)
180	75
168	48
195	70
151	72
177	115
190	82
160	42
170	60
\ldots	\ldots

On general correlation is high, but due to few outlier (too skinny, too heavy regardless of height) it will never be equal to 1.0, i.e. all points on the line

Correlations a pattern between two variables

- How differences in one variable affects changes in another variable
(to what extent two variables/features are connected)
Connection ranges from "-1" to "1".
If its close to "1" variables are positively connected if one is increasing, another one is increasing too. If its close to "-1" variables are oppositely connected - if one is increasing, another one is decreasing. If its close to " 0 " variables have no relationship

Preparation Homework:
https://www.youtube.com/watch?v=N4mEzFDiatA
Until 32 minutes
If working on your one machine:

- Install Anaconda https://www.anaconda.com/distribution/ - install requests (in terminal 'pip install requests')

