
Application Development in Engineering

Optimization with Matlab and
External Solvers

Aalto University
School of Engineering

Contens
• The aim of the lecture is to courage you to use programming, optimization

and computational analyses to speed up the design processes

• Motivation

• Exercise

• Contents
– Flow chart of optimization
– Pre-processing
– Analysis
– Post-processing

• Example of process automatization in Matlab
– opening and closing a text file
– making vector(s) from the data of the text file
– adding stuff to the vector
– writing vector to text file
– collecting results to matrix
– writing matrix to text file

• Literature
1. Romanoff, J., “Optimization of web-core steel sandwich decks at concept

design stage using envelope surface for stress assessment”, Engineering
Structures, Vol. 66, 2014, pp. 1-9.

2. User manuals: Matlab, Abaqus, Ansys, etc

Motivation
• Analysis of large complex structure/systems involves lots of

work

– Changes due to prototyping and optimization

– Numerous analyses are needed (vibration, thermo, costs,
production, flows, ultimate strength)

– Numerous documents on analyses to be provided to authorities
in form of reports

– Etc

• Some of these tasks can be automatized è requires
programming

• This can be done in all stages of analyses, i.e. pre- and post
processing as well as analysis itself

• Most of the solvers have their own programming language

– Abaqus: Python, Fortran,… (Finite Elements)

– FEMAP: API/VB (Finite Elements)

– Etc.

• This can make the solvers sensitive to the format of
files, operating system differences (Windows vs. Unix),
etc

Exercise
• The idea is to create a simple script in Matlab controls execution of external

solver(s) in optimization process. The process includes modifying input,
executing the simulation and processing the output.

• Example input files and executables you can obtain by sending email to
jani.romanoff@aalto.fi or by using your own ones

• So the script should automatically:
1. Creates/updates an input file (*.txt, *.dat: e.g. Icore.dat Hint: do not change the

length or 1st number that indicates it 19)
2. Calls external solver (e.g. excel.exe, webcoremain.exe)
3. Waits until analysis is completed
4. Reads one of the output files to Matlab and processes the output (e.g. multiply by

scalar)
5. Show how you would perform looping for example in terms of optimization.

• Report
– The written idea of the code and a flow chart, (grade 1)
– The steps the application performs in commented code and example screenshots

(grades 2-4)
– Comment and discuss how well it works and what would be the natural way to extend

(grade 5) in next stages of your studies

mailto:jani.romanoff@aalto.fi

Motivation
• The structures/systems are becoming more

advanced and optimized
– Lightweight
– Sustainable
– Safe

• Effectiveness often requires minimization or
maximization of property(ies) of the structure under
given load cases and constraints

• Optimization is mathematical method to find
optimal solution

– We need optimization algorithms for search of the
optimum

– We need constraints to make the design feasible in
practice

– The key issue is to balance both constraint assessment
and optimization algorithms – cost vs. accuracy

• The key question is what to optimize (dimensions,
materials, shape, topology), under which
conditions (loads, variable range, rules) and for
what objective (mass, cost, safety, all of these)

Motivation

hc
tw

2p

tf1

tf2

5 variable problem
15 different design possibilities for every
variable
1 s for evaluating structural response
155 = 7.6 ⋅105s ≈ 8.8days

Flow of Optimization

• There are several algorithms available
– Matlab central
– Internet
– Commercial codes, e.g. modeFRONTIER

• Often you need to combine several software
to run different types of analyses

– Flow solution
– Heat transfer
– FEA
– Etc

• Some of these analyses take time and you
need to be able to control the process

• We go through an example containing each
of these parts and touch the things you need
to pay attention to

• Population-based optimisation technique
developed by Kennedy and Eberhart (1995)

• Belongs to the group of evolutionary algorithms
– similar principles as genetic algorithm

• Concept based on bird or fish swarm behavior
and how knowledge is tranferred

• Best particle in current calculation round
redirects particles of next round to previous best
particle

• One-way sharing mechanism, which looks only
for the best solution only

• All particles tend to converge to the best solution

Example of Optimization Algorithm
Particle Swarm Optimization (PSO)

http://www.youtube.com/watch?v=IYLqvfcAzg0&feature=related

PSO

http://www.youtube.com/watch?v=IYLqvfcAzg0&feature=related

• Speed of particle ‘i’ at iteration ‘k’ in design space -
• Particle’s best location until iteration ‘k’ -
• Swarm’s best location until iteration ‘k’ -
• Weight factors for the three direction components -

1 1
i i i
k k k+ += +x x v

1 1 1 2 2() ()v v p x p xi i i i g i
k k k k k kw c r c r+ = + - + -

Exploration of the design space

i
kv

i
kp
g
kp

1 2, ,w c c

Pre-processing of parametric models
• The large complex structure

can be built automatically
using parametric modeling

• The logic is
– Definition of a strake variables
– Definition of strake lines and

key points
– Extrusion of a strake
– Making connecting lines

between strake end points
– Defining areas based on lines
– Meshing the areas
– Assemble all strakes

Pre-processing of parametric models
Ansys

2. Structural modelling

13

Figure 10. Strake variables

Step 0: Definition of strake variables
xy x- and y-coordinates of strake hard-points (P1 and P2)
n number of stiffeners
type stiffener type defining the height if the stiffener, h
t plate thickness
S webframe spacing
n_str number of strakes in the model

Step 1: Strake line and keypoints, see Figure 11
a=1 ! Initial counter for keypoint and line numbering
nr1=0 ! Counting variable
count=0 ! Counting variable
nr=-1 ! Counting variable
*do,i,1,n_str,1 ! Do loop from 1 to n_str
count=count+1 ! Increases counter count by one
nr1=nr1+1 ! Counting variable is increased by one per loop
k,,xy(1,nr1),xy(3,nr1) ! Creates P1 in Figure 11
k,,xy(2,nr1),xy(4,nr1) ! Ccreates P2 in Figure 11
WPLANE,,xy(1,nr1),xy(3,nr1),,xy(2,nr1),xy(4,nr1) ! Creates workplane in P1
CSYS,4 ! Places local coordinate system in P1, see Figure 11
lstr,a,a+1 ! Creates strake line between P1 and P2
num=n(count) ! Reads the correct stiffener number
htype=h(ht(nr1)) ! Reads the stiffener height from predefined table
ldiv,a,,,num+1 ! Divides strake line into num+1 lines
lstr,a+2,a+3 ! Creates line between P3 and P4
ldiv,a+num+1,,,num+1 ! Divides line between P3 and P4
u=a+3 ! Creates counter u
e=a+num+3 ! Creates counter e
*do,j,1,num ! Do loop to create stiffener lines, see Figure 11
u=u+1 ! Increases counter u by one
e=e+1 ! Increases counter e by one
lstr,u,e ! Creates line between new points
*enddo ! Closes the do loop
*endif ! Closes the if loop
Strake do loop continues…

Figure 11. Keypoints and lines

x

z

y

s

P1 P2

stiffener type, number of stiffeners (n)

P1 P5 P6 P7 P2

P3 P8 P9 P10 P4

Pre-processing of parametric models
Ansys

2. Structural modelling

13

Figure 10. Strake variables

Step 0: Definition of strake variables
xy x- and y-coordinates of strake hard-points (P1 and P2)
n number of stiffeners
type stiffener type defining the height if the stiffener, h
t plate thickness
S webframe spacing
n_str number of strakes in the model

Step 1: Strake line and keypoints, see Figure 11
a=1 ! Initial counter for keypoint and line numbering
nr1=0 ! Counting variable
count=0 ! Counting variable
nr=-1 ! Counting variable
*do,i,1,n_str,1 ! Do loop from 1 to n_str
count=count+1 ! Increases counter count by one
nr1=nr1+1 ! Counting variable is increased by one per loop
k,,xy(1,nr1),xy(3,nr1) ! Creates P1 in Figure 11
k,,xy(2,nr1),xy(4,nr1) ! Ccreates P2 in Figure 11
WPLANE,,xy(1,nr1),xy(3,nr1),,xy(2,nr1),xy(4,nr1) ! Creates workplane in P1
CSYS,4 ! Places local coordinate system in P1, see Figure 11
lstr,a,a+1 ! Creates strake line between P1 and P2
num=n(count) ! Reads the correct stiffener number
htype=h(ht(nr1)) ! Reads the stiffener height from predefined table
ldiv,a,,,num+1 ! Divides strake line into num+1 lines
lstr,a+2,a+3 ! Creates line between P3 and P4
ldiv,a+num+1,,,num+1 ! Divides line between P3 and P4
u=a+3 ! Creates counter u
e=a+num+3 ! Creates counter e
*do,j,1,num ! Do loop to create stiffener lines, see Figure 11
u=u+1 ! Increases counter u by one
e=e+1 ! Increases counter e by one
lstr,u,e ! Creates line between new points
*enddo ! Closes the do loop
*endif ! Closes the if loop
Strake do loop continues…

Figure 11. Keypoints and lines

x

z

y

s

P1 P2

stiffener type, number of stiffeners (n)

P1 P5 P6 P7 P2

P3 P8 P9 P10 P4

Pre-processing of parametric models
Ansys 2. Structural modelling

14

Step 2: Extend of the strake in z-direction, see Figure 12
kgen,2,a,a+1,1,,,S,,0 ! Generates P11 and P12 in z-direction
*if,num,gt,0,then ! Initiates if loop
kgen,2,a+4,a+3+num,1,,,S,,0 ! Copies P5 to P7 in z-direction
kgen,2,a+4+num,a+3+2*num,1,,,S,,0 ! Copies P8 to P10 in z-direction
*endif ! Closes the if loop
a=a+100 ! Sets counter a for next strake
numstr,kp,a ! Sets keypoint number to counter a
CSYS,0 ! Places coordinate system in origin
*enddo ! Closes the global do loop

Figure 12. Extend of the strake in z-direction

Step 3: Adding lines in z-direction, see Figure 13
numstr,line,0 ! sets starting points for lines
a=1 ! Initial counter for keypoint and line numbering
count=0 ! Counting variable
*do,i,1,n_str,1 ! Do loop from 1 to n_str
count=count+1 ! Increases counter count by one
num=n(count) ! Reads the correct stiffener number
*if,num,gt,0,then ! If number of stiffeners is >0, than 12 to 19 are generated
f=2*(num+2)+a ! Creates counter f
*else ! Otherwise lines 12 to 19 (see Figure 13)
f=a+2 ! Increases counter f
*endif ! Closes the if loop
lstr,a,f ! Creates line 12
lstr,a+1,f+1 ! Creates line 13
*if,num,gt,0,then ! If number of stiffeners is >0 lines are created
f=f+1 ! Increases counter f by one
e=a+3 ! Creates counter e
*do,g,1,2*num ! Start do loop
f=f+1 ! Increases counter f by one
e=e+1 ! Increases counter e by one
lstr,e,f ! Creates lines
*enddo ! Closes the do loop
*endif ! Closes the if loop
a=a+100 ! Sets counter a for next strake
numstr,line,a ! Sets line number to counter a
*enddo ! Closes the global do loop

11 13 14 15 12

16 17 18

Pre-processing of parametric models
Ansys

2. Structural modelling

15

Figure 13. Lines in z-direction

Step 4: Defining areas, see Figure 14
numstr,line,0 ! Sets starting points for lines
a=1 ! Initial counter for keypoint and line numbering
count=0 ! Counting variable
*do,i,1,n_str,1 ! Do loop from 1 to n_str
count=count+1 ! Increases counter count by one
num=n(count) ! Reads the correct stiffener number
*if,num,gt,0,then ! If number of stiffeners is >0 areas are created
e=a-1 ! Creates counter e
f=a+3*num+1 ! Creates counter f
k=a+3*num+3 ! Creates counter k
c=a+3*num+3 ! Creates counter c
b=a+2*num+1 ! Creates counter b
count2=0 ! Creates counter count2
*do,i,1,2*num+1 ! Starts do loop
count2=count2+1 ! Increases counter count2 by one
e=e+1 ! Increases counter e by one
*if,count2,eq,1,then ! Starts if loop
f=f+1 ! Increases counter f by one
adrag,e,,,,,,f ! Creates area A1, see Figure 14
*endif ! Closes if loop
*if,count2,gt,1,and,count2,le,num+1,then ! Starts if loop
k=k+1 ! Increases counter k by one
adrag,e,,,,,,k ! Creates area A2 to A4, see Figure 14
*endif ! Closes if loop
*if,count2,gt,num+1,then ! Starts if loop
c=c+1 ! Increases counter c by one
b=b+1 ! Increases counter b by one
adrag,b,,,,,,c ! Creates areas A5 to A7, see Figure 14
*endif ! Closes if loop
*enddo ! Closes do loop
*else ! Starts else loop in the case of zero stiffeners
adrag,a,,,,,,a+1 ! Creates areas A1 to A4, see Figure 14
*endif ! Closes else loop
a=a+100 ! Sets counter a for next strake
numstr,area,a ! Sets area number to counter a
*enddo ! Closes global do loop

17 18 19

12 14 15 16 13

Pre-processing of parametric models
Ansys

2. Structural modelling

15

Figure 13. Lines in z-direction

Step 4: Defining areas, see Figure 14
numstr,line,0 ! Sets starting points for lines
a=1 ! Initial counter for keypoint and line numbering
count=0 ! Counting variable
*do,i,1,n_str,1 ! Do loop from 1 to n_str
count=count+1 ! Increases counter count by one
num=n(count) ! Reads the correct stiffener number
*if,num,gt,0,then ! If number of stiffeners is >0 areas are created
e=a-1 ! Creates counter e
f=a+3*num+1 ! Creates counter f
k=a+3*num+3 ! Creates counter k
c=a+3*num+3 ! Creates counter c
b=a+2*num+1 ! Creates counter b
count2=0 ! Creates counter count2
*do,i,1,2*num+1 ! Starts do loop
count2=count2+1 ! Increases counter count2 by one
e=e+1 ! Increases counter e by one
*if,count2,eq,1,then ! Starts if loop
f=f+1 ! Increases counter f by one
adrag,e,,,,,,f ! Creates area A1, see Figure 14
*endif ! Closes if loop
*if,count2,gt,1,and,count2,le,num+1,then ! Starts if loop
k=k+1 ! Increases counter k by one
adrag,e,,,,,,k ! Creates area A2 to A4, see Figure 14
*endif ! Closes if loop
*if,count2,gt,num+1,then ! Starts if loop
c=c+1 ! Increases counter c by one
b=b+1 ! Increases counter b by one
adrag,b,,,,,,c ! Creates areas A5 to A7, see Figure 14
*endif ! Closes if loop
*enddo ! Closes do loop
*else ! Starts else loop in the case of zero stiffeners
adrag,a,,,,,,a+1 ! Creates areas A1 to A4, see Figure 14
*endif ! Closes else loop
a=a+100 ! Sets counter a for next strake
numstr,area,a ! Sets area number to counter a
*enddo ! Closes global do loop

17 18 19

12 14 15 16 13

2. Structural modelling

16

Figure 14. Areas

Step 5: Meshing, see Figure 15
lsize,all,meshsize ! Applies predefined meshsize to all lines
type,1 ! Shell element type for plates
mat,m1 ! Material for strake plate according to initial table
real,1 ! Real constant defining the plate thickness
amesh,A1,A2,A3,A4 ! Meshes the plate areas of the strake
mat,m2 ! Material for stiffeners
real,2 ! Real constant defining the stiffener thickness
amesh,A5,A6,A7 ! Meshes the stiffener areas of the strake
type,2 ! Beam element type for stiffeners
real,3 ! Real constant set for beam cross-section
latt,m2,3,2,,KB, ! Creates orientation of the unmeshed lines
lmesh,17,19 ! Meshes lines 17 to 19 (see Figure 13)

The iterative nature of step 5 can be achieved by adopting the procedures presented in the
previous steps.

Figure 15. Sketch of meshed strake

Step 6: Building the full FE model

The final steps of this modelling procedure include the definition of the transverse
members, such as web-frames. To generate those, the line segments surrounding
one section of a web-frame are identified and used to obtain the areas to be meshed.
The iterative nature presented above can easily be adopted for this process. Finally
the single web-frame-spacing model can be copied according to build the full three-
dimensional model, see Figure 16.

A1 A2 A3 A4

A5 A6 A7

Mesh, plate

Mesh,stiffener

Pre-processing of parametric models
Ansys

2. Structural modelling

16

Figure 14. Areas

Step 5: Meshing, see Figure 15
lsize,all,meshsize ! Applies predefined meshsize to all lines
type,1 ! Shell element type for plates
mat,m1 ! Material for strake plate according to initial table
real,1 ! Real constant defining the plate thickness
amesh,A1,A2,A3,A4 ! Meshes the plate areas of the strake
mat,m2 ! Material for stiffeners
real,2 ! Real constant defining the stiffener thickness
amesh,A5,A6,A7 ! Meshes the stiffener areas of the strake
type,2 ! Beam element type for stiffeners
real,3 ! Real constant set for beam cross-section
latt,m2,3,2,,KB, ! Creates orientation of the unmeshed lines
lmesh,17,19 ! Meshes lines 17 to 19 (see Figure 13)

The iterative nature of step 5 can be achieved by adopting the procedures presented in the
previous steps.

Figure 15. Sketch of meshed strake

Step 6: Building the full FE model

The final steps of this modelling procedure include the definition of the transverse
members, such as web-frames. To generate those, the line segments surrounding
one section of a web-frame are identified and used to obtain the areas to be meshed.
The iterative nature presented above can easily be adopted for this process. Finally
the single web-frame-spacing model can be copied according to build the full three-
dimensional model, see Figure 16.

A1 A2 A3 A4

A5 A6 A7

Mesh, plate

Mesh,stiffener

Pre-processing of parametric models
Ansys

2. Structural modelling

16

Figure 14. Areas

Step 5: Meshing, see Figure 15
lsize,all,meshsize ! Applies predefined meshsize to all lines
type,1 ! Shell element type for plates
mat,m1 ! Material for strake plate according to initial table
real,1 ! Real constant defining the plate thickness
amesh,A1,A2,A3,A4 ! Meshes the plate areas of the strake
mat,m2 ! Material for stiffeners
real,2 ! Real constant defining the stiffener thickness
amesh,A5,A6,A7 ! Meshes the stiffener areas of the strake
type,2 ! Beam element type for stiffeners
real,3 ! Real constant set for beam cross-section
latt,m2,3,2,,KB, ! Creates orientation of the unmeshed lines
lmesh,17,19 ! Meshes lines 17 to 19 (see Figure 13)

The iterative nature of step 5 can be achieved by adopting the procedures presented in the
previous steps.

Figure 15. Sketch of meshed strake

Step 6: Building the full FE model

The final steps of this modelling procedure include the definition of the transverse
members, such as web-frames. To generate those, the line segments surrounding
one section of a web-frame are identified and used to obtain the areas to be meshed.
The iterative nature presented above can easily be adopted for this process. Finally
the single web-frame-spacing model can be copied according to build the full three-
dimensional model, see Figure 16.

A1 A2 A3 A4

A5 A6 A7

Mesh, plate

Mesh,stiffener

2. Structural modelling

17

Figure 16. The full finite element model

3. Example analysis

Simplified static analyses are carried out to determine the effect of loads on
the ship structure and thereby provide the initial guidance during the early
design stage. Because the modelling time represents a large portion of the
total assessment time it is important to obtain results in a reasonable time
frame, respectively at low computational cost. The accuracy and the
modelling time is a function of discretization length, which must be fine
enough to capture the desired level of accuracy with low computational cost.

Stiffened structure

The parallel midship section consisting of strakes with longitudinal stiffeners
and a transversal bulkhead is shown in Figure 17a and has been provide as a
keyword file. The ship to be modelled in this exercise is a five-hold bulk carrier,
25 meters in length. The topology of the structure is identical for all models
but the stiffener type changes. Since the model ship is symmetric in two
directions, only a quarter of the ship needs to be modelled. Therefore, the
model simply needs to be expanded in longitudinal direction for 2.5-bulkhead
spacing’s. Hence, the model can be copied in longitudinal direction to achieve
the appropriate length using the Translt command, see Figure 17b. However,
this step also copies unnecessary bulkheads with each section. These are
easily removed with the ElEdit command and by deleting the appropriate
elements and associated nodes; end result can be seen in Figure 17c. The
structure shall be build up from normal steel with a Young’s modulus
! = 210!!"# , Poisson’s ratio ! = 0.3 and mass density ! = 7850! !"!! .
Appropriate material properties are assigned with the *Mat card. Elastic
material properties are assumed for most of the structure. However, the
bulkhead in the aft of the model is assumed to be rigid to introduce the
boundary conditions at this location

Pre-processing by changing material definition
• Programming can be also used to change

the input file properties
– Equivalent stiffness of shells (e.g. in

scantling optimization)
– Offset beams and their properties
– Nodal coordinates in geometrical

optimization
– Etc

• Pay attention to input file format
– Space
– Tab
– Enter

• Process
1. Create FE mesh
2. Calculate the equivalent stiffness, e.g.

in Matlab
3. Print the result in right format to input

file

Abaqus input file

Pre-processing by changing material
definition
Matlab Creates Input for Abaqus

Pre-processing by changing material
definition
Matlab Creates Input for Abaqus

Analysis
• The analysis can be controlled

by programming, e.g. in
optimization sequence of tasks
is important
– Create new design
– Analyze the design with FEM for

• Static
• Dynamic

– Extract the FE-results to
optimization algorithm

• Another example is that during
the analysis user defined
material model can be used.
This is coded in FE solver
programming language

Call input files
with numerical info
to compose vectors

Run the structural
analysis with all tasks

Analysis

Assign the variables
by reading values from text
files

Call external application
to combine the input files

Create equivalent stiffness
properties

Analysis

Run the vibration analysis in
Abaqus and wait that it is
Completed (identified by
.sta & .lck file existence/non-existence)

Collect the results

Post-Processing

• Some tasks in post
processing can be
automated
– Critical stress check
– Critical displacement check
– Lowest eigenfrequency

check
– Etc
– Reporting

Create result file
for Matlab

Open Abaqus
result file

Pick the value
of interest

Close result file
for Matlab

Example of process automatization in Matlab

1. Opening a text file “load textfile.txt”
2. Making vector(s) from the data of the text file ”a=textfile(1,:)”
3. Adding stuff to the vector and making matrix

1. Find length of vector = L
2. Create a new vector with input and output, e.g. b=…
3. Add numbers to vector at location L+1, L+2,…

4. Collect vector to matrix (i,:), column i with undefined length :

4. Writing matrix to text file (fopen, fprintf)

The file type etc depends on the simulation tool, i.e. external solver

Conclusions
• Often we need to run analyses

several times during optimization
using various external solvers

• This requires automatization, file
handling, timing of processes etc

• Matlab is good environment for of
controlling such processes:

– Contains many open source
optimization algorithms

– Can handle external solvers in batch-
mode

– Has good visualization options
– Can create executable with GUI

2. Structural modelling

17

Figure 16. The full finite element model

3. Example analysis

Simplified static analyses are carried out to determine the effect of loads on
the ship structure and thereby provide the initial guidance during the early
design stage. Because the modelling time represents a large portion of the
total assessment time it is important to obtain results in a reasonable time
frame, respectively at low computational cost. The accuracy and the
modelling time is a function of discretization length, which must be fine
enough to capture the desired level of accuracy with low computational cost.

Stiffened structure

The parallel midship section consisting of strakes with longitudinal stiffeners
and a transversal bulkhead is shown in Figure 17a and has been provide as a
keyword file. The ship to be modelled in this exercise is a five-hold bulk carrier,
25 meters in length. The topology of the structure is identical for all models
but the stiffener type changes. Since the model ship is symmetric in two
directions, only a quarter of the ship needs to be modelled. Therefore, the
model simply needs to be expanded in longitudinal direction for 2.5-bulkhead
spacing’s. Hence, the model can be copied in longitudinal direction to achieve
the appropriate length using the Translt command, see Figure 17b. However,
this step also copies unnecessary bulkheads with each section. These are
easily removed with the ElEdit command and by deleting the appropriate
elements and associated nodes; end result can be seen in Figure 17c. The
structure shall be build up from normal steel with a Young’s modulus
! = 210!!"# , Poisson’s ratio ! = 0.3 and mass density ! = 7850! !"!! .
Appropriate material properties are assigned with the *Mat card. Elastic
material properties are assumed for most of the structure. However, the
bulkhead in the aft of the model is assumed to be rigid to introduce the
boundary conditions at this location

