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De�nition 0.1 (Ring, Ideal, Unit, Nilpotent, Zero-divisor, Integral ring, Field). A ring will
be a commutative ring with 1 6= 0.

An ideal I of a ring R is a nonempty subset for which:

I + I := {i+ j : i, j ∈ I} ⊂ I RI := {ri : r ∈ R, i ∈ I} ⊂ I.

An ideal I is proper if I 6= R. To indicate that a subset I is an ideal we will write I �R.
A unit is an element of a ring that has a multiplicative inverse. The set of all units U(R)

of a ring R is an abelian group.
A ring is a �eld if and only if U(R) = R \ {0}.
A nilpotent is an element r ∈ R for which rn = 0 for some integer n. The set of all

nilpotents will be denoted by nil(R).
A zero-divisor is an element r ∈ R for which there exist such a nonzero s ∈ R that sr = 0.

The set of all zero-divisors will be denoted by D(R).
A ring is integral if and only if D(R) = {0}.

The proof of the following lemma is the �rst exercise.

Lemma 0.2. (i) U(R) + nil(R) = U(R)
(ii) The following conditions are equivalent:

• R is a �eld;
• R has only two ideals: (0) and R;
• every morphism from R is injective.

The following are basic operations on ideals.

• Let I1, . . . , Ik be a �nite collection of ideals and let (Iλ)λ∈Λ be an arbitrary (possibly
in�nite) collection indexed by elements of a set Λ. We de�ne:
� sum of �nitely many ideals: I1 + · · ·+ Ik := {i1 + · · ·+ ik : ij ∈ Ij};
� intersection of ideals:

⋂
λ∈Λ Iλ;

� ideal generated by a set S ⊂ R: (S) :=
⋂
S⊂I I, where the intersection is taken

over all ideals I that contain S;
� sum of a family of ideals: Σλ∈ΛIλ := (

⋃
λ∈Λ Iλ);

� I1 · · · Ik := ({i1 · · · ik : ij ∈ Ij});
� A power of an ideal In := I · · · I;
� Quotient ideal: I1 : I2 := {x ∈ R : xI2 ⊂ I1}.

Lemma 0.3. • The result of any of the above operations is an ideal.
• Show that the set {i1 · · · ik : ij ∈ Ij} does not have to be an ideal.
• Show that I1 ∪ I2 does not have to be an ideal.

Remark 0.4. In general I1 · · · Ik ( I1 ∩ · · · ∩ In.
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An ideal is �nitely generated if it is of the form (i1, . . . , ik) = Ri1 + · · · + Rik for some
elements i1, . . . , ik ∈ R.
Two important cases of quotient ideals are:

• the annihilator of an ideal J given by ann(J) := 0 : J
• the annihilator of an element x given by ann(x) := 0 : (x).

Example 0.5. If R = Z and I = (m), J = (n) then I : J = ( m
GCD(m,n)

).

Lemma 0.6. Basic properties of operations on ideals are as follows:

(i) I ⊂ I : J
(ii) (I : J)J ⊂ I
(iii) (I : J) : L = I : (JL) = (I : L) : J
(iv) (

⋂
λ Iλ) : J =

⋂
λ(Iλ : J)

(v) D(R) =
⋃
x 6=0 ann(x)

De�nition 0.7 (Radical, Nilradical, Reduced ring, Reduction). For an ideal I�A we de�ne
its radical by

rad(I) := {x ∈ A|∃n∈Z+x
n ∈ I}� A.

The nilradical of a ring A is nil(A) := rad(0).
A ring A is reduced if nil(A) = 0.
A reduction of a ring A is Ared := A/ nil(A).

De�nition 0.8 (Contraction, Extension). Let f : A → B a ring morphism. For an ideal
I � A we de�ne its extension

Ie := (f(I)),

denoted also by IB. For an ideal J of B we de�ne its contraction

J c := f−1(J),

denoted also J ∩ A. In particular, 0c = ker f .

Lemma 0.9. (i) Contraction of an ideal is an ideal.
(ii) An image of an ideal does not have to be an ideal.
(iii) I ⊂ Iec, J ⊃ J ce;
(iv) Ie = Iece, J c = J cec.

Let C := {J ∩ A|J � B} be the set of ideals that are contractions of ideals in B and let
E := {IB|I � A} be the set of ideals that are extensions of ideals in A.

Lemma 0.10. • C = {I � A|Iec = I}, E = {J �B|J ce = J};
• Extension and contraction give pairwise inverse bijections between C and E;
• C is closed under taking interseciton and radical;
• E is closed under taking sum and product.

For a morphism f : A→ B we have:

• J �B ⇒ rad(J c) = (rad J)c;
• I � A, f is an epimorphism, ker f ⊂ I, then rad(Ie) = (rad(I))e.

A very important case is the canonical epimorphism:

π : A→ A/I,
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for I � A. Then for I ′ � A we have:

(I ′)e = π(I ′) = (I + I ′)/I,

(I ′)ec = π−1(pi(I ′)) = I + I ′.

The contraction map de�nes a bijection between ideals J �A/I and those ideals of A which
contain I.
By Lemma ?? π(rad I) = nil(A/I), so Ared is a reduced ring.

Lemma 0.11. For two ideals I, J � A we have:

(i) I ⊂ rad(I);
(ii) rad(rad(I)) = rad(I);
(iii) rad IJ = rad(I ∩ J) = (rad I) ∩ (rad J);
(iv) rad I = (1)⇔ I = (1);
(v) rad(I + J) = rad(rad(I) + rad(J));
(vi) rad(I) + rad(J) = (1)⇔ I + J = (1);

De�nition 0.12 (Maximal ideal, Maximal spectrum, Jacobson radical). An ideal m�A is
called maximal if it is proper and for any J � A if m ⊂ J ⊂ A then m = J or J = A. In
other words, it is maximal with respect to inclusion, among proper ideals.

The set
Max(A) := {m� A|m is maximal}

of maximal ideals is called the maximal spectrum.
The intersection of all maximal ideals

J(A) :=
⋂

m∈Max(A)

m

is called the Jacobson radical.

Proposition 0.13. (i) m ∈ Max(A)⇔ A/m is a �eld;
(ii) Every proper ideal is contained in a maximal ideal. In particular, every element of

A \ U(A) is contained is a maximal ideal.
(iii) Max(A) 6= ∅;
(iv) x ∈ J(A)⇔ ∀y∈A1− xy ∈ U(A).

Proof. (i) Exercise.
(ii) A direct application of Zorn's lemma (known in Poland as Kuratowski-Zorn lemma).
(iii) (0) ⊂ m ∈ Max(A)
(iv) ⇒: x ∈ J(A). Suppose 1 − xy 6∈ U(A) for some y ∈ A. Then there exists such

m ∈ Max(A) that 1 − xy ∈ m. As x ∈ m this would imply that 1 ∈ m which is a
contradiction.
⇐: Suppose for contradiction that for all y ∈ A we have 1−xy ∈ U(A) and there

is a maximal ideal m that does not contain x. Then (x) +m = (1), i.e. there exists
y0 ∈ A such that 1− xy0 ∈ m, hence 1− xy0 6∈ U(A).

�

De�nition 0.14 (Local and semilocal rings, Residue �eld). A ring A is called local if it has
just one maximal ideal m. A local ring is usually represented as a pair (A,m) or a triple
(A,m, k = A/m) and the �eld k is called the residue �eld.

A ring A is called semilocal if |Max(A)| <∞.
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Proposition 0.15. (i) If (A,m) is local then U(A) = A \m.
(ii) If m� A, m 6= A and A \m ⊂ U(A) then A is local and m is the maximal ideal.
(iii) If m ∈ MaxA and 1 +m ⊂ U(A) then A is local.

Proof. (i) Every proper ideal is disjoint from U(A), so m ⊂ A\U(A). Every noninvert-
ible element is contained in a maximal ideal, so A \ U(A) ⊂ m.

(ii) It follows that A \ U(A) ⊂ m, hence every proper ideal is contained in m.
(iii) If x ∈ A \ m then (x) + m = A. Hence, there exist y ∈ A and b ∈ m such that

xy + b = 1. Hence, xy ∈ U(A) and thus x ∈ U(A).
�

Theorem 0.16 (Chinese Reminder Theorem). Let I1, . . . , Ir �A be pairwise coprime ideals
of A, i.e. Ii + Ij = A for i 6= j. Then:

(i) I1 · · · Ir = I1 ∩ · · · ∩ Ir. In particular, if A is semilocal then J(A) is the product of
maximal ideals.

(ii) A/(I1 · · · Ir) ' A/I1 × · · · × A/Ir.

Proof. (i) For r = 2 we have:

I1 ∩ I2 = (I1 + I2)(I1 ∩ I2) ⊂ I1(I1 ∩ I2) + I2(I1 ∩ I2) ⊂ I1I2.

For r > 2 let J = I1 · · · Ir−1 = I1 ∩ · · · ∩ Ir−1. The claim follows by induction if we
know that J + Ir = A. To show this, pick such xi ∈ Ii, yi ∈ Ir for i = 1, . . . , r − 1
that xi + yi = 1. Then J 3

∏r−1
i=1 xi =

∏r−1
i=1 (1− yi). This element is 1 modulo Ir.

(ii) Consider the morphism:

A 3 x→ (x+ I1, . . . , x+ Ir) ∈ A/I1 × · · · × A/Ir.
The kernel equals I1 ∩ · · · ∩ Ir which by point 1) equals I1 · · · Ir. To �nish the proof
it remains to prove that the map is surjective.
For r = 2 we pick such x1 ∈ I1, x2 ∈ I2 that x1 + x2 = 1. Pick (a + I1, b + I2) ∈

A/I1 × A/I2. The element bx1 + ax2 maps to the given one, as e.g. bx1 + ax2 =
ax1 + ax2 = a modulo I1.
For r > 2 the proof follows by induction, as in the previous point.

�
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