Advanced probabilistic methods Lecture 5: Mixture models and EM

Pekka Marttinen

Aalto University

February, 2019

Pekka Marttinen (Aalto University)

- Gaussian mixture models (GMMs)
- EM algorithm
- EM for Gaussian mixture models
- Suggested reading: Bishop: *Pattern Recognition and Machine Learning*
 - p. 110-113 (2.3.9): Mixtures of Gaussians
 - simple_example.pdf
 - p. 430-443: EM for Gaussian mixtures

- Standard Gaussian model (left) gives bad fit to data with clusters
- Combination of two Gaussians (right) is much better

Gaussian mixture models

• Gaussian mixture model with K components has density

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} | \mu_k, \Sigma_k).$$

- $N(x|\mu_k, \Sigma_k)$ is a **component** with its own mean μ_k and covariance Σ_k .
- π_k are the **mixing coefficients**, which satisfy $\sum_k \pi_k = 1$, $0 \le \pi_k \le 1$.

GMMs, latent variable representation (1/2)

- Equivalent formulation is obtained by defining **latent variables** $\mathbf{z}_n = (z_{n1}, \dots, z_{nK})$ which tell the component for observation \mathbf{x}_n
- In detail z_n is a vector with exactly one element equal to 1 and other elements equal to 0. z_{nk} = 1 means that the observation x_n belongs to component k.

$$\mathbf{z}_n = (0, \dots, 0, \underbrace{1}_{k^{th} \text{ elem.}}, 0, \dots, 0)^T$$

GMMs, latent variable representation (2/2)

• Define

$$p(z_{nk}=1)=\pi_k$$
 and $p(\mathbf{x}_n|z_{nk}=1)=N(\mathbf{x}_n|\mu_k,\Sigma_k),$ or equivalently

$$p(\mathbf{z}_n) = \prod_{k=1}^{K} \pi_k^{z_{nk}}$$
 and $p(\mathbf{x}_n | \mathbf{z}_n) = \prod_{k=1}^{K} N(\mathbf{x}_n | \mu_k, \Sigma_k)^{z_{nk}}$

Then

$$p(\mathbf{x}_n) = \sum_{\mathbf{z}_n} p(\mathbf{z}_n) p(\mathbf{x}_n | \mathbf{z}_n) = \sum_k \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)$$

 $\rightarrow \mathbf{x}_n$ has marginally the Gaussian mixture model distribution.

 Posterior probability p(z_{nk} = 1|x_n) that observation x_n was generated by component k

$$\begin{split} \gamma(z_{nk}) &\equiv p(z_{nk} = 1 | \mathbf{x}_n) = \frac{p(z_{nk} = 1)p(\mathbf{x}_n | z_{nk} = 1)}{\sum_{j=1}^{K} p(z_{nj} = 1)p(\mathbf{x}_n | z_{nj} = 1)} \\ &= \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(\mathbf{x}_n | \mu_j, \Sigma_j)} \end{split}$$

 γ(z_{nk}) can be viewed as the responsibility that component k takes
 for explaining the observation x_n

GMM: responsibilities (2/2)

- (left) samples from a joint distribution p(z)p(x|z), showing both cluster labels z and observations x (complete data)
- (center) samples from the marginal distribution $p(\mathbf{x})$ (incomplete data)
- (right) responsibilities of the data points, computed using *known* parameters $\pi = (\pi_1, ..., \pi_K)$, $\mu = \mu_1, ..., \mu_K$, $\Sigma = (\Sigma_1, ..., \Sigma_K)$.
- Problem: in practice π , μ , and Σ are usually *unknown*.

 Let X denote the observed data, and θ model parameters. The goal in maximum likelihood is to find θ:

$$\widehat{\theta} = \arg\max_{\theta} \left\{ \log p(X|\theta) \right\}$$

• If model contains latent variables Z, the log-likelihood is given by

$$\log p(X| heta) = \log \left\{ \sum_Z p(X, Z| heta)
ight\}$$
 ,

which may be difficult to maximize analytically

• Possible solutions: 1) numerical optimization, 2) the EM algorithm (expectation-maximization)

Idea of the EM algorithm (2/2)

- X: observed data, Z: unobserved latent variables
- {X, Z}: complete data, X: incomplete data
- In EM algorithm, we assume that the complete data log-likelihood:

$$\log p(X, Z|\theta)$$

is easy to maximize.

- Problem: Z is not observed
- Solution: maximize

$$Q(\theta, \theta_0) \equiv E_{Z|X, \theta_0} \left[\log p(X, Z|\theta) \right]$$
$$= \sum_{Z} p(Z|X, \theta_0) \log p(X, Z|\theta)$$

where $p(Z|X, \theta_0)$ is the posterior distribution of the latent variables computed using the current parameter estimate θ_0

Illustration of the EM algorithm for GMMs

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

February, 2019

11 / 20

EM algorithm in detail

Goal: maximize log $p(X|\theta)$ w.r.t. θ

• Initialize θ_0

2 E-step Evaluate $p(Z|X, \theta_0)$, and then compute

$$Q(\theta, \theta_0) = E_{Z|X, \theta_0} \left[\log p(X, Z|\theta) \right] = \sum_{Z} p(Z|X, \theta_0) \log p(X, Z|\theta)$$

M-step Evaluate θ^{new} using

$$\theta^{new} = \arg \max_{\theta} Q(\theta, \theta_0).$$

Set $\theta_0 \leftarrow \theta^{new}$

Repeat E and M steps until convergence

Figure: 11.16 in Murphy (2012)

- $Q(\theta, \theta_0)$ is a lower bound of the log-likelihood log $p(x|\theta)$ (Bishop, Ch. 9.4)
- EM iterates between 1) updating the lower bound (E-step), 2) maximizing the lower bound (M-step).

Pekka Marttinen (Aalto University)

- In general, Z does not have to be discrete, just replace the summation in Q(θ, θ₀) by integration.
- EM-algorithm can be used to compute the MAP (maximum a posteriori) estimate by maximizing in the M-step Q(θ, θ₀) + log p(θ).
- In general, EM-algorithm is applicable when the observed data X can be augmented into complete data {X, Z} such that log p(X, Z|θ) is easy to maximize; Z does not have to be latent variables but can represent, for example, unobserved values of missing or censored observations.

• Consider N independent observations $\mathbf{x} = (x_1, \dots, x_N)$ from a two-component mixture of univariate Gaussians

$$p(x_n|\theta) = \frac{1}{2}N(x_n|0,1) + \frac{1}{2}N(x_n|\theta,1).$$
(1)

- One unknown parameter, θ , the mean of the second component.
- Goal: estimate

$$\widehat{ heta} = rg\max_{ heta} \left\{ \log p(\mathbf{x}| heta)
ight\}.$$

simple_example.pdf and simple_em.m

EM algorithm for GMMs

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}|\mu_k, \Sigma_k)$$

- Initialize parameter μ_k, Σ_k and mizing coefficients π_k. Repeat until convergence:
- **2** E-step: Evaluate the responsibilities using current parameter values

$$\gamma(\mathbf{z}_{nk}) = \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_j)}$$

In M-step: Re-estimate the parameters using the current responsibilities

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k^{new}) (\mathbf{x}_n - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N}$$

- In the **M-step** the formulas for μ_k^{new} and Σ_k^{new} are obtained by differentiating the expected complete data log-likelihood $Q(\theta, \theta_0)$ with respect to the particular parameters, and setting the derivatives to zero.
- The formula for π_k^{new} can be derived by maximizing $Q(\theta, \theta_0)$ under the constraint $\sum_{k=1}^{K} \pi_k = 1$. This can be done using the Lagrange multipliers.

EM for GMM, caveats

- EM converges to a local optimum. In fact, the ML estimation for GMMs is not well-defined due to **singularities**: if $\sigma_k \rightarrow 0$ for components k with a single data point, likelihood goes to infinity (fig). Remedy: prior on σ_k .
- **Label-switching**: non-identifiability due to the fact that cluster labels can be switched and likelihood remains the same.
- In practice it is recommended to initialize the EM for the GMM by k-means.

GMM vs. k-means

• "Why use GMMs and not just k-means?"

- Olusters can be of different sizes and shapes
- Probabilistic assignment of data items to clusters
- Possibility to include prior knowledge (structure of the model/prior distributions on the parameters)

Pekka Marttinen (Aalto University)

- Definition of the Gaussian mixture model
- Representing the Gaussian mixture model using discrete latent variables, which specify the components (or clusters) of the observations
- ML-estimation of GMMs can be done using numerical optimization or the EM algorithm.
- The main idea of the EM algorithm is to maximize the expectation of the complete data log-likelihood, where the expectation is computed over the current posterior distribution of the latent variables.