Aalto University
School of Engineering

Application Development in Engineering

Optimization with Matlab and
External Solvers




Contens

. The aim of the lecture is to courage you to use programming, optimization
and computational analyses to speed up the design processes

. Motivation
. Exercise
. Contents

- Flow chart of optimization
- Pre-processing
— Analysis

- Post-processing

. Example of process automatization in Matlab
— opening and closing a text file
— making vector(s) from the data of the text file
— adding stuff to the vector
— writing vector to text file

—  collecting results to matrix
— writing matrix to text file
. Literature
1. Romanoff, J., “Optimization of web-core steel sandwich decks at

design stage using envelope surface for stress assessment”, En¢
Structures, Vol. 66, 2014, pp. 1-9.

2. User manuals: Matlab, Abaqus, Ansys, etc

Mass |kg|

1000

iy F N
20 [T .
. [ ]
14
| I N T
: e F° o
TT T T T T[T
RRRD XD
7,000 - e e ey
—All Designs
6,000 4----------———f-=gmme- B
~—Best Feasible
5,000 -
4,000 | o
v T
it pd |
3,000 4 i L (11 ,
‘"‘lumnnilu:--n.n W Bha o bl
2,000 4
1,000
() T T T T
0 200 400 600 800
Structural Analyses

Aalto University
School of Engineering



Motivation

Analysis of large complex structure/systems involves lots of
work
— Changes due to prototyping and optimization

— Numerous analyses are needed (vibration, thermo, costs,
production, flows, ultimate strength)

— Numerous documents on analyses to be provided to authorities
in form of reports

— Etc

Some of these tasks can be automatized =» requires
programming

This can be done in all stages of analyses, i.e. pre- and post
processing as well as analysis itself

Most of the solvers have their own programming language
— Abaqus: Python, Fortran,... (Finite Elements)
— FEMAP: API/VB (Finite Elements)
— Etc.

This can make the solvers sensitive to the format of
files, operating system differences (Windows vs. Unix),
etc

A

Aalto University
School of Engineering




Exercise

 The idea is to create a simple script in Matlab controls execution of external
solver(s) in optimization process. The process includes modifying input,
executing the simulation and processing the output.

« Example input files and executables you can obtain by sending email to
lani.romanoff@aalto.fi or by using your own ones

* So the script should automatically:

1. Creates/updates an input file (*.txt, *.dat: e.g. lcore.dat Hint: do not change the
length or 1st number that indicates it 19)

Calls external solver (e.g. excel.exe, webcoremain.exe)
Waits until analysis is completed

Ree?ds) one of the output files to Matlab and processes the output (e.g. multiply by
scalar

. Show how you would perform looping for example in terms of optimization.
* Report
— The written idea of the code and a flow chart, (grade 1)

— The steps the application performs in commented code and example screenshots
(grades 2-4)

— Comment and discuss how well it works and what would be the natural way to extend
(grade 5) in next stages of your studies

o HrOODN

A Aalto University
School of Engineering


mailto:jani.romanoff@aalto.fi

Motivation

The structures/systems are becoming more
advanced and optimized

— Lightweight

— Sustainable

— Safe

Effectiveness often requires minimization or
maximization of property(ies) of the structure under
given load cases and constraints

Optimization is mathematical method to find
optimal solution
— We need optimization algorithms for search of the
optimum
— We need constraints to make the design feasible in
practice

— The key issue is to balance both constraint assessment
and optimization algorithms — cost vs. accuracy

The key question is what to optimize (dimensions,
materials, shape, topology), under which
conditions (loads, variable ran?e, rules) and for
what objective (mass, cost, safety, all of these)

A

Aalto University
School of Engineering




Motivation

S variable problem
15 different design possibilities for every

variable
1 s for evaluating structural response
15 =7.6-10°s =~ 8.8days tey
v
¢
he Cw
e
\ A
}

Aalto University
School of Engineering



Flow of Optimization

— Optinizatian , Create New Set of
« There are several algorithms available _ Structural analysis____I_‘?F_S_‘_g_‘f_’?!‘f’fifta_‘_‘_vf_s_f‘?_’??___K ..........................
— Matlab central i Create FE input file Create FE input file Create FE input file :
— Internet : DlA. DlAz - D/IN
— Commercial codes, e.g. modeFRONTIER e —— I
(Statict+eigenvalue) (Statict+eigenvalue) (Statict+eigenvalue)
. ; 1 1 1
« Often you need to combine several software { [ Calculation of Calculation of Calculation of
to run different types of analyses § Strelsses Strelsses Streises
- Flow solution ; Design Criteria Design Criteria Design Criteria
— Heat transfer : Check Check Check :
_ FEA | e i """"""" } """""""" oA
L No Performance evaluation
— Etc & Convergence
l Yes

« Some of these analyses take time and you
need to be able to control the process

* We go through an example containing each
of these parts and touch the things you need
to pay attention to

Aalto University
School of Engineering



Example of Optimization Algorithm
Particle Swarm Optimization (PSO)

» Population-based optimisation technique
developed by Kennedy and Eberhart (1995)

» Belongs to the group of evolutionary algorithms
— similar principles as genetic algorithm

» Concept based on bird or fish swarm behavior
and how knowledge is tranferred

« Best particle in current calculation round
redirects particles of next round to previous best

particle

* One-way sharing mechanism, which looks only
for the best solution only

« All particles tend to converge to the best solution

Aalto University
School of Engineering



PSO

Gbest |
vV,
prest —* Pbest,

1

k . k+1 .
X : current location, X~ : new location
k . k+1 .
V' current velocity, V* : new velocity

Pbest .
"4 : velocity based on Pbest

v velocity based on Gbest

http://www.youtube.com/watch?v=1YLqgvfcAzg0&feature=related

Aalto University
School of Engineering


http://www.youtube.com/watch?v=IYLqvfcAzg0&feature=related

Exploration of the design space

Speed of particle i” at iteration ‘4’ in design space - y!
Particle’s best location until iteration ‘4’ - p,

Swarm’s best location until iteration ‘4’ - p¢

Weight factors for the three direction components - w,¢,,c,

A

S T
X =X TV

v/i+1 = Wvlic TOn (pllc —x,i)+czr2(p,§ _xlic)

Aalto University
School of Engineering



Pre-processing of parametric models

The large complex structure R
can be built automatically e
using parametric modeling

m
s I I TR <N
LT

The logic is - 1
Definition of a strake variables ALk
Definition of strake lines and NP
key points PRV
Extrusion of a strake e e samber ofsiffioers )

Making connecting lines P1

between strake end points

Defining areas based on lines \\\\\
Meshing the areas

Assemble all strakes

A

Aalto University
School of Engineering



Pre-processing of parametric models
Ansys

Z]l stiffener type, number of stiffeners (n)
[ N N
P1 P2

S

Figure 10. Strake variables

Step 0: Definition of strake variables

Xy

n
type
t

S
n_str

x- and y-coordinates of strake hard-points (P1 and P2)
number of stiffeners

stiffener type defining the height if the stiffener, h

plate thickness

webframe spacing

number of strakes in the model

A

Aalto University
School of Engineering



Pre-processing of parametric models

Step 1: Strake line and keypoints, see Figure 11

a=1 ! Initial counter for keypoint and line numbering
n SyS nr1=0 ! Counting variable

count=0 ! Counting variable

nr=-1 ! Counting variable

*do,i,1,n_str,1 ! Do loop from 1 to n_str

count=count+1 ! Increases counter count by one

nri=nr1+1 ! Counting variable is increased by one per loop
k,,xy(1,nr1),xy(3,nr1) ! Creates P17 in Figure 11

k,,xy(2,nr1),xy(4,nr1) ! Ccreates P2 in Figure 11

WPLANE, xy(1,nr1),xy(3,nr1),,xy(2,nr1),xy(4,nr1) ! Creates workplane in P1
CSYS,4 ! Places local coordinate system in P71, see Figure 11
Istr,a,a+1 | Creates strake line between P71 and P2
num=n(count) ! Reads the correct stiffener number
htype=h(ht(nr1)) ! Reads the stiffener height from predefined table
Idiv,a,,,num+1 I Divides strake line into num+1 lines
Istr,a+2,a+3 ! Creates line between P3 and P4
Idiv,a+tnum+1,,,num+1 ! Divides line between P3 and P4

u=a+3 ! Creates counter u

e=a+num+3 ! Creates counter e

*do,j,1,num ! Do loop to create stiffener lines, see Figure 11
u=u+1 ! Increases counter u by one

e=e+1 ! Increases counter e by one

Istr,u,e ! Creates line between new points

*enddo ! Closes the do loop

*endif ! Closes the if loop

Strake do loop continues...
P} P8 P9 PlO P4
. | | |
Pl P5 P6 P7 P2

Figure 11. Keypoints and lines

Aalto University
School of Engineering



Pre-processing of parametric models
Ansys

Step 2: Extend of the strake in z-direction, see Figure 12
kgen,2,a,a+1,1,,,S,,0 ! Generates P11 and P12 in z-direction
*if,num,gt,0,then ! Initiates if loop
kgen,2,a+4,a+3+num,1,,,S,,0 ! Copies P5 to P7 in z-direction
kgen,2,a+4+num,a+3+2*num,1,,,S,,0 ! Copies P8 to P10 in z-direction

*endif ! Closes the if loop

a=a+100 ! Sets counter a for next strake
numstr,kp,a ! Sets keypoint number to counter a
CSYS,0 ! Places coordinate system in origin
*enddo ! Closes the global do loop

iy iy K
NN
RO W

Y
11 13 14

Figure 12. Extend of the strake in z-direction

N

\

\ \
N
15

12

Aalto University
School of Engineering



Pre-processing of parametric models

Ansys

Step 3: Adding lines in z-direction, see Figure 13

numstr ling,0
a=1

count=0
*do,i,1,n_str1
count=count+1
num=n{count)
*if.,num,gt,0,then
=2*(num+2)+a
“else

f=a+2

*endif

Istra f
lstr,a+1,f+1
*if.num,gt,0,then
f=f+1

e=a+3
*do.g,1.2°num
f=f+1

e=g+1

Istre f

*enddo

*endif
a=a+100
numstr ling.a
*enddo

! sels starting points for lines

! Initial counter for keypoint and line numbering
! Counting variable

! Do loop from 1 o n_str

! Increases counter count by one

! Reads the correct stiffener number

! If number of stiffeners is =0, than 12 1o 19 are generated
! Creates counter f

! Otherwise lines 12 to 19 (see Figure 13)

! Increases counter f

| Closes the if loop

! Creates line 12

! Creates line 13

! If number of stiffeners is =0 lines are crealed
! Increases counter f by one

! Creales counler e

! Start do loop

! Increases counter f by one

! Increases counter e by one

| Creales lines

! Closes the do loop

! Closes the if loop

| Sets counter & for next strake

| Sets line number o counter &

! Closes the global do loop

12

Figure 13. Lines in z-direction

Aalto University

School of Engineering



Pre-processing of parametric models
Ansys

Step 4: Defining areas, see Figure 14

numstr,line,0 | Sets starting points for lines

a=1 ! Initial counter for keypoint and line numbering
count=0 ! Counting variable

*do,i,1,n_str,1 ! Do loop from 1 to n_str

count=count+1 ! Increases counter count by one
num=n(count) ! Reads the correct stiffener number
*if,num,gt,0,then I If number of stiffeners is >0 areas are created
e=a-1 ! Creates counter e

f=a+3*num+1 ! Creates counter f

k=a+3*num+3 ! Creates counter k

c=a+3*num+3 ! Creates counter ¢

b=a+2*num+1 ! Creates counter b

count2=0 ! Creates counter count2

*do,i,1,2*num+1 | Starts do loop

count2=count2+1 ! Increases counter count2 by one

e=e+1 ! Increases counter e by one
*if,count2,eq,1,then | Starts if loop

f=f+1 ! Increases counter f by one

adrag,e,,,,,.f | Creates area A1, see Figure 14

*endif I Closes if loop
*if,count2,gt,1,and,count2,le,num+1,then | Starts if loop

k=k+1 ! Increases counter k by one Figure 14. Areas
adrag,e,,,,,,k | Creates area A2 to A4, see Figure 14
*endif ! Closes if loop

*if,count2,gt,num+1,then | Starts if loop

c=c+1 ! Increases counter ¢ by one

b=b+1 ! Increases counter b by one

adrag,b,,,,,,C | Creates areas A5 to A7, see Figure 14
*endif ! Closes if loop

*enddo ! Closes do loop

*else | Starts else loop in the case of zero stiffeners
adrag,a,,,,,,a+1 | Creates areas A1 to A4, see Figure 14
*endif ! Closes else loop

a=a+100 ! Sets counter a for next strake

numstr,area,a | Sets area number to counter a

*enddo ! Closes global do loop

Aalto University
School of Engineering



Pre-processing of parametric models
Ansys

Step 5: Meshing, see Figure 15

Isize,all, meshsize ! Applies predefined meshsize to all lines
type,1 ! Shell element type for plates

mat,m1 | Material for strake plate according to initial table
real,1 ! Real constant defining the plate thickness
amesh,A1,A2,A3,A4 I Meshes the plate areas of the strake

mat,m2 | Material for stiffeners

real,2 ! Real constant defining the stiffener thickness
amesh,A5,A6,A7 I Meshes the stiffener areas of the strake
type,2 I Beam element type for stiffeners

real,3 | Real constant set for beam cross-section
latt,m2,3,2,,KB, | Creates orientation of the unmeshed lines
Imesh,17,19 ! Meshes lines 17 to 19 (see Figure 13)

The iterative nature of step 5 can be achieved by adopting the procedures presented in the
previous steps.

Mesh,stiffener

NN N

\ N \ \

Mesh, plate

Figure 15. Sketch of meshed strake

Aalto University
School of Engineering



Pre-processing of parametric models
Ansys

Step 6: Building the full FE model

The final steps of this modelling procedure include the definition of the transverse
members, such as web-frames. To generate those, the line segments surrounding
one section of a web-frame are identified and used to obtain the areas to be meshed.
The iterative nature presented above can easily be adopted for this process. Finally
the single web-frame-spacing model can be copied according to build the full three-
dimensional model, see Figure 16.

Figure 16. The full finite element model

Aalto University
School of Engineering



Pre-processing by changing material definition

« Programming can be also used to change
the Input file properties

— Equivalent stiffness of shells (e.g. in
scantling optimization)
— Offset beams and their properties

— Nodal coordinates in geometrical
optimization
— Etc

« Pay attention to input file format
— Space
— Tab
— Enter

* Process
1. Create FE mesh

2. Calculate the equivalent stiffness, e.g.

in Matlab

3. 1I:'-_’lrint the result in right format to input
ile

8 00

M case.inp — Locked

ooy Ty g g
296, 326, 327, 333, 335,
297, 327, 328, 336, 333,
298, 3, 2, 33, 328,
299, 333, 336, 7, 69,
300, 2, 1, 7, 33,

#ELSET, ELSET=OUT_PLT, GENERATE

1,300,1

J163291E+18,  .487473E+89,  .135824E+18,
.DOBPOOE+BB,  .664469E+406,  .DODOOGE+DO,

o7y
958,

963, 969, 960

91, 965, 978, 963

339, 348, 965, 342

978, 472, 478, 471

337, 338, 472, 348

TCH

.DPOPPOE+DA,  .OPPOPPE+DH,  .4753B5E+09, -.186265E-68,  .0POOOOE+HA
_.186265E-08, .OPPADPE+DA,  .188354E+06, .627847E+A6,  .0PAADAE+HA

+00, +08, +08,

*TRANSYERSE SHEAR STIFFNESS

.730766E+08,  .651826E+06,  .DODOOOE+D0
X% | ood Sten 1

+08,

.219747E+86

*3TEP, INC=160
uniform
*STATIC
1., 1., 1.,
#NODE PRINT

s

#FILE FORMAT, ASCII

#NODE FILE, FREQUENCY=1
u

1.

s
#EL FILE, ELSET=0UT_PLT, POSITION=CENTROIDAL

SF

s
*#0UTPUT, FIELD, OP=NEW
HNARE NHTONT

Abaqus input file

Aalto University
School of Engineering




Pre-processing by changing material
definition
Matlab Creates Input for Abaqus

/Users/jromanoff/Documents /MATLAB/work /webcoreoptimizationtest/equivalentstiffnessplate.asv

File Edit Text GCo Tools Debug Desktop Window Help

» JNEE $B920C & Mewfo @B MBE BB sack| Bse :

%
BB - 10 + + L1 x ]
1 function [abd,Dt,Dw,Db,Etps,Ewps,Ewrs,Ebps,Gt,CGw,Gb,kQy, massplate,Qt,Qw,Qwr,Qb]=equivalentstiffnessplate(Icore,Pseries,Mseries)
2
3 ‘l‘tiiiiiiiiiiiittiiiiiiiiiiiittiiiiiiiiiiiiitiiii*iiiiiiiitiiii*
4 %
5 % CALCULATION OF EQUIVALENT STIFFNESS PROPERTIES FOR I-CORE
6 % 1. Local bending stiffness
7 % 2. ABD-Matrix (Reissner-Mindlin)
8 % 3. ABDO-Matrix (Local bending of faces excluded)
9 % 4. Shear stiffness matrix (lst order)
10 % 5. Print into file (ABAQUS format)
11 %
12 ‘tti*tttt*ttt*i‘tti*tttitttt*i‘ttt*tttittti**ttt*tttittti**ttt*itt
13
14 %---Ceometry and materials
15
16 Pdirection=Icore(1l);
17
18 tt=Icore(2);
19 tw=Icore(3);
20 tb=Icore(4);
21 s=Icore(5);
22 hc=Icore(6);
23
24 Et=Icore(7);
25 Ew=Icore(8);
26 Eb=Icore(9);
27
28 nut=Icore(10);
29 nuw=Icore(1ll);
30 nub=Icore(12);
31
32 kthet=Icore(13);
33 ktheb=Icore(14);
34
35 rhot=Icore(15);
36 rhow=Icore(1l6);
37 rhob=Icore(17);
38
39 %---area weight for plate
40
I an S S S S S S T T
| plain text file Lln 1 Col

Aalto University
School of Engineering




Pre-processing by changing material
definition
Matlab Creates Input for Abaqus

/Users/jromanoff/Documents /MATLAB/work/webcoreoptimizationtest/equivalentstiffnessplate.asv
File Edit Text GCo Tools Debug Desktop Window Help
» FNEAE $RR90c 5 Aesfo B BB BB Stack | Base

%
BB - 10 + + 11 x [}
=== ——e==y v = —
131
132 o DOX=— ==
133 naz=(tt*s*d+1*tw/2+%d"2)/(s* (tt+tb)+tw*d);
134 Iy=tt*s*d"2+tw/3*d"3-naz"2*(s*(tt+tb)+tw*d);
135 kter=Iy"2/(((d-naz)"2*s"3*tt/12+4(d/20-naz/4)*d"4*tw+d"3*(-tb*s*naz+tw*naz"2)/3+tb*s*naz”2*d"2+tb"2/tw*s"2*naz"2*d+naz"2*tb/12%s"3)* (s*tt+s*tb+tw
136 DQx=kter*((z0-z1l)*Gt+(zl-22)*Cw*tw/s+(2z2-23)*Cb);
137
138 [ S DQy----
139 kQy=(1+12%(Dt(2,2)/s/kthet-Dt(2,2)/s/ktheb)+6*Dt(2,2)/Dw(2,2)*d/s)/(1+12*Dt(2,2)/Dw(2,2)*d/s+Dt(2,2)/Db(2,2));
140 DQy=12*Dw(2,2)/s"2/(kQy*(Dw(2,2)/Db(2,2)+6*d/s)+12*Dw(2,2)/ktheb/s-d/s*2);
141
142 DQtemp(2,2)=zeros;
143 DQtemp(1l,1)=DOx;
144 DQtemp(2,2)=DQy;
145
146 DO=Txzyz*DOtemp*Txzyzt:
147
148 £idOUT = fopen('stiffness.dat','a'); \
149
150 fprintf(£idoUT, "%s', '**FEMAP with NX NASTRAN Property: sandwich');
151 fprintf(£idoUT, '#-10d\n',Pseries);
152 fprintf(£idOUT, '%s', ' *SHELL GENERAL SECTION, ELSET=P');
153 fprintf(£idoUT, '%-10d\n' ,Mseries);
154 fprintf(£idoUT, '%-14.8e %-1s %14.8e %-1s %t14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s\n',ABDO(1l,1),',',ABDO(1,2),
155 fprintf(£idoUT, '%-14.8e %-1s %14.8e %-1s %t14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s\n',ABDO(4,3),',',ABDO(4,4),
156 fprintf(£idOUT, '$-14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e %-1s %14.8e\n',ABDO(6,2),',',ABDO(6,3),',',ABDO(6,4),',  ,ABDO(6,5),',"',ABDO(6,6)
157 fprintf(£idoUT, '#s\n', '*TRANSVERSE SHEAR STIFFNESS');
158 fprintf(£idOUT, 't-14.8e %-1s %-14.8e %-1s %-14.8e\n',DQ(1,1),',',DQ(2,2),"',"',DQ(1,2));
159
160 fprintf(£idOUT, '%#s','**FEMAP with NX NASTRAN Property: massshell');
161 fprintf(£idOUT, '#-10d\n' ,Pseries);
162 fprintf(£idOUT, '%s','*SHELL SECTION, ELSET=P');
163 fprintf(£idoUT, '%-3d’',Pseries*2);
164 fprintf(£idOUT, '%s',', MATERIAL=M');
165 fprintf(£idouUT, '%-3d\n', Pseries);
166 fprintf(£idoOUT, '%-14.8e %*-1s\n',teguivalent,',');
167
168 fclose('all');
169
170
|

| plain text file Lln 1 Col 1

Aalto University
School of Engineering



Analysis

The analysis can be controlled
by programming, e.g. in
optimization sequence of tasks
IS important
— Create new design
— Analyze the design with FEM for
« Static
« Dynamic
— Extract the FE-results to
optimization algorithm

Another example is that during
the analysis user defined
material model can be used.
This is coded in FE solver
programming language

iromanoff/Documents/MAT

Users 0
File Edit Text Go Cell Tools Debug Desktop Window Help

&S e 2 - A e fo Bl -8 8

,,,,,,,,,,,,,,,,,,,

...................

Call input files
with numerical info
to compose vectors

@ e e e R e e e
00 OO0 OO0O0OOO
PR PRER PREDER

& [P -% [SRN T+ [s =R - P N+ P o N

£ =23 op =] I

al Analysis

[totalmass,constraint]=Structuralanalysis(Icore,Beam,...
patchproperty,allowedstressplate,allowedstressbeam,maxdisp,

Run the structural
analysis with all tasks

A

Aalto University
School of Engineering



Analysis

/Users/jromanoff/Documents /MATLAB /work /webcoreoptimizationtest/Structuralanalysis.m

109

114

while (fileA == 0)

File Edit Text Go Cell Tools Debug Desktop Window Help
% o u 79 § A
™ 2_‘]_23.‘57;3‘7(” @ B - Aeahfo Bl -8 KB BREB B $ Stack| Base | fx
; | | | |
7B - 10+ = 11| x % 2% O
1 function [totalmass,constraint]=Structuralanalysis(Icore,Beam,...
2 patchproperty,allowedstressplate,allowedstressbeam,maxdisp,minfreq,beamlL,platearea,equipmentmass,maxheight)
3
4 kEkk kAR AR AR AR AR A A A A A A A A A A A A A A AR A A AR A A AR A A A A AR A A A A A AR A AR AR
L %
6 % Structural Analysis
7 %
8 AR AR R AR AR R A AR R R R A AR R R R A AR R R R A AR R R A A AR R R A AR R R R A AR R A A AR R R A AR A
9
10 $---Define Patch Load
11 [l [
12 g=patchproperty(2,1); % wheel print pressure A g th bI
13 CA=patchproperty(3,1); % wheel print length (x) SSI n e Varla eS
14 CB=patchproperty(4,1); % wheel print breadth (y) .
: b d lues from text
16 $---Define Number of Sandwich Plate and Beam Sets y rea Ing Va ueS ro eX
17 .
18 Icoresize=size(Icore); % Size of Icore-matrix flIeS
19 Beamsize=size(Beam);
20
21 Nosandwich=Icoresize(2); % number of sandwich plates
22 Nosandwichmass=Nosandwich; % number of sandwich mass elements
23 Nobeams=Beamsize(2); % number of longitudinals types
24
25 $---Derive the stiffness, buckling stresses and patch load response for sandwich
26 [ ] L ]
2. for ililiNesandvich Create equivalent stiffness
66 $---Create stiffness matrix for beams, calculate mass and buckling stresses .
67 for i=1:1:Nobeams, rt
& propertues
93 $---Derive the stiffness, buckling stresses and patch load response for sandwich
94
95 for i=1:1:Nosandwichmass;
103
104 $---Create the input files C II t I I' t'
e e all external application
106 !1C:\MATLAB71\work static
107 . . "
108 fileA = exist('casestatic.inp','file'); % ilman";" tulostaa ruutuun to COI I lblne the Input flIeS

[ Structuralanalysis Ln 1 Col

1

Aalto University
School of Engineering




Analysis

/Users/jromanoff/Documents /MATLAB /work /webcoreoptimizationtest/Structuralanalysis.m
File Edit Text Go Cell Tools Debug Desktop Window Help
IO R $¥RR2C 8 D-MAMAeaesc Bl -8 KRR B B B Stack | Base | fi

N

E Y

0NN

BB - 10+ |11 x % % @

144

145 - timestaticl=clock;

146 - STATICTIME=60*(timestaticl(1l,5)-timestatic0(1,5))+(timestaticl(1l,6)-timestatic0(1,6));
147 - disp(['STATIC ANALYSIS TIME=' sprintf('%4i',STATICTIME) 's'])

148

149

150 - timevibO=clock;

151

152 - IC:\Abaqus\6.6-1\exec\abg66l.exe job=casevib

153 ' Run the vibration analysis in

154 - A=0; . g on
156 Ao Abaqus and wait that it is
136 B = exiat('casevib.lok', file')y o Ceiostas rustumn Completed (identified by

159 - while (A <= B)

160 .sta & .Ick file existence/non-existence)

161 - A = exist('casevib.sta',6 'file');

162 - B = exist('casevib.lck',6'file');

163

164 - end

165

166

167 - timevibl=clock;

168 - VIBTIME=60*(timevibl(1l,5)-timevib0(1,5))+(timevibl(1l,6)-timevib0(1,6));
169 - disp([ 'VIBRATION ANALYSIS TIME=' sprintf(’'%4i',6VIBTIME) 's'])

170

171 - disp('END OF ABAQUS ANALYSES');

172

173 $---Run ABAQUS script to pick up stress resultant C
i ollect the results
175 - IC:\Abaqus\6.6-1\exec\abg66l.exe script=sectanddisp.py

176

177 - A = exist('sectanddisp.sta','file'); % ilman";" tulostaa ruutuun

178 - while (A == 0)

179 - A = exist('sectanddisp.sta','file');

180 - end

181

182 $---Run ABAQUS script to pick up stress resultant

183

184 - IC:\Abaqus\6.6~-1\exec\abg66l.exe script=freq.py

10z

| Structuralanalysis [Ln 1

Col

Aalto University
School of Engineering



freq.py

]
Post-Processin
#
#
# SCRIPT TO PICK SECTION FORCES IN SHELL ELEMENTS
#
# Script does following things:
# 1. Picks the section forces Nx, Ny...
# 2. Prints them into different file
#
| ]
« Some tasks in post

. outputFiledisplacement = open('freq.txt’, 'v+') Create reSUIt flle
processing can be S for Matlab

automated

. odb, = openDds (path= ‘2dznesh .odb ') Open Abaqus
— Critical stress check #—-pickin ail load end bdry condtions e
o = ['Step-1'] #, 'Step-2 result file

b= [-5, -4, -3, -2, -1]

— Critical displacement check .......

for ¥ in b:

— Lowest eigenfrequenc ,
check JPTTEAHEnY o e Pick the value
of interest

— E tC frequency=lastFrame.frequency

print ‘ekcklkkk |

— Reporting

outputFiledisplocement writed '%sn' % (frequency))

#———__CLOSE ALL OUTPUT FILES CIOSG reSU|t flle
outputFiledisplacement .close() fO r M at| a b

Aalto University
School of Engineering



Example of process automatization in Matlab

1. Opening a text file “load textfile.txt’
2. Making vector(s) from the data of the text file "a=textfile(1,:)”

3. Adding stuff to the vector and making matrix

1. Find length of vector = L

2. Create a new vector with input and output, e.g. b=...

3. Add numbers to vector at location L+1, L+2,.

4.  Collect vector to matrix (i,:), column i with undeflned length :

4. Writing matrix to text file (fopen, fprintf)

The file type etc depends on the simulation tool, i.e. external solver

Aalto University
School of Engineering



Conclusions

« Often we need to run analyses
several times during optimization
using various external solvers

« This requires automatization, file
handling, timing of processes etc

« Matlab is good environment for of
controlling such processes:

— Contains many open source
optimization algorithms

— Can handle external solvers in batch-
mode

— Has good visualization options
— Can create executable with GUI

Figure 16. The full finite element model

—All Designs

~—Best Feasible

200

400 600 800 1000
Structural Analyses

Aalto University
School of Engineering



