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Home assignment 3

A thin triangular slab (assume plane stress conditions) loaded
by a horizontal force is allowed to move horizontally at node 1
and nodes 2 and 3 are fixed. At the constant initial temperature
Ι↓  and loading 0F < , stress vanishes. If the slab is heated to
the constant temperature 2Ι↓ , what is the required force F  to
have 1 0Xu < ? Material properties E , µ ,   and thickness t
of the slab are constants.

Solution
As temperature is known and the external distributed force vanishes, virtual work densities needed
are (formulae collection)
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in which Ι Ι ΙΧ < , ↓  is the difference between temperature at the deformed and initial geometries.

Approximation is the first thing to be considered. As the origin of the material xy , coordinate sys-
tem is placed at node 1 and the axes are aligned with the axes of the structural XY , coordinate sys-
tem
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< , , 0v < ,  and Ι ΙΧ < ν  (constant).

When the approximations are substituted there, virtual work density (composed of the internal and
coupling parts) simplifies to
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Virtual work expression is integral of the density expression over the domain occupied by the ele-
ment. Here, virtual work density is constant so that it is enough to multiply by the area. Virtual work
expressions of element 1 and 2 (point force) become
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Virtual work expression of the structure 1 2W W Wχ χ χ< ∗ , principle of virtual work, and the fun-
damental lemma of variation calculus imply the equilibrium equation
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Displacement vanishes with the force (this is also the horizontal constraint force when the node is
fixed)
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