GIS-E3010 Least-Squares Methods in Geoscience

Lecture 12a

Petri Rönnholm

Learning objectives

- To be able to solve homogeneous system of equations

Homogeneous system of equations

- A homogeneous system (using homogeneous coordinates and projective geometry) of equations looks (e.g.) like

$$
\left\{\begin{array}{cc}
a_{1} x_{1}+a_{2} y_{1}+\cdots=0 \\
a_{1} x_{2}+a_{2} y_{2}+\cdots=0 \\
a_{1} x_{3}+a_{2} y_{3}+\cdots=0 & 0
\end{array}\right)\left[\begin{array}{c}
0 \\
0 \\
\vdots
\end{array}\right] \quad x=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]
$$

Applications of homogeneous systems

- Solving vanishing points, an absolute conic and an interior orientation of a camera (computer vision approach) from perpendicular object lines

$$
\begin{gathered}
v_{1}^{T} \omega v_{2}=0 \\
{\left[\begin{array}{lll}
x_{1} & y_{1} & 1
\end{array}\right]\left[\begin{array}{lll}
\omega_{11} & \omega_{12} & \omega_{13} \\
\omega_{12} & \omega_{22} & \omega_{23} \\
\omega_{13} & \omega_{23} & \omega_{33}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right]=0}
\end{gathered}
$$

$\left[\begin{array}{llllll}x_{1} x_{2} & x_{1} y_{2}+x_{2} y_{1} & y_{1} y_{2} & x_{1}+x_{2} & y_{1}+y_{2} & 1\end{array}\right]$

Applications of homogeneous systems: Direct solution of relative orientation

- A calibrated perspective camera (essential
matrix)

$$
\widetilde{m}_{1}^{T} E \widetilde{m}_{2}=0 \quad\left[\begin{array}{lll}
x & y & 1
\end{array}\right]\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=0
$$

- A non-calibrated perspective camera (fundamental matrix)

$$
\tilde{m}_{1}^{T} F \widetilde{m}_{2}=0 \quad\left[\begin{array}{lll}
x & y & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=0
$$

- The projective version of fundamental matrix

$$
\widetilde{m}_{1}^{T} F \widetilde{m}_{2}=0
$$

The solution of a homogeneous system

- In a homogeneous system $A x=0$, the size of a matrix A is $n \times u$ ($\mathrm{n}=$ the number of observations, $\mathrm{u}=$ the number of unknown parameters)
- The solution of such system has some special features:
- The system always has a trivial solution $x=0$ (not interesting)
- If we find a non-trivial solution $x \neq 0$, also $k x$ ($k=a r b i t r a r y$ scalar) is a valid solution
- From a homogeneous system we can only find relative values of unknown parameters
- Non-trivial solutions can be found if the dimension of the kernel $N(A)>0$

The solution of a homogeneous system

- Because the solution gives, in any case, only a relative solution of unknown parameters, the system can be solved by fixing one unknown parameter (any parameter can be selected)
- For example, if we select to fix the last parameters, the solution fulfilling conditions $A x=0$ and $x_{u}=1$ is

$$
\left\{\begin{array}{l}
A x=0 \\
x_{u}=1
\end{array}\right.
$$

- If we place $x_{u}=1$ to the equation $A x=0$, we get

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{u-1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{u-1}
\end{array}\right]=-a_{u} \quad \text { i.e. } \quad \bar{A} \bar{x}=-a_{j}
$$

The solution of a homogeneous system

- Because we have now something at the right side of the equation (= nonzero), the system is non-homogeneous (a normal case)!
- Even if we managed to get the solution of the equation, we can have problems in special cases
- If the true value of the parameter which we fixed happens to be (close) to zero, the system cannot be solved (no solution)
- The image below illustrates how other parameters can approach infinity in such situation ($x_{2}=1 \Rightarrow x_{1} \rightarrow \infty$)

The solution of a homogeneous system

- The figure above also gives a hint that this problem can be avoided if the original condition $x_{u}=1$ is replaced with $\|x\|=1$, which fixes the length of the solution vector
- The solution (in this 2D case) can be only at the circumference of a circle (cannot go to infinity in any special cases)
- Therefore, our aim is to find a solution that fulfills this condition

The solution of a homogeneous system

- The solution x of the system of equations $A x=0$ is the subspace $N(A)$ of the parameter space R^{u} i.e. the kernel of A, i.e.

$$
x=N(A)
$$

- The system of equations have non-trivial solutions only if the dimension of a kernel $N(A)$ is >0, i.e..

$$
(s(A)=\text { rank of the matrix })
$$

The solution of a homogeneous system

Cases A and B
The dimension of a kernel: $d=\operatorname{dim} N(A)=u-s(A)>0$

- If $n=u-1$ and $s(A)=n \Rightarrow d=u-n=u-(u-1)=1$ (Case A)
- If $n=u$ and $s(A)=u-1 \Rightarrow d=u-(u-1)=1 \quad$ (Case B)
- In both cases, the dimension of a kernel is 1 , which means that the solution of a system $A x=0$ is unique only up to the length of the solution vector
- The condition $\|x\|=1$ gives a solution that is unique up to the sign

The solution of a homogeneous system

(C case)

- When the elements of a matrix A include measurements, we usually have a situation of

$$
n \geq u \text { and } s(A)=u \quad \Rightarrow \quad d=u-s(A)=u-u=0 \quad \text { (ccase) }
$$

- Unfortunately, there is no non-trivial solution to such system of equations $A x=0$ in which $x \neq 0$
- However, it is possible to find a least-squares solution by replacing the condition $A x=0$ with the leastsquares condition $\|A x\|^{2}=\min$
- In following, the solutions of all three cases are illustrated

The solution of a homogeneous system, case A

- This case is an underdetermined system
- Let's assume that $n=u-1$, and that the rank of A is full i.e. $s(A)=n$ (i.e. all rows are independent from each other)
- The dimension of a kernel is one, which means that the solution is unique up to the length of the solution vector

$$
d=\operatorname{dim} N(A)=u-s(A)=u-n=u-(u-1)=1
$$

- A unique solution is retrieved if the length of a solution vector is fixed with the additional constraint $\|x\|=1$ (which eliminates the trivial solution $x=0$)

The solution of a homogeneous system, case A

- The solution that fulfills both conditions $A x=0$ and $\|x\|=1$ is found by utilizing singular value decomposition
$A=U S V^{T}=U\left[\begin{array}{ll}S_{1} & 0\end{array}\right]\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]^{T}$

- In this special case, the solution vector x is the last singular vector v_{u} (eigenvector)

$$
x=v_{u}
$$

The solution of a homogeneous system, case B

- This case is a square system ($n=u$)
- If the size of a matrix A is $u \times u$, and its rank is

$$
s(A)=u-1
$$

it is possible to make a singular value decomposition

$$
A=U S V^{T}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{T}
$$

The solution of

a homogeneous system, case B

- Again, it appears that the solution vector x is the last singular vector v_{u} of a matrix V (the last column), i.e.

$$
x=v_{u}
$$

The solution of a homogeneous system, case C

- This system is overdetermined
- We try to solve a homogeneous system $A x=0$ when

$n \geq u \quad$ (overdetermined) and $s(A)=u \quad$ (columns have a full rank)

- The latter condition (a full rank) is fulfilled in practice because the elements of A are results from measurements and therefore include errors. Therefore, the rank is full (columns are linearly independent) even if in theory the rank is not full
- Because the dimension N(A) of the kernel is $d=u$ -$s(\mathrm{~A})=u-u=0$, the system has only a trivial solution $x=0$ (not interesting)

The solution of a homogeneous system, case C

We can find the solution (e.g.) by utilizing the least-squares condition

$$
S=\|A x\|^{2}=\min
$$

- Geometrical interpretation of errors (2D)

- The additional condition $\|x\|=1$ prevents the parameters to grow infinitely large in any case
- Notice that fixing one parameter is one alternative, but not recommended (no solution if the true value of the fixed parameter is close to zero)

The solution of a homogeneous system, case C

- The task basing on conditions $S=\|A x\|^{2}=\min$ and $\|x\|=1$ is called as a homogeneous least-squares task
- Two main alternatives to solve a homogeneous leastsquares task
- The solution based on eigenvalue decomposition (Lagrange)
- The solution based on singular value decomposition
- In following, we focus on using singular value decomposition

The solution of a homogeneous system, case C

- The solution is based on generalized singular value decomposition or, in special cases, on a regular singular value decomposition
- For the special case of the generalized singular value decomposition, we need a constraint matrix B (the number of columns must be equal for matrices A and B, but the number of rows can be different)
- In a special case $B=I$, the solution is actually a regular singular value decomposition
- (In principle, a matrix A constrains rows, and a matrix B constrains columns)

An example of matrix B

- An example of a 2D case, in which a line ax+by+c=0 is fitted to point observations, and the constraint matrix is

$$
\|B x\|=1
$$

- For example, following alternatives can be utilized for constraint equations (and corresponding B matrices):

$$
\begin{array}{cc}
b=1 & B=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
\sqrt{a^{2}+b^{2}+c^{2}}=1 & B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I \\
\sqrt{a^{2}+b^{2}}=1 & B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{array}
$$

(Equals to fixing one parameter)

The solution of a homogeneous system, case C

- Generalized singular value decomposition is (Matlab function: GSVD)

$$
\begin{array}{ll}
A=U S_{A} F^{T}=\operatorname{Udiag}\left(\alpha_{1}, \ldots, \alpha_{u}\right) F^{T} & \alpha_{i+1} \geq \alpha_{i} \\
B=V S_{B} F^{T}=\operatorname{Viaag}\left(\beta_{1}, \ldots, \beta_{q}\right) F^{T} & \beta_{i+1} \leq \beta_{i}
\end{array} \quad(q=\min (u, p))
$$

in which U is an orthogonal matrix (size of $n \times n)\left(U^{T} U=I\right), V$ is also an orthogonal matrix (size of $p \times p)\left(V^{T} V=I\right)$ and F is a regular (non-singular) matrix (size of $u x u$)

- Because $\|A x\|^{2}=\left\|U S_{A} F^{T} x\right\|^{2}=\left\|S_{A} F^{T} x\right\|^{2}$ and $\|B x\|^{2}=\left\|V S_{B} F^{T} x\right\|^{2}=\left\|S_{B} F^{T} x\right\|^{2}$, and if we name $y=F^{T} x$, the original conditions $\|A x\|=\min$ and $\|B x\|=1$ can be replaced with following conditions

$$
\begin{aligned}
& \left\|S_{A} y\right\|=\min \text { and }\left\|S_{B} y\right\|=1 \\
& \text { Therefore, we solve } y \text { first. }
\end{aligned}
$$

The solution of a homogeneous system, case C

- Because $S_{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{u}\right)$ and $\alpha_{i+1} \geq \alpha_{i}$ (the smallest value is in the first diagonal element), the solution fulfilling conditions $\left\|S_{A} y\right\|=$ min and $\left\|S_{B} y\right\|=1$ is

$$
\hat{y}=\left[\begin{array}{lllll}
1 / \beta_{1} & 0 & \ldots & 0 & 0
\end{array}\right]^{T}
$$

- The least-squares solution \hat{x} of the original task is solved from the system of equations

$$
\begin{aligned}
& F^{T} \hat{x}=\hat{y} \\
& \hat{x}=F^{-T} \hat{y}
\end{aligned}
$$

- The squared sum can be calculated (even before solving x) with equation
- Residuals are

$$
S=\alpha_{1}^{2} / \beta_{1}^{2}=s_{1}^{2}
$$

$$
\hat{v}=A \hat{x}
$$

The solution of a homogeneous system, special case of C

- In many cases, however, we end up in a situation, in which $B=I$, and we are able to use a normal singular value decomposition
- Let say that $A=U S V^{T}$ is a singular value decomposition of a matrix A, in which case $\|A x\|=\min \Leftrightarrow\left\|U S V^{T} x\right\|=\min$
- Because $\left\|U S V^{T} x\right\|=\left\|S V^{T} x\right\|$ and $\|x\|=\left\|V^{T} x\right\|$, we can name $y=V^{T} x$
- The new constraints are then

$$
\|S \hat{y}\|=\min \quad \text { and } \quad\|\hat{y}\|=1
$$

- Because S is a diagonal matrix that has sorted elements in the diagonal (from the largest to the smallest), the solution is

$$
\hat{y}=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & 1
\end{array}\right]^{T}
$$

The solution of a homogeneous system, special case of C

- The solution \hat{x} of the original least-squares task is

$$
\hat{x}=V \hat{y}=V\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]=V_{u}
$$

i.e. the last column of a matrix V, i.e. the singular vector that corresponds to the smallest singular values of a matrix A

- A residual vector is $\hat{v}=A \hat{x}$
- A squared sum: $S=\hat{y}^{T} S^{T} S \hat{y}=s_{u}^{2}$

