Aalto University Department of Information and Computer Science Pekka Orponen

T-79.5103 Computational Complexity Theory (5 cr) Second Midterm Exam, Mon 7 Apr 2014, 9–12 a.m.

Write down on each answer sheet:

- Your name, degree programme, and student number

- The text: "T-79.5103 Computational Complexity Theory 7.4.2014"

- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

1. Order the complexity classes **RP**, **EXP**, Σ_1^p , **L**, **NP**, **ZPP**, **NPSPACE**, **P**, and **PSPACE** by set inclusion (that is, write enough set inclusion statements of the form

 $X \subseteq Y$

where *X* and *Y* are complexity classes given above such that all known set inclusions follow from the statements).

- 2. (a) Define the complexity classes **DP** and Δ_2^p , and show that **DP** $\subseteq \Delta_2^p$.
 - (b) Give an example of some "nontrivial" language *L* in the class **DP** (i.e. such that *L* is not obviously in either **NP** or **coNP**), and explain why it belongs to **DP**.
- 3. (a) Define the complexity classes Σ_i^p $(i \ge 0)$ and **PH**.
 - (b) Prove that $PH \subseteq PSPACE$. (*Hint:* Induction.)
- 4. Show that the following problem is NP-complete:

DOMINATING SET

INSTANCE: An undirected graph G = (V, E) and an integer K.

QUESTION: Does *G* contain a set of at most *K* vertices $U \subseteq V$, such that any vertex not in *U* is connected to a vertex in *U* by an edge (i.e. for any $v \in V \setminus U$ there is some $u \in U$ such that $\{u, v\} \in E$)?

(*Hint:* Think of the vertices in $V \setminus U$ as being "covered" by vertices in U.)

Grading: Each problem 6p, total 24p.