Aalto University Department of Computer Science Pekka Orponen

T-79.5103 Computational Complexity Theory (5 cr) First Midterm Exam, Mon 1 Feb 2016, 10–12 a.m.

Write down on each answer sheet:

- Your name, degree programme, and student number
- The text: "T-79.5103 Computational Complexity Theory 1.2.2016"
- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

1. (a) Design (i.e. give the transition diagram for) a Turing machine *M* that computes the following function $f : \{1\}^* \longrightarrow \{1\}^*$:

$$f(x) = \begin{cases} 1^{n-1} & \text{if } x = 1^n \text{ and } n \text{ is odd} \\ \varepsilon & \text{otherwise} \end{cases}$$

where ε denotes the empty string. Thus, for instance, f(111) = 11 and $f(11) = \varepsilon$.

- (b) Give the computation sequences of your machine, i.e. the lists of configurations the machine passes through until it halts, on inputs 111, 11, and ϵ .
- 2. Which of the following claims are true and which are false? (No proofs are needed, just indicate your choice by the letter T or F.)
 - (a) The computation of a deterministic Turing machine halts on every input.
 - (b) All languages accepted by nondeterministic Turing machines are recursively enumerable.
 - (c) The Turing machine Halting Problem belongs to the complexity class NP.
 - (d) The complement of any language accepted by a deterministic Turing machine is recursively enumerable.
 - (e) A problem *A* can be shown to be undecidable by devising a reduction mapping *t* from *A* to the Halting Problem.
 - (f) The problem of determining if a Turing machine accepts at least 7 strings is undecidable.
 - (g) The problem of determining if a Turing machine has at least 7 states is undecidable.
 - (h) The problem of determining if a Turing machine runs for at least 7 steps on all inputs of length $|x| \le 7$ is undecidable.
- 3. (a) Define the formal language L_7 representing the decision problem:

Given a Turing machine *M*; does *M* accept all strings *x* of length $|x| \le 7$, and only those?

(b) Prove, without appealing to Rice's theorem, that the language L_7 is not recursive.

Grading: Each problem 4p, total 12p.