
Machine Learning: Advanced Probabilistic Methods (2015), P.Marttinen
[The example is modi�ed from lecture slides for the course "Laskentaintensiiviset
tilastolliset menetelmät (Computational statistics)" by Petri Koistinen]
Suppose that we have N independent observations x = (x1; : : : ; xN ) from a

two-component mixture of univariate Gaussian distributions

p(xnj�) =
1

2
N(xnj0; 1) +

1

2
N(xnj�; 1): (1)

This means that with probability 1/2 the observation xn is generated from the
�rst componentN(xnj0; 1); and with probability 1/2 from the second component
N(xnj�; 1). The model (1) has one unknown parameter, �, representing the
mean of the second component, and we would like to estimate it using maximum
likelihood b� = argmax

�
flog p(xj�)g .

We do this by the EM-algorithm (although direct numerical optimization would
also be straightforward for this simple model).
First we formulate the model using the latent variable representation,

and introduce variables z =(z1; : : : ; zN ) which explicitly specify the component
responsible for generating observation xn. In detail:

zn = (zn1; zn2)
T =

�
(1; 0)T ; (xn is from N(xnj0; 1))
(0; 1)T ; (xn is from N(xnj�; 1))

:

When we de�ne the distributions for the latent variable model as follows

p(zn1 = 1) = p(zn2 = 1) = 0:5

and

p(xnjzn; �) =
�
N(xnj0; 1); if zn1 = 1
N(xnj�; 1); if zn2 = 1

it is easy to see that the marginal distribution of xn obtained by summing over
the latent variables

p(xnj�) =
X
zn

p(xnjzn; �)p(zn)

is equal to the original distribution (1).
In the EM-algorithm we will maximize the expectation of the log-likelihood

of the complete data (x; z):

log p(x; zj�) = log
(

NY
n=1

p(xn; znj�)
)
=

NX
n=1

log p(xn; znj�)

=
NX
n=1

log [0:5�N(xnj0; 1)zn1 �N(xnj�; 1)zn2 ]

=
NX
n=1

fzn1 log [N(xnj0; 1)] + zn2 log [N(xnj�; 1)]g+ const (2)
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E-step 10: Compute the posterior distribution of the latent variables, given the
current estimate �0 of �:

p(zn1 = 1jxn; �0) / p(zn1 = 1)p(xnjzn; �0)
= 0:5�N(xnj0; 1) (3)

p(zn2 = 1jxn; �0) / p(zn2 = 1)p(xnjzn; �0)
= 0:5�N(xnj�0; 1) (4)

By normalizing (3) and (4) we get

(zn2) � p(zn2 = 1jxn; �0) =
N(xnj�0; 1)

N(xnj0; 1) +N(xnj�0; 1)
. (5)

E-step 20: Evaluate the expectation of the complete data log-likelihood (2)
over the posterior distribution of the latent variables (5):

Q(�; �0) = Ezjx;�0 [log p(x; zj�)]

=

NX
n=1

fE[zn1] log [N(xnj0; 1)] + E[zn2] log [N(xnj�; 1)]g

=
NX
n=1

f[1� (zn2)] log [N(xnj0; 1)] + (zn2) log [N(xnj�; 1)]g : (6)

Note that in (6) we�ve discarded the term not dependent on � in equation (2).
As a matter of fact, the �rst term in each sum could also be discarded, but we
retain it here for clarity.
M-step: Maximize Q(�; �0) with respect to �. To di¤erentiate Q(�; �0); we �rst
note the following result, which can be veri�ed by straightforward computation

d

d�
N(xnj�; 1) = N(xnj�; 1)(xn � �):

With this result at hand, we can write

d

d�
Q(�; �0) =

d

d�

NX
n=1

f[1� (zn2)] log [N(xnj0; 1)] + (zn2) log [N(xnj�; 1)]g

=
NX
n=1

(zn2)

N(xnj�; 1)
N(xnj�; 1)(xn � �) =

NX
n=1

(zn2)(xn � �):

Setting d
d�Q(�; �0) = 0; we get

� =

PN
n=1 (zn2)xnPN
n=1 (zn2)

=
1

N2

NX
n=1

(zn2)xn; (7)
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where we have de�ned N2 =
PN

n=1 (zn2); which can be interpreted as the
e¤ective number of observations assigned to component 2. Equation (7) has
an intuitive interpretation: the mean of component (cluster) 2 is obtained as
a weighted average of all points in the data set, and the weight of data point
xn is equal to the posterior probability (or responsibility) (zn2) that the 2nd
component was responsible for generating xn.
Code to run the EM-algorithm: simple_em.m
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