Write down on each answer sheet:

- Your name, degree programme, student number, and the date
- The course title: CS-E4530 Computational Complexity Theory

1. Order the complexity classes L, NP, EXP, PSPACE, $\mathrm{P}, \Sigma_{2}^{p}, \Pi_{2}^{p}$, and ZPP by set inclusion (that is, write enough set inclusion statements of the form

$$
X \subseteq Y
$$

where X and Y are complexity classes given above such that all known set inclusions follow from the statements).
2. (a) Let $L_{1}, L_{2} \in \mathrm{NP} \cap \operatorname{coNP}$. Prove that the language

$$
L_{1} \oplus L_{2}=\left\{x \in\{0,1\}^{*}: x \text { is in exactly one of } L_{1} \text { and } L_{2}\right\}
$$

is in $N P \cap$ coNP.
(b) A Boolean circuit C with n inputs and n outputs can be viewed as a succinct encoding of a specific kind of directed graph; specifically, we can view a circuit C describing a graph G_{C} on vertex set $V_{C}=\{0,1\}^{n}$ with edge set

$$
E_{C}=\{(x, y): C(x)=y\}
$$

That is, each vertex $x \in\{0,1\}^{n}$ has exactly one outgoing edge, with the other endpoint being $C(x) \in\{0,1\}^{n}$.
Consider the following problem about succinct graphs:

SUCCINCT CYCLE:

- Instance: A Boolean circuit C with n inputs and n outputs.
- Question: Is the graph G_{C} described by C a directed cycle on 2^{n} vertices? That is, is there a permutation $\sigma:\left\{1,2, \ldots, 2^{n}\right\} \rightarrow\{0,1\}^{n}$ such that $C(\sigma(i))=\sigma(i+1)$ for all $i=1,2, \ldots, 2^{n}-1$ and $C\left(\sigma\left(2^{n}\right)\right)=\sigma(1)$?

Prove that the SUCCINCT CYCLE problem is in PSPACE.
(You may assume it is known that evaluating the value of a Boolean circuit on input x can be done in polynomial time and space.)
3. Let $\alpha>1$ be a constant. Prove that if there is an α-approximation algorithm for the minimum dominating set problem, then there is an α-approximation algorithm for the minimum set cover problem.
Recall that the optimisation versions of these problems are defined as follows:

MINIMUM SET COVER:

- Instance: A finite set U and a family $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U.
- Feasible solution: A subfamily $\mathcal{T} \subseteq \mathcal{S}$ such that any element $u \in U$ is contained in at least one set $S \in \mathcal{T}$.
- Objective: Minimise $c(\mathcal{T})=|\mathcal{T}|$.

CS-E4530 Computational Complexity Theory, Spring 2018 (Janne H. Korhonen)
Midterm 2 - Tue 3 Apr 2018, 13.00-16.00

MINIMUM DOMINATING SET:

- Instance: A graph $G=(V, E)$.
- Feasible solution: A subset $D \subseteq V$ such that for all $v \in V$, either $v \in D$ or at least one neighbour of v is in D.
- Objective: Minimise $c(D)=|D|$.

