IDEALS

MATEUSZ MICHAŁEK

Definition 0.1 (Ring, Ideal, Unit, Nilpotent, Zero-divisor, Integral ring, Field). A ring will be a commutative ring with $1 \neq 0$.

An ideal I of a ring R is a nonempty subset for which:

 $I + I := \{i + j : i, j \in I\} \subset I \quad RI := \{ri : r \in R, i \in I\} \subset I.$

An ideal I is proper if $I \neq R$. To indicate that a subset I is an ideal we will write $I \triangleleft R$.

A unit is an element of a ring that has a multiplicative inverse. The set of all units U(R) of a ring R is an abelian group.

A ring is a field if and only if $U(R) = R \setminus \{0\}$.

A nilpotent is an element $r \in R$ for which $r^n = 0$ for some integer n. The set of all nilpotents will be denoted by nil(R).

A zero-divisor is an element $r \in R$ for which there exist such a nonzero $s \in R$ that sr = 0. The set of all zero-divisors will be denoted by D(R).

A ring is integral if and only if $D(R) = \{0\}$.

The proof of the following lemma is the first exercise.

Lemma 0.2. (i) U(R) + nil(R) = U(R)

(ii) The following conditions are equivalent:

- R is a field;
- R has only two ideals: (0) and R;
- every morphism from R is injective.

The following are basic operations on ideals.

- Let I_1, \ldots, I_k be a finite collection of ideals and let $(I_\lambda)_{\lambda \in \Lambda}$ be an arbitrary (possibly infinite) collection indexed by elements of a set Λ . We define:
 - sum of finitely many ideals: $I_1 + \cdots + I_k := \{i_1 + \cdots + i_k : i_j \in I_j\};$
 - intersection of ideals: $\bigcap_{\lambda \in \Lambda} I_{\lambda}$;
 - ideal generated by a set $S \subset R$: $(S) := \bigcap_{S \subset I} I$, where the intersection is taken over all ideals I that contain S;
 - sum of a family of ideals: $\Sigma_{\lambda \in \Lambda} I_{\lambda} := (\bigcup_{\lambda \in \Lambda} I_{\lambda});$
 - $I_1 \cdots I_k := (\{i_1 \cdots i_k : i_j \in I_j\});$
 - A power of an ideal $I^n := I \cdots I;$
 - Quotient ideal: $I_1 : I_2 := \{x \in \mathbb{R} : xI_2 \subset I_1\}.$

Lemma 0.3. • The result of any of the above operations is an ideal.

- Show that the set $\{i_1 \cdots i_k : i_j \in I_j\}$ does not have to be an ideal.
- Show that $I_1 \cup I_2$ does not have to be an ideal.

Remark 0.4. In general $I_1 \cdots I_k \subsetneq I_1 \cap \cdots \cap I_n$.

²⁰¹⁰ Mathematics Subject Classification. Primary:

An ideal is finitely generated if it is of the form $(i_1, \ldots, i_k) = Ri_1 + \cdots + Ri_k$ for some elements $i_1, \ldots, i_k \in R$.

Two important cases of quotient ideals are:

- the annihilator of an ideal J given by $\operatorname{ann}(J) := 0 : J$
- the annihilator of an element x given by ann(x) := 0 : (x).

Example 0.5. If $R = \mathbb{Z}$ and I = (m), J = (n) then $I : J = (\frac{m}{\operatorname{GCD}(m,n)})$.

Lemma 0.6. Basic properties of operations on ideals are as follows:

(i) $I \subset I : J$ (ii) $(I : J)J \subset I$ (iii) (I : J) : L = I : (JL) = (I : L) : J(iv) $(\bigcap_{\lambda} I_{\lambda}) : J = \bigcap_{\lambda} (I_{\lambda} : J)$ (v) $D(R) = \bigcup_{x \neq 0} \operatorname{ann}(x)$

Definition 0.7 (Radical, Nilradical, Reduced ring, Reduction). For an ideal $I \triangleleft A$ we define its radical by

$$\operatorname{rad}(I) := \{ x \in A | \exists_{n \in \mathbb{Z}_+} x^n \in I \} \triangleleft A.$$

The nilradical of a ring A is nil(A) := rad(0).

- A ring A is reduced if nil(A) = 0.
- A reduction of a ring A is $A_{red} := A/\operatorname{nil}(A)$.

Definition 0.8 (Contraction, Extension). Let $f: A \to B$ a ring morphism. For an ideal $I \triangleleft A$ we define its extension

$$I^e := (f(I)),$$

denoted also by IB. For an ideal J of B we define its contraction

$$J^c := f^{-1}(J),$$

denoted also $J \cap A$. In particular, $0^c = \ker f$.

Lemma 0.9. (i) Contraction of an ideal is an ideal.

- (ii) An image of an ideal does not have to be an ideal.
- (iii) $I \subset I^{ec}, J \supset J^{ce};$
- (iv) $I^e = I^{ece}, J^c = J^{cec}.$

Let $\mathcal{C} := \{J \cap A | J \triangleleft B\}$ be the set of ideals that are contractions of ideals in B and let $\mathcal{E} := \{IB | I \triangleleft A\}$ be the set of ideals that are extensions of ideals in A.

Lemma 0.10. • $C = \{I \triangleleft A | I^{ec} = I\}, \mathcal{E} = \{J \triangleleft B | J^{ce} = J\};$

- Extension and contraction give pairwise inverse bijections between C and \mathcal{E} ;
- C is closed under taking intersection and radical;
- \mathcal{E} is closed under taking sum and product.

For a morphism $f: A \to B$ we have:

- $J \triangleleft B \Rightarrow \operatorname{rad}(J^c) = (\operatorname{rad} J)^c;$
- $I \triangleleft A$, f is an epimorphism, ker $f \subset I$, then $rad(I^e) = (rad(I))^e$.

A very important case is the canonical epimorphism:

$$\pi: A \to A/I,$$

for $I \triangleleft A$. Then for $I' \triangleleft A$ we have:

$$(I')^e = \pi(I') = (I+I')/I,$$

 $(I')^{ec} = \pi^{-1}(pi(I')) = I + I'.$

The contraction map defines a bijection between ideals $J \triangleleft A/I$ and those ideals of A which contain I.

By Lemma ?? $\pi(\operatorname{rad} I) = \operatorname{nil}(A/I)$, so A_{red} is a reduced ring.

Lemma 0.11. For two ideals $I, J \triangleleft A$ we have:

(i) $I \subset \operatorname{rad}(I)$; (ii) $\operatorname{rad}(\operatorname{rad}(I)) = \operatorname{rad}(I)$; (iii) $\operatorname{rad} IJ = \operatorname{rad}(I \cap J) = (\operatorname{rad} I) \cap (\operatorname{rad} J)$; (iv) $\operatorname{rad} I = (1) \Leftrightarrow I = (1)$; (v) $\operatorname{rad}(I + J) = \operatorname{rad}(\operatorname{rad}(I) + \operatorname{rad}(J))$; (vi) $\operatorname{rad}(I) + \operatorname{rad}(J) = (1) \Leftrightarrow I + J = (1)$;

Definition 0.12 (Maximal ideal, Maximal spectrum, Jacobson radical). An ideal $m \triangleleft A$ is called maximal if it is proper and for any $J \triangleleft A$ if $m \subset J \subset A$ then m = J or J = A. In other words, it is maximal with respect to inclusion, among proper ideals.

The set

 $Max(A) := \{m \triangleleft A | m \text{ is maximal}\}\$

of maximal ideals is called the maximal spectrum.

The intersection of all maximal ideals

$$J(A) := \bigcap_{m \in \operatorname{Max}(A)} m$$

is called the Jacobson radical.

Proposition 0.13. (i) $m \in Max(A) \Leftrightarrow A/m$ is a field;

- (ii) Every proper ideal is contained in a maximal ideal. In particular, every element of $A \setminus U(A)$ is contained is a maximal ideal.
- (*iii*) $\operatorname{Max}(A) \neq \emptyset$;
- $(iv) \ x \in J(A) \Leftrightarrow \forall_{y \in A} 1 xy \in U(A).$

Proof. (i) Exercise.

- (ii) A direct application of Zorn's lemma (known in Poland as Kuratowski-Zorn lemma).
- (iii) $(0) \subset m \in Max(A)$
- (iv) \Rightarrow : $x \in J(A)$. Suppose $1 xy \notin U(A)$ for some $y \in A$. Then there exists such $m \in Max(A)$ that $1 xy \in m$. As $x \in m$ this would imply that $1 \in m$ which is a contradiction.

 \Leftarrow : Suppose for contradiction that for all $y \in A$ we have $1 - xy \in U(A)$ and there is a maximal ideal m that does not contain x. Then (x) + m = (1), i.e. there exists $y_0 \in A$ such that $1 - xy_0 \in m$, hence $1 - xy_0 \notin U(A)$.

Definition 0.14 (Local and semilocal rings, Residue field). A ring A is called local if it has just one maximal ideal m. A local ring is usually represented as a pair (A, m) or a triple (A, m, k = A/m) and the field k is called the residue field.

A ring A is called semilocal if $|\operatorname{Max}(A)| < \infty$.

MATEUSZ MICHAŁEK

Proposition 0.15. (i) If (A, m) is local then $U(A) = A \setminus m$.

- (ii) If $m \triangleleft A$, $m \neq A$ and $A \setminus m \subset U(A)$ then A is local and m is the maximal ideal.
- (iii) If $m \in Max A$ and $1 + m \subset U(A)$ then A is local.
- *Proof.* (i) Every proper ideal is disjoint from U(A), so $m \subset A \setminus U(A)$. Every noninvertible element is contained in a maximal ideal, so $A \setminus U(A) \subset m$.
 - (ii) It follows that $A \setminus U(A) \subset m$, hence every proper ideal is contained in m.
 - (iii) If $x \in A \setminus m$ then (x) + m = A. Hence, there exist $y \in A$ and $b \in m$ such that xy + b = 1. Hence, $xy \in U(A)$ and thus $x \in U(A)$.

Theorem 0.16 (Chinese Reminder Theorem). Let $I_1, \ldots, I_r \triangleleft A$ be pairwise coprime ideals of A, i.e. $I_i + I_j = A$ for $i \neq j$. Then:

- (i) $I_1 \cdots I_r = I_1 \cap \cdots \cap I_r$. In particular, if A is semilocal then J(A) is the product of maximal ideals.
- (ii) $A/(I_1 \cdots I_r) \simeq A/I_1 \times \cdots \times A/I_r$.

Proof. (i) For r = 2 we have:

$$I_1 \cap I_2 = (I_1 + I_2)(I_1 \cap I_2) \subset I_1(I_1 \cap I_2) + I_2(I_1 \cap I_2) \subset I_1I_2.$$

For r > 2 let $J = I_1 \cdots I_{r-1} = I_1 \cap \cdots \cap I_{r-1}$. The claim follows by induction if we know that $J + I_r = A$. To show this, pick such $x_i \in I_i$, $y_i \in I_r$ for $i = 1, \ldots, r-1$ that $x_i + y_i = 1$. Then $J \ni \prod_{i=1}^{r-1} x_i = \prod_{i=1}^{r-1} (1-y_i)$. This element is 1 modulo I_r . Consider the morphism:

(ii) Consider the morphism:

$$A \ni x \to (x + I_1, \dots, x + I_r) \in A/I_1 \times \dots \times A/I_r.$$

The kernel equals $I_1 \cap \cdots \cap I_r$ which by point 1) equals $I_1 \cdots I_r$. To finish the proof it remains to prove that the map is surjective.

For r = 2 we pick such $x_1 \in I_1$, $x_2 \in I_2$ that $x_1 + x_2 = 1$. Pick $(a + I_1, b + I_2) \in A/I_1 \times A/I_2$. The element $bx_1 + ax_2$ maps to the given one, as e.g. $bx_1 + ax_2 = ax_1 + ax_2 = a$ modulo I_1 .

For r > 2 the proof follows by induction, as in the previous point.

Mateusz Michałek,

wajcha2@poczta.onet.pl