\qquad
\qquad

Home assignment 1

Electric current causes heat generation in element 2 of the bar shown. Calculate the temperature ϑ_{2} at the center point, if the wall temperature (nodes 1 and 3) is ϑ°. Cross sectional area A and thermal conductivity k are constants. Heat production rate per unit length vanishes
 in element 1 and it is constant s in element 2

Solution template

In a pure heat conduction problem, density expressions of the bar model are given by
$\delta p_{\Omega}^{\mathrm{int}}=-\frac{d \delta \vartheta}{d x} k A \frac{d \vartheta}{d x}$ and $\delta p_{\Omega}^{\mathrm{ext}}=\delta \vartheta s$
in which ϑ is the temperature, k the thermal conductivity, and s the rate of heat production (per unit length).

For bar 1, the nodal temperatures are $\vartheta_{1}=\vartheta^{\circ}$ and ϑ_{2} of which the latter is unknown. With a linear interpolation to temperature (notice that variation of ϑ° vanishes)

$$
\begin{aligned}
& \vartheta=\left\{\begin{array}{c}
1-x / L \\
x / L
\end{array}\right\}^{\mathrm{T}}\left\{\begin{array}{l}
\vartheta^{\circ} \\
\vartheta_{2}
\end{array}\right\}=\left(1-\frac{x}{L}\right) \vartheta^{\circ}+\frac{x}{L} \vartheta_{2} \Rightarrow \frac{d \vartheta}{d x}=\frac{\vartheta_{2}-\vartheta^{\circ}}{L}, \\
& \delta \vartheta=\frac{x}{L} \delta \vartheta_{2} \Rightarrow \frac{d \delta \vartheta}{d x}=\frac{\delta \vartheta_{2}}{L} .
\end{aligned}
$$

When the approximation is substituted there, density expression $\delta p_{\Omega}=\delta p_{\Omega}^{\mathrm{int}}+\delta p_{\Omega}^{\mathrm{ext}}$ simplifies to $\delta p_{\Omega}=-\frac{\delta \vartheta_{2}}{L} k A \frac{\vartheta_{2}-\vartheta^{\circ}}{L}$,

Virtual work expression is the integral of the density over the element domain
$\delta P^{1}=\int_{0}^{L} \delta p_{\Omega} d x=-\delta \vartheta_{2} k A \frac{\vartheta_{2}-\vartheta^{\circ}}{L}$.

The nodal temperatures of bar 2 are ϑ_{2} and $\vartheta_{3}=\vartheta^{\circ}$. Linear interpolation gives (variations of the given quantities like ϑ° vanish)

$$
\vartheta=\left\{\begin{array}{c}
1-x / L \\
x / L
\end{array}\right\}^{\mathrm{T}}\left\{\begin{array}{l}
\vartheta_{2} \\
\vartheta^{\circ}
\end{array}\right\}=\left(1-\frac{x}{L}\right) \vartheta_{2}+\frac{x}{L} \vartheta^{\circ} \Rightarrow \frac{d \vartheta}{d x}=\frac{\vartheta^{\circ}-\vartheta_{2}}{L},
$$

$\delta \vartheta=\left(1-\frac{x}{L}\right) \delta \vartheta_{2} \Rightarrow \frac{d \delta \vartheta}{d x}=-\frac{\delta \vartheta_{2}}{L}$.
When the approximation is substituted there, density expression $\delta p_{\Omega}=\delta p_{\Omega}^{\text {int }}+\delta p_{\Omega}^{\text {ext }}$ simplifies to $\delta p_{\Omega}=-\left(-\frac{\delta \vartheta_{2}}{L}\right) k A \frac{\vartheta^{\circ}-\vartheta_{2}}{L}+\left(1-\frac{x}{L}\right) \delta \vartheta_{2} s$.

Element contribution to the variational expressions is the integral of density over the element domain
$\delta P^{2}=\int_{0}^{L} \delta p_{\Omega} d x=-\delta \vartheta_{2} k A \frac{\vartheta_{2}-\vartheta^{\circ}}{L}+\delta \vartheta_{2} \frac{L}{2} s$.
Variational expression is sum of the element contributions
$\delta P=\delta P^{1}+\delta P^{2}=-\delta \vartheta_{2}\left[2 \frac{k A}{L}\left(\vartheta_{2}-\vartheta^{\circ}\right)-\frac{1}{2} L s\right]$.

Variation principle $\delta P=0 \quad \forall \delta \mathbf{a}$ and the fundamental lemma of variation calculus give
$2 \frac{k A}{L}\left(\vartheta_{2}-\vartheta^{\circ}\right)-\frac{1}{2} L s=0 \quad \Leftrightarrow \quad \vartheta_{2}=\vartheta^{\circ}+\frac{1}{4} \frac{L^{2} s}{k A}$.

