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Home assignment 3

A  thin  triangular  slab  is  loaded  by  a  point  force  at  node  3.
Nodes 1 and 2 are fixed. Derive the equilibrium equations of the
structure according to the large displacement theory in terms of
the dimensionless displacement components 1 3a /Xu L<  and

2 3a /Yu L< . Approximation is linear and material parameters
C and µ  are constants. Assume plane-stress conditions. When

0F < , side length and thickness of the slab are L and t , respec-
tively. Find also the solution to a small displacement problem by
simplifying the equilibrium equations with the assumptions

1a 1<  and 2a 1< .

Solution
Virtual work density of internal forces, when modified for large displacement analysis with the same
constitutive equation as in the linear case of plane stress, is given by
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Let us start with the approximations and the corresponding components of the Green-Lagrange
strain. Linear shape functions can be deduced from the figure. Only the shape function 3 /N x L<  of
node 3 is needed. Displacement components and their non-zero derivatives are
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Green-Lagrange strain measures and their variations
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When the strain component expressions are substituted there, virtual work density simplifies to
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Integration over the (initial) domain gives the virtual work expression. As the integrand is constant
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Virtual work expression of the external point force components
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Virtual work expression of the structure is obtained as sum over the element contributions.  In terms
of the dimensionless displacement
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or, when written in the standard form,
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Principle of virtual work and the basic lemma of variation calculus imply the equilibrium equations
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Assuming that 1a 1<  and 2a 1<  the equilibrium equations simplify to
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