Name Student number

Home assignment 3

A thin triangular slab is loaded by a point force at node 3.
Nodes 1 and 2 are fixed. Derive the equilibrium equations of the
structure according to the large displacement theory in terms of
the dimensionless displacement components a; =uy3;/L and
a, =uys /L. Approximation is linear and material parameters
C and v are constants. Assume plane-stress conditions. When
F =0, side length and thickness of the slab are L and ¢, respec-

tively. Find also the solution to a small displacement problem by

simplifying the equilibrium equations with the assumptions
|a1|<<1 and |a2|<<l.

Solution
Virtual work density of internal forces, when modified for large displacement analysis with the same

constitutive equation as in the linear case of plane stress, is given by
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Let us start with the approximations and the corresponding components of the Green-Lagrange
strain. Linear shape functions can be deduced from the figure. Only the shape function N3 =x/L of
node 3 is needed. Displacement components and their non-zero derivatives are
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Green-Lagrange strain measures and their variations
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When the strain component expressions are substituted there, virtual work density simplifies to
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Integration over the (initial) domain gives the virtual work expression. As the integrand is constant
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Virtual work expression of the external point force components
SW? =—FSuyy =—FLSa, .

Virtual work expression of the structure is obtained as sum over the element contributions. In terms

of the dimensionless displacement
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or, when written in the standard form,
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Principle of virtual work and the basic lemma of variation calculus imply the equilibrium equations
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Assuming that |a1| <1 and |a2| <1 the equilibrium equations simplify to
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