IDEALS

MATEUSZ MICHAEEK

Definition 0.1 (Ring, Ideal, Unit, Nilpotent, Zero-divisor, Integral ring, Field). A ring will be a commutative ring with $1 \neq 0$.

An ideal I of a ring R is a nonempty subset for which:

$$
I+I:=\{i+j: i, j \in I\} \subset I \quad R I:=\{r i: r \in R, i \in I\} \subset I
$$

An ideal I is proper if $I \neq R$. To indicate that a subset I is an ideal we will write $I \triangleleft R$.
A unit is an element of a ring that has a multiplicative inverse. The set of all units $U(R)$ of a ring R is an abelian group.
A ring is a field if and only if $U(R)=R \backslash\{0\}$.
A nilpotent is an element $r \in R$ for which $r^{n}=0$ for some integer n. The set of all nilpotents will be denoted by $\operatorname{nil}(R)$.
A zero-divisor is an element $r \in R$ for which there exist such a nonzero $s \in R$ that $s r=0$. The set of all zero-divisors will be denoted by $D(R)$.
A ring is integral if and only if $D(R)=\{0\}$.
The proof of the following lemma is the first exercise.
Lemma 0.2. (i) $U(R)+\operatorname{nil}(R)=U(R)$
(ii) The following conditions are equivalent:

- R is a field;
- R has only two ideals: (0) and R;
- every morphism from R is injective.

The following are basic operations on ideals.

- Let I_{1}, \ldots, I_{k} be a finite collection of ideals and let $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ be an arbitrary (possibly infinite) collection indexed by elements of a set Λ. We define:
- sum of finitely many ideals: $I_{1}+\cdots+I_{k}:=\left\{i_{1}+\cdots+i_{k}: i_{j} \in I_{j}\right\} ;$
- intersection of ideals: $\bigcap_{\lambda \in \Lambda} I_{\lambda}$;
- ideal generated by a set $S \subset R:(S):=\bigcap_{S \subset I} I$, where the intersection is taken over all ideals I that contain S;
- sum of a family of ideals: $\Sigma_{\lambda \in \Lambda} I_{\lambda}:=\left(\bigcup_{\lambda \in \Lambda} I_{\lambda}\right)$;
$-I_{1} \cdots I_{k}:=\left(\left\{i_{1} \cdots i_{k}: i_{j} \in I_{j}\right\}\right)$;
- A power of an ideal $I^{n}:=I \cdots I$;
- Quotient ideal: $I_{1}: I_{2}:=\left\{x \in R: x I_{2} \subset I_{1}\right\}$.

Lemma 0.3. - The result of any of the above operations is an ideal.

- Show that the set $\left\{i_{1} \cdots i_{k}: i_{j} \in I_{j}\right\}$ does not have to be an ideal.
- Show that $I_{1} \cup I_{2}$ does not have to be an ideal.

Remark 0.4. In general $I_{1} \cdots I_{k} \subsetneq I_{1} \cap \cdots \cap I_{n}$.

An ideal is finitely generated if it is of the form $\left(i_{1}, \ldots, i_{k}\right)=R i_{1}+\cdots+R i_{k}$ for some elements $i_{1}, \ldots, i_{k} \in R$.

Two important cases of quotient ideals are:

- the annihilator of an ideal J given by ann $(J):=0: J$
- the annihilator of an element x given by ann $(x):=0:(x)$.

Example 0.5. If $R=\mathbb{Z}$ and $I=(m), J=(n)$ then $I: J=\left(\frac{m}{\operatorname{GCD}(m, n)}\right)$.
Lemma 0.6. Basic properties of operations on ideals are as follows:
(i) $I \subset I: J$
(ii) $(I: J) J \subset I$
(iii) $(I: J): L=I:(J L)=(I: L): J$
(iv) $\left(\bigcap_{\lambda} I_{\lambda}\right): J=\bigcap_{\lambda}\left(I_{\lambda}: J\right)$
(v) $D(R)=\bigcup_{x \neq 0} \operatorname{ann}(x)$

Definition 0.7 (Radical, Nilradical, Reduced ring, Reduction). For an ideal $I \triangleleft A$ we define its radical by

$$
\operatorname{rad}(I):=\left\{x \in A \mid \exists_{n \in \mathbb{Z}_{+}} x^{n} \in I\right\} \triangleleft A .
$$

The nilradical of a ring A is $\operatorname{nil}(A):=\operatorname{rad}(0)$.
A ring A is reduced if $\operatorname{nil}(A)=0$.
A reduction of a ring A is $A_{\text {red }}:=A / \operatorname{nil}(A)$.
Definition 0.8 (Contraction, Extension). Let $f: A \rightarrow B$ a ring morphism. For an ideal $I \triangleleft A$ we define its extension

$$
I^{e}:=(f(I)),
$$

denoted also by $I B$. For an ideal J of B we define its contraction

$$
J^{c}:=f^{-1}(J),
$$

denoted also $J \cap A$. In particular, $0^{c}=\operatorname{ker} f$.
Lemma 0.9. (i) Contraction of an ideal is an ideal.
(ii) An image of an ideal does not have to be an ideal.
(iii) $I \subset I^{e c}, J \supset J^{c e}$;
(iv) $I^{e}=I^{e c e}, J^{c}=J^{c e c}$.

Let $\mathcal{C}:=\{J \cap A \mid J \triangleleft B\}$ be the set of ideals that are contractions of ideals in B and let $\mathcal{E}:=\{I B \mid I \triangleleft A\}$ be the set of ideals that are extensions of ideals in A.
Lemma 0.10. $\bullet \mathcal{C}=\left\{I \triangleleft A \mid I^{e c}=I\right\}, \mathcal{E}=\left\{J \triangleleft B \mid J^{c e}=J\right\}$;

- Extension and contraction give pairwise inverse bijections between \mathcal{C} and \mathcal{E};
- \mathcal{C} is closed under taking interseciton and radical;
- \mathcal{E} is closed under taking sum and product.

For a morphism $f: A \rightarrow B$ we have:

- $J \triangleleft B \Rightarrow \operatorname{rad}\left(J^{c}\right)=(\operatorname{rad} J)^{c}$;
- $I \triangleleft A, f$ is an epimorphism, ker $f \subset I$, then $\operatorname{rad}\left(I^{e}\right)=(\operatorname{rad}(I))^{e}$.

A very important case is the canonical epimorphism:

$$
\pi: A \rightarrow A / I
$$

for $I \triangleleft A$. Then for $I^{\prime} \triangleleft A$ we have:

$$
\begin{gathered}
\left(I^{\prime}\right)^{e}=\pi\left(I^{\prime}\right)=\left(I+I^{\prime}\right) / I \\
\left(I^{\prime}\right)^{e c}=\pi^{-1}\left(p i\left(I^{\prime}\right)\right)=I+I^{\prime}
\end{gathered}
$$

The contraction map defines a bijection between ideals $J \triangleleft A / I$ and those ideals of A which contain I.

By Lemma ?? $\pi(\operatorname{rad} I)=\operatorname{nil}(A / I)$, so $A_{\text {red }}$ is a reduced ring.
Lemma 0.11. For two ideals $I, J \triangleleft A$ we have:
(i) $I \subset \operatorname{rad}(I)$;
(ii) $\operatorname{rad}(\operatorname{rad}(I))=\operatorname{rad}(I)$;
(iii) $\operatorname{rad} I J=\operatorname{rad}(I \cap J)=(\operatorname{rad} I) \cap(\operatorname{rad} J)$;
(iv) $\operatorname{rad} I=(1) \Leftrightarrow I=(1)$;
(v) $\operatorname{rad}(I+J)=\operatorname{rad}(\operatorname{rad}(I)+\operatorname{rad}(J))$;
(vi) $\operatorname{rad}(I)+\operatorname{rad}(J)=(1) \Leftrightarrow I+J=(1)$;

Definition 0.12 (Maximal ideal, Maximal spectrum, Jacobson radical). An ideal $m \triangleleft A$ is called maximal if it is proper and for any $J \triangleleft A$ if $m \subset J \subset A$ then $m=J$ or $J=A$. In other words, it is maximal with respect to inclusion, among proper ideals.

The set

$$
\operatorname{Max}(A):=\{m \triangleleft A \mid m \text { is maximal }\}
$$

of maximal ideals is called the maximal spectrum.
The intersection of all maximal ideals

$$
J(A):=\bigcap_{m \in \operatorname{Max}(A)} m
$$

is called the Jacobson radical.
Proposition 0.13. (i) $m \in \operatorname{Max}(A) \Leftrightarrow A / m$ is a field;
(ii) Every proper ideal is contained in a maximal ideal. In particular, every element of $A \backslash U(A)$ is contained is a maximal ideal.
(iii) $\operatorname{Max}(A) \neq \emptyset$;
(iv) $x \in J(A) \Leftrightarrow \forall_{y \in A} 1-x y \in U(A)$.

Proof. (i) Exercise.
(ii) A direct application of Zorn's lemma (known in Poland as Kuratowski-Zorn lemma).
(iii) $(0) \subset m \in \operatorname{Max}(A)$
(iv) \Rightarrow : $x \in J(A)$. Suppose $1-x y \notin U(A)$ for some $y \in A$. Then there exists such $m \in \operatorname{Max}(A)$ that $1-x y \in m$. As $x \in m$ this would imply that $1 \in m$ which is a contradiction.
\Leftarrow : Suppose for contradiction that for all $y \in A$ we have $1-x y \in U(A)$ and there is a maximal ideal m that does not contain x. Then $(x)+m=(1)$, i.e. there exists $y_{0} \in A$ such that $1-x y_{0} \in m$, hence $1-x y_{0} \notin U(A)$.

Definition 0.14 (Local and semilocal rings, Residue field). A ring A is called local if it has just one maximal ideal m. A local ring is usually represented as a pair (A, m) or a triple ($A, m, k=A / m$) and the field k is called the residue field.
A ring A is called semilocal if $|\operatorname{Max}(A)|<\infty$.

Proposition 0.15. (i) If (A, m) is local then $U(A)=A \backslash m$.
(ii) If $m \triangleleft A, m \neq A$ and $A \backslash m \subset U(A)$ then A is local and m is the maximal ideal.
(iii) If $m \in \operatorname{Max} A$ and $1+m \subset U(A)$ then A is local.

Proof. (i) Every proper ideal is disjoint from $U(A)$, so $m \subset A \backslash U(A)$. Every noninvertible element is contained in a maximal ideal, so $A \backslash U(A) \subset m$.
(ii) It follows that $A \backslash U(A) \subset m$, hence every proper ideal is contained in m.
(iii) If $x \in A \backslash m$ then $(x)+m=A$. Hence, there exist $y \in A$ and $b \in m$ such that $x y+b=1$. Hence, $x y \in U(A)$ and thus $x \in U(A)$.

Theorem 0.16 (Chinese Reminder Theorem). Let $I_{1}, \ldots, I_{r} \triangleleft A$ be pairwise coprime ideals of A, i.e. $I_{i}+I_{j}=A$ for $i \neq j$. Then:
(i) $I_{1} \cdots I_{r}=I_{1} \cap \cdots \cap I_{r}$. In particular, if A is semilocal then $J(A)$ is the product of maximal ideals.
(ii) $A /\left(I_{1} \cdots I_{r}\right) \simeq A / I_{1} \times \cdots \times A / I_{r}$.

Proof. (i) For $r=2$ we have:

$$
I_{1} \cap I_{2}=\left(I_{1}+I_{2}\right)\left(I_{1} \cap I_{2}\right) \subset I_{1}\left(I_{1} \cap I_{2}\right)+I_{2}\left(I_{1} \cap I_{2}\right) \subset I_{1} I_{2} .
$$

For $r>2$ let $J=I_{1} \cdots I_{r-1}=I_{1} \cap \cdots \cap I_{r-1}$. The claim follows by induction if we know that $J+I_{r}=A$. To show this, pick such $x_{i} \in I_{i}, y_{i} \in I_{r}$ for $i=1, \ldots, r-1$ that $x_{i}+y_{i}=1$. Then $J \ni \prod_{i=1}^{r-1} x_{i}=\prod_{i=1}^{r-1}\left(1-y_{i}\right)$. This element is 1 modulo I_{r}.
(ii) Consider the morphism:

$$
A \ni x \rightarrow\left(x+I_{1}, \ldots, x+I_{r}\right) \in A / I_{1} \times \cdots \times A / I_{r}
$$

The kernel equals $I_{1} \cap \cdots \cap I_{r}$ which by point 1) equals $I_{1} \cdots I_{r}$. To finish the proof it remains to prove that the map is surjective.

For $r=2$ we pick such $x_{1} \in I_{1}, x_{2} \in I_{2}$ that $x_{1}+x_{2}=1$. Pick $\left(a+I_{1}, b+I_{2}\right) \in$ $A / I_{1} \times A / I_{2}$. The element $b x_{1}+a x_{2}$ maps to the given one, as e.g. $b x_{1}+a x_{2}=$ $a x_{1}+a x_{2}=a$ modulo I_{1}.

For $r>2$ the proof follows by induction, as in the previous point.

Mateusz Michałek,

