Advanced probabilistic methods Lecture 4: Sparse Bayesian linear models

Pekka Marttinen

Aalto University

February, 2019

Pekka Marttinen (Aalto University)

• Bayesian Linear Parameter Models (LPMs)

- Posterior computation (given fixed hyperparameters)
- Determining hyperparameters
- Example using radial basis functions
- Logistic regression for classification
 - Laplace approximation
- Barber, Ch. 18

Pekka Marttinen (Aalto University)

¹These slides build upon the book *Bayesian Reasoning and Machine Learning* and the associated teaching materials. The book and the demos can be downloaded from *www.cs.ucl.ac.uk/staff/D.Barber/brml.*

Example: genetic association studies

- Analysis of ~ 1,000,000 genetic polymorphisms in ~ 50,000 genomic regions (Peltola et al., 2012, *PLoS ONE*).
- Spike-and-slab prior on regression weights

• Data
$$\mathcal{D} = \{(x_i, y_i), i = 1, ..., N\}$$

- x_i: the input
- *y_i*: the output
- Model:

$$y = \underbrace{f(\mathbf{w}, \mathbf{x})}_{\text{clean output}} + \underbrace{\eta}_{\text{noise}}, \quad \eta \sim N(0, \beta^{-1})$$

• In the simplest case

$$f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
$$= w_1 x_1 + \ldots + w_D x_D$$

• The parameters w_i are also called the weights

- A prior distribution $p(\mathbf{w}|\alpha)$ is placed on the weights \mathbf{w} .
- The posterior distribution $p(\mathbf{w}|\mathcal{D}, \Gamma)$ can be computed, and reflects the uncertainty of the parameters.

• A Gaussian prior distribution may placed on w:

$$p(\mathbf{w}|\alpha) = N(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
$$= \prod_{i=1}^{D} N(w_i|\mathbf{0}, \alpha^{-1}) = \left(\frac{\alpha}{2\pi}\right)^{\frac{D}{2}} e^{-\frac{\alpha}{2}\sum_i w_i^2}$$

Posterior

$$\log p(\mathbf{w}|\Gamma, \mathcal{D}) = -\frac{\beta}{2} \sum_{i=1}^{N} \left[y_i - \mathbf{w}^T \mathbf{x}_i \right]^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + \text{const}$$

Pekka Marttinen (Aalto University)

- *α*: precision of the regression weights
 - determines the amount of regularization
 - $\bullet~$ large precision \rightarrow small variance \rightarrow weights are close to zero
- β : *precision* of the noise
- $\Gamma = \{\alpha, \beta\}$ are called the **hyperparameters** (in the course book...)

Posterior distribution

Posterior distribution is obtained by completing the square (left as an exercise):

$$p(\mathbf{w}|\Gamma, \mathcal{D}) = N(\mathbf{w}|\mathbf{m}, S)$$

where

$$S = \left(\alpha I + \beta \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}, \qquad \mathbf{m} = \beta S \sum_{i=1}^{N} y_{i} \mathbf{x}_{i}$$

Mean prediction

$$\widetilde{y} = \int \mathbf{w}^T \mathbf{x} imes p(\mathbf{w} | \Gamma, \mathcal{D}) d\mathbf{w} = \mathbf{m}^T \mathbf{x}$$

- Setup: simulate $y = \mathbf{w}_{true}^T \mathbf{x} + \epsilon$, where $\epsilon \sim N(0, \beta^{-1})$ and $\beta = 1$
- The goal is to investigate how hyperparameter α affects the posterior distribution of the parameters w

Example, impact of hyperparameters (2/3)

• Too large α , $Var(y - \widetilde{y}) = 1.54$ (Original Var(y) = 1.75)

• Too small α , $Var(y - \tilde{y}) = 2.48$

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

February, 2019 10 / 31

Example, impact of hyperparameters (3/3)

- About good α , $Var(y \tilde{y}) = 1.46$
- A compromise between bias and variance

• Other sparse priors (e.g., Laplace, horse-shoe, spike-and-slab):

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

February, 2019 11 / 31

Non-linear transformation of the inputs

- Select $f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$
- $\phi(\mathbf{x})$ are the basis functions
- Example
 - weights drawn from $N(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$; β is the noise precision.
 - $\mathbf{w} = (-0.7, 1.1, -0.8, -1.1, -0.8, -0.6, -0.6, 0.2, -0.2, 0.6, -0.9)$ for basis functions ordered from left to right (left panel)

Pekka Marttinen (Aalto University)

February, 2019 12 / 31

Importance of learning hyperparameters

- (a): raw data and 15 radial basis functions $\phi_i(x) = \exp\left(-0.5(x-c_i)^2/\lambda^2\right)$ with $\lambda = 0.03^2$ and c_i spread evenly over the input space
- (b): predictions with $\beta = 100$ and $\alpha = 1$ (severe overfitting)
- (c): predictions with ML-II fitted hyperparameter values

• The hyperparameter posterior distribution is

 $p(\Gamma | D) \propto p(D | \Gamma) p(\Gamma)$

• If $p(\Gamma) \approx const$ this is equivalent to

$$\Gamma^* = rg\max_{\Gamma} p(\mathcal{D}|\Gamma)$$
,

where the marginal likelihood

$$p(\mathcal{D}|\Gamma) = \int p(\mathcal{D}|\Gamma, \mathbf{w}) p(\mathbf{w}|\Gamma) d\mathbf{w}$$

 Selecting hyperparameters that maximize the marginal likelihood is called ML-II approach (in the book...) • In **maximum likelihood**, we select parameter values **w** that maximize the log-likelihood

$$\log p(y|\mathbf{w}, \mathbf{x}) = \sum_{i=1}^{N} \log N(y_i | \mathbf{w}^T \phi(\mathbf{x}_i), \beta^{-1})$$
$$\widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \{ \log p(y|\mathbf{w}, \mathbf{x}) \} \quad (\text{does not depend on } \beta)$$

 In ML-II, we select hyperparameter values α and β that maximize the (log-)marginal likelihood (parameters w integrated out)

$$\begin{split} p(y|\Gamma, \mathbf{x}) &= \int p(y|\Gamma, \mathbf{w}, \mathbf{x}) p(\mathbf{w}|\Gamma) d\mathbf{w} \\ \Gamma^* &= \arg\max_{\Gamma} \{\log p(y|\Gamma, x)\} \end{split}$$

- EM-algorithm
- using the gradient
- compute log-marginal likelihood over a grid of values and choose the best value
- use some standard optimization routine (e.g. *fminunc*)

• Set the hyperparameters Γ to the value that minimizes the prediction error in the validation data

$$\{\mathcal{X}_{val}, \mathcal{Y}_{val}\} = \left\{ (\mathbf{x}_{j}^{val}, y_{j}^{val}), j = 1, \dots, M \right\}.$$

• Mean squared error (MSE)

$$\mathsf{MSE}(\Gamma) = rac{1}{M} \sum_{j=1}^{M} (y_j^{\mathit{val}} - \widetilde{y}_j^{\mathit{val}})^2$$
,

where

$$\widetilde{y}_{j}^{\textit{val}} = \mathbf{m}^{\mathsf{T}} \phi(\mathbf{x}_{j}^{\textit{val}}), \qquad \mathbf{m} = \mathsf{E}(\mathbf{w} | \Gamma, \mathcal{X}_{\textit{train}}, \mathcal{Y}_{\textit{train}})$$

• Or by maximizing the validation data marginal likelihood

$$p(\mathcal{Y}_{\mathsf{val}}|\Gamma, \mathcal{D}_{\mathsf{train}}, \mathcal{X}_{\mathsf{val}}) = \int_{\mathbf{w}} p(\mathcal{Y}_{\mathsf{val}}|\mathbf{w}, \mathcal{X}_{\mathsf{val}}, \Gamma) p(\mathbf{w}|\Gamma, \mathcal{X}_{\mathsf{train}}, \mathcal{Y}_{\mathsf{train}}) d\mathbf{w}$$

• Possible extension: cross-validation

Learning radial basis function width (1/2)

A set of 10 evenly spaced radial basis functions is used φ_i(x) = exp (-0.5(x - c_i)²/λ²)
Γ = (α, β) optimized for different width parameters λ

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

February, 2019 19 / 31

Learning radial basis function width (2/2)

• The log marginal likelihood

$$\log p(\mathcal{D}|\lambda, \alpha^*(\lambda), \beta^*(\lambda))$$

having optimized α and β using ML-II. These values depend on λ .

• The best model corresponds to $\lambda = 0.37$.

Linear parameter models for classification

- Binary classification problem: D ={(x_i, c_i), i = 1,..., N}, where the output c ∈ {0, 1}.
- Let p denote the probability that $p(c=1|\mathbf{x})$
- Logistic (linear) regression

$$\log \frac{p}{1-p} = \mathbf{w}^T \mathbf{x}$$

• Or, equivalently

$$p(c = 1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}),$$

where $\sigma(\cdot)$ is the so-called <code>logistic sigmoid</code>

$$\sigma(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$$

• When used for classification, the decision boundary is defined by $p(c = 1|\mathbf{x}) = p(c = 0|\mathbf{x}) = 0.5$. This corresponds to a hyperplane

$$\mathbf{w}^T \mathbf{x} = \mathbf{0}.$$

Classification rule

$$\mathbf{w}^T \mathbf{x} > 0 \rightarrow c = 1$$

 $\mathbf{w}^T \mathbf{x} < 0 \rightarrow c = 0$

• Note: **x** can include a constant term, **x** = (1, x₁, ..., x_D), such that the *intercept* is automatically included

$$\mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \ldots + w_D x_D$$

Logistic regression, interpretation of parameters*

$$\log\left(\frac{p}{1-p}\right) = w_0 + w_1 x$$

$$\Leftrightarrow \frac{p}{1-p} = \exp(w_0 + w_1 x)$$

- Interpretation: when x increases by one unit, the odds ^p/_{1-p} of belonging in class 1 increases by a factor equal to e^{w1}.
- If x is binary itself, $x \in \{0, 1\}$, then e^{w_1} is the **odds ratio** between classes x = 1 and x = 0.

• a common term in medical literature, e.g., X = 'smoking', C = 'cancer'.

Gaussian prior

$$p(\mathbf{w}|\alpha) = N_D(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \alpha^{\frac{D}{2}}(2\pi)^{-\frac{D}{2}}e^{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}}$$

where α is the precision.

• Given $\mathcal{D} = \{(\mathbf{x}_i, c_i), i = 1, \dots, N\}$ the posterior equals

$$p(\mathbf{w}|\alpha, \mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w}, \alpha)p(\mathbf{w}|\alpha)}{p(\mathcal{D}|\alpha)} = \frac{1}{p(\mathcal{D}|\alpha)}p(\mathbf{w}|\alpha)\prod_{i=1}^{N}p(c_{i}|\mathbf{x}_{i}, \mathbf{w})$$

(not of standard form, Laplace approximation is feasible to compute).

Laplace approximation

• Gaussian approximation at the mode

Laplace approximation to the posterior

In general,

$$p(\mathbf{w}|\alpha, \mathcal{D}) \propto \exp(-E(\mathbf{w})), \quad E(\mathbf{w}) = -\log p(\mathbf{w}|\alpha, \mathcal{D}).$$

• For logistic regression,

$$E(\mathbf{w}) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^N \log \sigma(\mathbf{w}^T \mathbf{h}_i), \quad \mathbf{h}_i \equiv (2c_i - 1)\mathbf{x}_i.$$

• approximate $E(\mathbf{w})$ by a quadratic function $\widetilde{E}(\mathbf{w})$ around the minimum $\overline{\mathbf{w}}$

$$\widetilde{E}(\mathbf{w}) = E(\overline{\mathbf{w}}) + \frac{1}{2}(\mathbf{w} - \overline{\mathbf{w}})^T H_{\overline{\mathbf{w}}}(\mathbf{w} - \overline{\mathbf{w}})$$

③ obtain a Gaussian approximation $q(\mathbf{w}|\alpha, D) \propto \exp(-\widetilde{E}(\mathbf{w}))$ to $p(\mathbf{w}|\alpha, D)$

Laplace approximation in practice

- In practice:
 - Find the minimum w of E(w) analytically (root of the derivative), or by numerical optimization, e.g. Newton's method:

$$\mathbf{w}^{new} = \mathbf{w} - \mathbf{H}_w^{-1} \nabla E$$

- When converged, compute the Hessian $H_{\overline{\mathbf{w}}}$ of $E(\mathbf{w})$ at $\overline{\mathbf{w}}$.
- The posterior approximation is

$$q(\mathbf{w}|\alpha, \mathcal{D}) = N(\mathbf{w}|\mathbf{m}, \mathbf{S}), \quad \mathbf{m} = \overline{\mathbf{w}}, \quad \mathbf{S} = \mathbf{H}_{\overline{\mathbf{w}}}^{-1}.$$

• Reminder: if $f \equiv f(x_1, \ldots, x_n)$

$$H_f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Example

- Bayesian logistic regression with RBF functions $\phi_i(\mathbf{x}) = \exp(-\lambda(\mathbf{x} \mathbf{m}_i)^2).$
- \mathbf{m}_i placed on a subset of training points, λ set to 2
- Hyperparameter α optimized as with the Bayesian linear regression by maximizing the approximated marginal likelihood ($\rightarrow \alpha = 0.45$).

Pekka Marttinen (Aalto University)

Curse of dimensionality

- In the 1-dimensional example, we used 10 radial basis functions
- $\bullet\,$ To cover 2D region with same resolution, we would need $10^2\,$ basis functions
- **Curse of dimensionality**: the number of basis functions required scales exponentially w.r.t. the dimension

- Curse of dimensionality limits the use of RBFs to low-dimensional cases
 - Possible remedy: place basis functions on observations
 - Alternatives: kernel methods, Gaussian processes
- With sparse priors, standard linear models can be used with very large *D*

•
$$y = \sum_{i=1}^{D} w_i x_i + \epsilon$$

- By placing a Gaussian prior on the parameters of linear regression, the posterior is also Gaussian.
- In classification, no closed form solution is available for logistic regression and approximations, e.g., the Laplace approximation, are needed.
- Hyperparameters can be set by maximizing the marginal likelihood (either exact or approximate).