Name Student number

Home assignment 1

A bar is loaded by its own weight as shown in the figure. Determine the equi-
librium equation in terms of the dimensionless displacement a =uy, /L with
the large deformation theory. Without external loading, area of the cross-
section, length of the bar, and density of the material are 4, L, and p, re-
spectively. Young’s modulus of the material is C. Find also the displacement

according to the linear theory by simplifying the equilibrium equation with the

assumption |a| <.

Solution template

Virtual work densities of the non-linear bar model
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are based on the Green-Lagrange strain definition, which works also when rotations/displacements
are large. The expressions depend on all displacement components, material property is denoted by
C (kind of Young’s modulus), and the superscript in the cross-sectional area 4° (and in other quan-

tities) refers to the initial geometry where strain and stress vanish.

The non-zero displacement component of the structure is the vertical displacement of node 2 i.e.

u,, = Uy, . Linear approximations to the displacement components (two-node element) are

u=(-Tuy; and v=w=0 = du_ _uyy g B _dw_

= 0.
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In terms of the dimensionless displacement a =uy, / L, virtual work densities simplify to
5wi£§ =—(—0a+aoda)CA(—a +%a2) ,
5w§2xot =—(1 —%)SuYZApg =-o0a(l —%)LApg .

Virtual work expressions are integrals of the densities over the domain occupied by the element
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Principle of virtual work and the fundamental lemma of variation calculus imply that

Ca(2—3a+a2)+Lpg=0 in which a:u%z. €

Assuming that |a| < 1, only the linear part in a matters and the equilibrium equation simplifies to
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