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Motivation
• Analysis of large complex structure/systems involves lots of 

work

– Changes due to prototyping and optimization

– Numerous analyses are needed (vibration, thermo, costs, 
production, flows, ultimate strength)

– Numerous documents on analyses to be provided to authorities 
in form of reports

– Etc

• Some of these tasks can be automatized è requires 
programming

• This can be done in all stages of analyses, i.e. pre- and post 
processing as well as analysis itself

• Most of the solvers have their own programming language

– Abaqus: Python, Fortran,… (Finite Elements)

– FEMAP: API/VB (Finite Elements)

– Etc.

• This can make the solvers sensitive to the format of 
files, operating system differences (Windows vs. Unix), 
etc



Exercise
• The idea is to create a simple script in Matlab controls execution of external 

solver(s) in optimization process. The process includes modifying input, 
executing the simulation and processing the output. 

• Example input files and executables you can obtain by sending email to 
jani.romanoff@aalto.fi or by using your own ones

• So the script should automatically:
1. Creates/updates an input file (*.txt, *.dat: e.g. Icore.dat Hint: do not change the 

length or 1st number that indicates it 19)
2. Calls external solver (e.g. excel.exe, webcoremain.exe)
3. Waits until analysis is completed
4. Reads one of the output files to Matlab and processes the output (e.g. multiply by 

scalar)
5. Show how you would perform looping for example in terms of optimization. 

• Report
– The written idea of the code and a flow chart, (grade 1)
– The steps the application performs in commented code and example screenshots 

(grades 2-4)
– Comment and discuss how well it works and what would be the natural way to extend 

(grade 5) in next stages of your studies

mailto:jani.romanoff@aalto.fi


Motivation 
• The structures/systems are becoming more 

advanced and optimized
– Lightweight
– Sustainable
– Safe

• Effectiveness often requires minimization or 
maximization of property(ies) of the structure under 
given load cases and constraints

• Optimization is mathematical method to find 
optimal solution

– We need optimization algorithms for search of the 
optimum

– We need constraints to make the design feasible in 
practice

– The key issue is to balance both constraint assessment 
and optimization algorithms – cost vs. accuracy

• The key question is what to optimize (dimensions, 
materials, shape, topology), under which 
conditions (loads, variable range, rules) and for 
what objective (mass, cost, safety, all of these) 
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Flow of Optimization

• There are several algorithms available
– Matlab central
– Internet
– Commercial codes, e.g. modeFRONTIER

• Often you need to combine several software 
to run different types of analyses

– Flow solution
– Heat transfer
– FEA
– Etc

• Some of these analyses take time and you 
need to be able to control the process

• We go through an example containing each 
of these parts and touch the things you need 
to pay attention to



• Population-based optimisation technique 
developed by Kennedy and Eberhart (1995)

• Belongs to the group of evolutionary algorithms
– similar principles as genetic algorithm

• Concept based on bird or fish swarm behavior
and how knowledge is tranferred

• Best particle in current calculation round 
redirects particles of next round to previous best 
particle

• One-way sharing mechanism, which looks only 
for the best solution only

• All particles tend to converge to the best solution

Example of Optimization Algorithm
Particle Swarm Optimization (PSO)



http://www.youtube.com/watch?v=IYLqvfcAzg0&feature=related

PSO

http://www.youtube.com/watch?v=IYLqvfcAzg0&feature=related


• Speed of particle ‘i’ at iteration ‘k’ in design space -
• Particle’s best location until iteration ‘k’ -
• Swarm’s best location until iteration ‘k’ -
• Weight factors for the three direction components -
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Pre-processing of parametric models
• The large complex structure 

can be built automatically 
using parametric modeling

• The logic is
– Definition of a strake variables
– Definition of strake lines and 

key points
– Extrusion of a strake
– Making connecting lines 

between strake end points
– Defining areas based on lines
– Meshing the areas
– Assemble all strakes



Pre-processing of parametric models
Ansys

2. Structural modelling 

13 

 

Figure 10. Strake variables 
 
Step 0: Definition of strake variables 
xy x- and y-coordinates of strake hard-points (P1 and P2) 
n number of stiffeners 
type stiffener type defining the height if the stiffener, h 
t plate thickness 
S webframe spacing 
n_str number of strakes in the model 
 
Step 1: Strake line and keypoints, see Figure 11 
a=1 ! Initial counter for keypoint and line numbering 
nr1=0    ! Counting variable 
count=0    ! Counting variable 
nr=-1    ! Counting variable 
*do,i,1,n_str,1   ! Do loop from 1 to n_str 
count=count+1   ! Increases counter count by one 
nr1=nr1+1   ! Counting variable is increased by one per loop 
k,,xy(1,nr1),xy(3,nr1)  ! Creates P1 in Figure 11 
k,,xy(2,nr1),xy(4,nr1)  ! Ccreates P2 in Figure 11 
WPLANE,,xy(1,nr1),xy(3,nr1),,xy(2,nr1),xy(4,nr1) ! Creates workplane in P1 
CSYS,4 ! Places local coordinate system in P1, see Figure 11 
lstr,a,a+1   ! Creates strake line between P1 and P2 
num=n(count)   ! Reads the correct stiffener number 
htype=h(ht(nr1))   ! Reads the stiffener height from predefined table 
ldiv,a,,,num+1   ! Divides strake line into num+1 lines 
lstr,a+2,a+3   ! Creates line between P3 and P4 
ldiv,a+num+1,,,num+1  ! Divides line between P3 and P4 
u=a+3    ! Creates counter u 
e=a+num+3   ! Creates counter e 
*do,j,1,num   ! Do loop to create stiffener lines, see Figure 11 
u=u+1    ! Increases counter u by one 
e=e+1    ! Increases counter e by one  
lstr,u,e    ! Creates line between new points 
*enddo    ! Closes the do loop 
*endif    ! Closes the if loop 
Strake do loop continues… 
 

 
Figure 11. Keypoints and lines 
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Step 2: Extend of the strake in z-direction, see Figure 12 
kgen,2,a,a+1,1,,,S,,0  ! Generates P11 and P12 in z-direction 
*if,num,gt,0,then  ! Initiates if loop 
kgen,2,a+4,a+3+num,1,,,S,,0 ! Copies P5 to P7 in z-direction 
kgen,2,a+4+num,a+3+2*num,1,,,S,,0 ! Copies P8 to P10 in z-direction 
*endif    ! Closes the if loop 
a=a+100   ! Sets counter a for next strake 
numstr,kp,a   ! Sets keypoint number to counter a 
CSYS,0    ! Places coordinate system in origin 
*enddo    ! Closes the global do loop 
 

 
Figure 12. Extend of the strake in z-direction 

 
Step 3: Adding lines in z-direction, see Figure 13 
numstr,line,0   ! sets starting points for lines 
a=1 ! Initial counter for keypoint and line numbering 
count=0    ! Counting variable 
*do,i,1,n_str,1   ! Do loop from 1 to n_str 
count=count+1   ! Increases counter count by one 
num=n(count)   ! Reads the correct stiffener number 
*if,num,gt,0,then  ! If number of stiffeners is >0, than 12 to 19 are generated 
f=2*(num+2)+a   ! Creates counter f 
*else    ! Otherwise lines 12 to 19 (see Figure 13) 
f=a+2    ! Increases counter f 
*endif    ! Closes the if loop 
lstr,a,f    ! Creates line 12 
lstr,a+1,f+1   ! Creates line 13 
*if,num,gt,0,then  ! If number of stiffeners is >0 lines are created 
f=f+1    ! Increases counter f by one 
e=a+3    ! Creates counter e 
*do,g,1,2*num   ! Start do loop 
f=f+1    ! Increases counter f by one 
e=e+1    ! Increases counter e by one 
lstr,e,f    ! Creates lines 
*enddo    ! Closes the do loop 
*endif    ! Closes the if loop 
a=a+100   ! Sets counter a for next strake 
numstr,line,a   ! Sets line number to counter a 
*enddo    ! Closes the global do loop 
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Figure 13. Lines in z-direction 

 
 
Step 4: Defining areas, see Figure 14 
numstr,line,0   ! Sets starting points for lines 
a=1 ! Initial counter for keypoint and line numbering 
count=0    ! Counting variable 
*do,i,1,n_str,1   ! Do loop from 1 to n_str 
count=count+1   ! Increases counter count by one 
num=n(count)   ! Reads the correct stiffener number 
*if,num,gt,0,then  ! If number of stiffeners is >0 areas are created 
e=a-1    ! Creates counter e 
f=a+3*num+1   ! Creates counter f 
k=a+3*num+3   ! Creates counter k 
c=a+3*num+3   ! Creates counter c 
b=a+2*num+1   ! Creates counter b 
count2=0   ! Creates counter count2 
*do,i,1,2*num+1   ! Starts do loop 
count2=count2+1  ! Increases counter count2 by one 
e=e+1    ! Increases counter e by one 
*if,count2,eq,1,then  ! Starts if loop 
f=f+1    ! Increases counter f by one 
adrag,e,,,,,,f   ! Creates area A1, see Figure 14 
*endif    ! Closes if loop 
*if,count2,gt,1,and,count2,le,num+1,then  ! Starts if loop 
k=k+1    ! Increases counter k by one 
adrag,e,,,,,,k   ! Creates area A2 to A4, see Figure 14 
*endif    ! Closes if loop 
*if,count2,gt,num+1,then ! Starts if loop 
c=c+1    ! Increases counter c by one 
b=b+1    ! Increases counter b by one 
adrag,b,,,,,,c   ! Creates areas A5 to A7, see Figure 14 
*endif    ! Closes if loop 
*enddo    ! Closes do loop 
*else    ! Starts else loop in the case of zero stiffeners 
adrag,a,,,,,,a+1   ! Creates areas A1 to A4, see Figure 14 
*endif    ! Closes else loop 
a=a+100   ! Sets counter a for next strake 
numstr,area,a   ! Sets area number to counter a 
*enddo    ! Closes global do loop 
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Figure 14. Areas 

 
Step 5: Meshing, see Figure 15 
lsize,all,meshsize  ! Applies predefined meshsize to all lines 
type,1    ! Shell element type for plates 
mat,m1    ! Material for strake plate according to initial table 
real,1    ! Real constant defining the plate thickness 
amesh,A1,A2,A3,A4  ! Meshes the plate areas of the strake 
mat,m2    ! Material for stiffeners 
real,2    ! Real constant defining the stiffener thickness 
amesh,A5,A6,A7  ! Meshes the stiffener areas of the strake 
type,2    ! Beam element type for stiffeners 
real,3    ! Real constant set for beam cross-section 
latt,m2,3,2,,KB,   ! Creates orientation of the unmeshed lines 
lmesh,17,19   ! Meshes lines 17 to 19 (see Figure 13) 

The iterative nature of step 5 can be achieved by adopting the procedures presented in the 
previous steps. 

 

Figure 15. Sketch of meshed strake 

 
Step 6: Building the full FE model 

The final steps of this modelling procedure include the definition of the transverse 
members, such as web-frames. To generate those, the line segments surrounding 
one section of a web-frame are identified and used to obtain the areas to be meshed. 
The iterative nature presented above can easily be adopted for this process. Finally 
the single web-frame-spacing model can be copied according to build the full three-
dimensional model, see Figure 16. 
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Figure 16. The full finite element model 

3. Example analysis 

Simplified static analyses are carried out to determine the effect of loads on 
the ship structure and thereby provide the initial guidance during the early 
design stage. Because the modelling time represents a large portion of the 
total assessment time it is important to obtain results in a reasonable time 
frame, respectively at low computational cost. The accuracy and the 
modelling time is a function of discretization length, which must be fine 
enough to capture the desired level of accuracy with low computational cost. 

Stiffened structure 

The parallel midship section consisting of strakes with longitudinal stiffeners 
and a transversal bulkhead is shown in Figure 17a and has been provide as a 
keyword file. The ship to be modelled in this exercise is a five-hold bulk carrier, 
25 meters in length. The topology of the structure is identical for all models 
but the stiffener type changes. Since the model ship is symmetric in two 
directions, only a quarter of the ship needs to be modelled. Therefore, the 
model simply needs to be expanded in longitudinal direction for 2.5-bulkhead 
spacing’s. Hence, the model can be copied in longitudinal direction to achieve 
the appropriate length using the Translt command, see Figure 17b. However, 
this step also copies unnecessary bulkheads with each section. These are 
easily removed with the ElEdit command and by deleting the appropriate 
elements and associated nodes; end result can be seen in Figure 17c. The 
structure shall be build up from normal steel with a Young’s modulus 
! = 210!!"# , Poisson’s ratio ! = 0.3  and mass density ! = 7850! !"!! . 
Appropriate material properties are assigned with the *Mat card. Elastic 
material properties are assumed for most of the structure. However, the 
bulkhead in the aft of the model is assumed to be rigid to introduce the 
boundary conditions at this location 



Pre-processing by changing material definition
• Programming can be also used to change 

the input file properties
– Equivalent stiffness of shells (e.g. in 

scantling optimization)
– Offset beams and their properties
– Nodal coordinates in geometrical 

optimization
– Etc

• Pay attention to input file format
– Space
– Tab
– Enter

• Process
1. Create FE mesh
2. Calculate the equivalent stiffness, e.g. 

in Matlab
3. Print the result in right format to input 

file

Abaqus input file



Pre-processing by changing material 
definition
Matlab Creates Input for Abaqus



Pre-processing by changing material 
definition 
Matlab Creates Input for Abaqus



Analysis
• The analysis can be controlled 

by programming, e.g. in 
optimization sequence of tasks 
is important
– Create new design
– Analyze the design with FEM for 

• Static
• Dynamic

– Extract the FE-results to 
optimization algorithm

• Another example is that during 
the analysis user defined 
material model can be used. 
This is coded in FE solver 
programming language

Call input files
with numerical info
to compose vectors

Run the structural 
analysis with all tasks



Analysis

Assign the variables 
by reading values from text
files 

Call external application
to combine the input files

Create equivalent stiffness
properties



Analysis

Run the vibration analysis in
Abaqus and wait that it is 
Completed (identified by 
.sta & .lck file existence/non-existence)

Collect the results



Post-Processing

• Some tasks in post 
processing can be 
automated
– Critical stress check
– Critical displacement check
– Lowest eigenfrequency

check
– Etc
– Reporting

Create result file
for Matlab

Open Abaqus
result file

Pick the value
of interest

Close result file
for Matlab



Example of process automatization in Matlab

1. Opening a text file “load textfile.txt”
2. Making vector(s) from the data of the text file ”a=textfile(1,:)”
3. Adding stuff to the vector and making matrix

1. Find length of vector = L
2. Create a new vector with input and output, e.g. b=…
3. Add numbers to vector at location L+1, L+2,…

4. Collect vector to matrix (i,:), column i with undefined length :

4. Writing matrix to text file (fopen, fprintf)

The file type etc depends on the simulation tool, i.e. external solver



Conclusions
• Often we need to run analyses 

several times during optimization 
using various external solvers

• This requires automatization, file 
handling, timing of processes etc

• Matlab is good environment for of 
controlling such processes:

– Contains many open source 
optimization algorithms

– Can handle external solvers in batch-
mode

– Has good visualization options
– Can create executable with GUI
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