\qquad

Home assignment 3

A thin triangular slab is loaded by a point force at node 3 . Nodes 1 and 2 are fixed. Derive the equilibrium equations of the structure according to the large displacement theory in terms of the dimensionless displacement components $\mathrm{a}_{1}=u_{X 3} / L$ and $\mathrm{a}_{2}=u_{Y 3} / L$. Approximation is linear and material parameters C and v are constants. Assume plane-stress conditions. When $F=0$, side length and thickness of the slab are L and t, respectively. Find also the solution to a small displacement problem by
 simplifying the equilibrium equations with the assumptions $\left|\mathrm{a}_{1}\right| \ll 1$ and $\left|\mathrm{a}_{2}\right| \ll 1$.

Solution

Virtual work density of internal forces, when modified for large displacement analysis with the same constitutive equation as in the linear case of plane stress, is given by
$\delta w_{\Omega^{\circ}}^{\mathrm{int}}=-\left\{\begin{array}{c}\delta E_{x x} \\ \delta E_{y y} \\ 2 \delta E_{x y}\end{array}\right\}^{\mathrm{T}} \frac{t C}{1-v^{2}}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v) / 2\end{array}\right]\left\{\begin{array}{c}E_{x x} \\ E_{y y} \\ 2 E_{x y}\end{array}\right\},\left\{\begin{array}{c}E_{x x} \\ E_{y y} \\ 2 E_{x y}\end{array}\right\}=\left\{\begin{array}{l}\frac{\partial u}{\partial x}+\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial v}{\partial x}\right)^{2} \\ \frac{\partial v}{\partial y}+\frac{1}{2}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial v}{\partial y}\right)^{2} \\ \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}+\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}\end{array}\right\}$.

Let us start with the approximations and the corresponding components of the Green-Lagrange strain. Linear shape functions can be deduced from the figure. Only the shape function $N_{3}=x / L$ of node 3 is needed. Displacement components and their non-zero derivatives are
$u=\frac{x}{L} u_{X 3}$ and $v=\frac{x}{L} u_{Y 3} \Rightarrow \frac{\partial u}{\partial x}=\frac{u_{X 3}}{L}=\mathrm{a}_{1}$ and $\frac{\partial v}{\partial x}=\frac{u_{Y 3}}{L}=\mathrm{a}_{2}$
Green-Lagrange strain measures and their variations

$$
\left\{\begin{array}{c}
E_{x x} \\
E_{y y} \\
2 E_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2 \\
0 \\
\mathrm{a}_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\delta E_{x x} \\
\delta E_{y y} \\
2 \delta E_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\delta \mathrm{a}_{1}+\mathrm{a}_{1} \delta \mathrm{a}_{1}+\mathrm{a}_{2} \delta \mathrm{a}_{2} \\
0 \\
\delta \mathrm{a}_{2}
\end{array}\right\} .
$$

When the strain component expressions are substituted there, virtual work density simplifies to
$\delta w_{\Omega^{\circ}}^{\mathrm{int}}=-\frac{t C}{1-v^{2}}\left\{\begin{array}{c}\delta \mathrm{a}_{1}+\mathrm{a}_{1} \delta \mathrm{a}_{1}+\mathrm{a}_{2} \delta \mathrm{a}_{2} \\ 0 \\ \delta \mathrm{a}_{2}\end{array}\right\}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v) / 2\end{array}\right]\left\{\begin{array}{c}\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2 \\ 0 \\ \mathrm{a}_{2}\end{array}\right\} \Rightarrow$
$\delta w_{\Omega^{\circ}}^{\text {int }}=-\frac{t C}{1-v^{2}}\left[\left(\delta \mathrm{a}_{1}+\mathrm{a}_{1} \delta \mathrm{a}_{1}+\mathrm{a}_{2} \delta \mathrm{a}_{2}\right)\left(\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2\right)+\frac{1-v}{2} \mathrm{a}_{2} \delta \mathrm{a}_{2}\right]$
Integration over the (initial) domain gives the virtual work expression. As the integrand is constant $\delta W^{1}=\frac{L^{2}}{2} \delta w_{\Omega^{\circ}}^{\text {int }}=-\frac{L^{2}}{2} \frac{t C}{1-v^{2}}\left[\left(\delta \mathrm{a}_{1}+\mathrm{a}_{1} \delta \mathrm{a}_{1}+\mathrm{a}_{2} \delta \mathrm{a}_{2}\right)\left(\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2\right)+\frac{1-v}{2} \mathrm{a}_{2} \delta \mathrm{a}_{2}\right]$.

Virtual work expression of the external point force components

$$
\delta W^{2}=-F \delta u_{Y 3}=-F L \delta \mathrm{a}_{2} .
$$

Virtual work expression of the structure is obtained as sum over the element contributions. In terms of the dimensionless displacement

$$
\delta W=-\frac{L^{2}}{2} \frac{t C}{1-v^{2}}\left[\left(\delta \mathrm{a}_{1}+\mathrm{a}_{1} \delta \mathrm{a}_{1}+\mathrm{a}_{2} \delta \mathrm{a}_{2}\right)\left(\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2\right)+\frac{1-v}{2} \mathrm{a}_{2} \delta \mathrm{a}_{2}\right]-F L \delta \mathrm{a}_{2}
$$

or, when written in the standard form,

$$
\delta W=-\left\{\begin{array}{l}
\delta \mathrm{a}_{1} \\
\delta \mathrm{a}_{2}
\end{array}\right\}^{\mathrm{T}} \frac{L^{2}}{2} \frac{t C}{1-v^{2}}\left\{\begin{array}{c}
\left(1+\mathrm{a}_{1}\right)\left(\mathrm{a}_{1}+\frac{1}{2} \mathrm{a}_{1}^{2}+\frac{1}{2} \mathrm{a}_{2}^{2}\right) \\
\mathrm{a}_{2}\left(\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2\right)+\frac{1-v}{2} \mathrm{a}_{2}+2 \frac{F}{t C L}\left(1-v^{2}\right)
\end{array}\right\}
$$

Principle of virtual work and the basic lemma of variation calculus imply the equilibrium equations

$$
\left(1+a_{1}\right)\left(a_{1}+\frac{1}{2} a_{1}^{2}+\frac{1}{2} a_{2}^{2}\right)=0
$$

$$
\mathrm{a}_{2}\left(\mathrm{a}_{1}+\mathrm{a}_{1}^{2} / 2+\mathrm{a}_{2}^{2} / 2\right)+\frac{1-v}{2} \mathrm{a}_{2}+2 \frac{F}{t C L}\left(1-v^{2}\right)=0 .
$$

Assuming that $\left|a_{1}\right| \ll 1$ and $\left|a_{2}\right| \ll 1$ the equilibrium equations simplify to
$\mathrm{a}_{1}=0 \quad$ and $\frac{1-v}{2} \mathrm{a}_{2}+2 \frac{F}{t C L}\left(1-v^{2}\right)=0 \quad \Rightarrow \mathrm{a}_{1}=0 \quad$ and $\quad \mathrm{a}_{2}=-4 \frac{F}{t C L}(1+v)$.

