Aalto University Department of Computer Science Pekka Orponen

T-79.5103 Computational Complexity Theory (5 cr) Second Midterm Exam, Tue 5 Apr 2016, 1–4 p.m.

Write down on each answer sheet:

- Your name, degree programme, and student number

- The text: "T-79.5103 Computational Complexity Theory 5.4.2016"

- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

1. Order the complexity classes PH, NC₂, ZPP, P^{PP} , AP, NP \cap coNP, PSPACE, NL, and P, by set inclusion (that is, write enough set inclusion statements of the form

 $X \subseteq Y$

where *X* and *Y* are complexity classes given above such that all known set inclusions follow from the statements).

- 2. (a) Define the complexity classes Σ_i^p ($i \ge 0$) and **PH**.
 - (b) Give an example of some "nontrivial" language *L* in the class Σ_2^p (i.e. one which is not obviously in Σ_1^p or Π_1^p). Show that *L* is in Σ_2^p , and explain why it does not seem to be in $\Sigma_1^p \cup \Pi_1^p$.
- 3. Let us define the following linear-exponential time complexity classes:

$$\mathbf{E} = \bigcup_{c>0} \mathbf{TIME}(2^{cn}), \qquad \mathbf{NE} = \bigcup_{c>0} \mathbf{NTIME}(2^{cn}).$$

Show that if $\mathbf{P} = \mathbf{NP}$, then also $\mathbf{E} = \mathbf{NE}$. You may assume, without loss of generality, that all the languages to be considered are over the binary alphabet. (*Hint:* For any language $L \in \mathbf{NE}$, consider the language $T_L = \{1^{n(1x)} | x \in L\}$, where n(1x) denotes the numerical value of the binary string 1*x*.)

4. Show that the following problem is NP-complete:

CLIQUE COVER

INSTANCE: An undirected graph G = (V, E) and an integer K. QUESTION: Can the vertices of G be partitioned into at most K sets V_1, \ldots, V_K , so that each V_i forms a clique in G? (*Hint:* Reduction from GRAPH COLOURING.)

Grading: Each problem 6p, total 24p.