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Home assignment 1

Electric current causes heat generation in element 2 of the
bar shown. Calculate the temperature 2Ι  at the center
point,  if  the  wall  temperature  (nodes  1  and  3)  is Ι↓ .
Cross sectional area A  and thermal conductivity k  are
constants. Heat production rate per unit length vanishes
in element 1 and it is constant s  in element 2

Solution template
In a pure heat conduction problem, density expressions of the bar model are given by

int d dp kA
dx dx
χΙ Ι

χ ς < ,  and extp sχ χΙς <

in which Ι  is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit length).

For bar 1, the nodal temperatures are 1Ι Ι< ↓  and 2Ι  of which the latter is unknown. With a linear
interpolation to temperature (notice that variation of Ι↓  vanishes)
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When the approximation is substituted there, density expression int extp p pχ χ χς ς ς< ∗  simplifies to

2 2kA
L L

p χΙ Ι
χ

Ι
ς <

, ↓
, ,

Virtual work expression is the integral of the density over the element domain
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The nodal temperatures of bar 2 are 2Ι  and 3Ι Ι< ↓ .  Linear interpolation gives (variations of the
given quantities like Ι↓  vanish)
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When the approximation is substituted there, density expression int extp p pχ χ χς ς ς< ∗  simplifies to
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Element contribution to the variational expressions is the integral of density over the element do-
main

2
2

2
20 2

L LkP p Adx s
L

Ι χχ χΙχ Ι Ις
, ↓

, ∗< <〉 .

Variational expression is sum of the element contributions
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Variation principle 0Pχ < χ! a  and the fundamental lemma of variation calculus give
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