Chapter 9

Zero-Voltage or Zero-Current Switchings

Chapter 9	Resonant Converters: Zero-Voltage and/or Zero-Current
-	Switchings

9-1 Introduction 249

- 9-2 Classification of Resonant Converters 252
- 9-3 Basic Resonant Circuit Concepts 253
- 9-4 Load-Resonant Converters 258
- 9-5 Resonant-Switch Converters 273
- 9-6 Zero-Voltage-Switching, Clamped-Voltage Topologies 280
- 9-7 Resonant-dc-Link Inverters with Zero-Voltage Switchings 287
- 9-8 High-Frequency-Link Integral-Half-Cycle Converters 289

Summary 291 Problems 291 References 295

converters for soft switching

249

Why resonant converters

- Hard switching is based on on/off
 - Switching losses
 - Electromagnetic Interference (EMI) because of high du/dt and di/dt
- SMPS size decreses with increasing switching frequency
 - Target is to use as high f_s as possible
 - Switching losses are reduced if voltage and/or current are zero during switching

One Inverter Leg

Figure 9-1 One inverter leg.

• The output current can be positive or negative

Hard Switching Waveforms

• The output current can be positive or negative

Change over

- T-conducts I_o and it is turned off
 - Voltage over it increases and when it is $U_{\rm d}$ diode D+ starts to conduct
 - Because of parasitic inductances voltage exceeds U_{d}
- D+ conducts I_o and T- is turned on
 - Current increares and exceeds I_o because of diode reverse recovery current
 - After recovery of the diode voltage over T- drops to nearly zero

Turn-on and Turn-off Snubbers

Figure 9-3 Dissipative snubbers: (a) snubber circuits; (b) switching loci with snubbers.

• Turn-off snubbers are used, turn-on very seldom

Switching Trajectories

Comparison of Hard versus soft switching

Switching losses

- Voltage and current stresses of the switches can be reduced by snubber circuits (Finnish kytkentäsuojapiiri)
 - Losses are transferred from the switch to the R of the RC-snubber
 - C discharges through R when switch is turned on
 - Total losses do not necessarily decrease, requires careful dimensioning
- In resonant circuit switching losses in theory can be even zero

Basics of resonant circuits

Series resonance Lossless parallel resonant circuit

Undamped Series-Resonant Circuit

Figure 9-5 Undamped series-resonant circuit; i_L and v_c are normalized: (a) circuit; (b) waveforms with $I_{L0} = 0.5$, $V_{c0} = 0.75$.

The waveforms shown include initial conditions

Series resonance

Equations

$$L_r \frac{di_L}{dt} + u_C = U_d \qquad C_r \frac{du_C}{dt} = i_L$$

• Solution from time t = 0

 $i_L = I_{L0} \cos \omega_0 t + \frac{V_d - V_{C0}}{Z_0} \sin \omega_0 t \qquad v_C = V_d - (V_d - V_{C0}) \cos \omega_0 t + Z_0 I_{L0} \sin \omega_0 t$

Resonance frequency and impedance

$$\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{L_r C_r}} \qquad \qquad Z_0 = \sqrt{\frac{L_r}{C_r}}$$

• Often per unit values are used

 $V_{\text{base}} = V_{\text{d}}$ $I_{\text{base}} = \frac{V_{\text{d}}}{Z_0}$

Series-Resonant Circuit with Capacitor-Parallel Load

Figure 9-6 Series-resonant circuit with capacitor-parallel load (i_L and v_c are normalized): (a) circuit; (b) $V_{c0} = 0$, $I_{L0} = I_o = 0.5$.

The waveforms shown include initial conditions

Series-Resonant Circuit with Capacitor-Parallel Load

- Equations
- Derivation $v_{C} = V_{d} - L_{r} \frac{di_{L}}{dt}$ $i_{C} = C_{r} \frac{dv_{C}}{dt} = -L_{r}C_{r} \frac{d^{2}i_{L}}{dt^{2}}$
- And using $\frac{d^2 i_L}{dt^2} + \omega_0^2 i_L = \omega_0^2 I_0$
- Solution is

$$i_L = I_0 + (I_{L0} - I_0) \cos \omega_0 t + \frac{V_d - V_{C0}}{Z_0} \sin \omega_0 t$$
 (a)

$$v_C = V_d - \{V_d - V_{C0}\} \cos \omega_0 t + Z_0 \{I_{L0} - I_0\} \sin \omega_0 t$$

Impedance of a Series-Resonant Circuit

Figure 9-7 Frequency characteristics of a series-resonant circuit.

Undamped Parallel-Resonant Circuit

$$i_L + C_r \frac{dv_C}{dt} = I_d$$
 $v_C = L_r \frac{di_L}{dt}$

$$i_{L} = I_{d} + (I_{L0} - I_{d}) \cos \omega_{0} t + \frac{V_{C0}}{Z_{0}} \sin \omega_{0} t \qquad \qquad \omega_{0} = 2 \check{s} f_{0} = \frac{1}{\sqrt{L_{r} C_{r}}}$$
$$v_{C} = V_{C0} \cos \omega_{0} t + Z_{0} (I_{d} - I_{L0}) \sin \omega_{0} t \qquad \qquad \qquad Z_{0} = \sqrt{\frac{L_{r}}{C_{r}}}$$

Figure 9-8 Undamped parallel-resonant circuit.

Impedance of a Parallel-Resonant Circuit

- The impedance is inductive below the resonant frequency
- At resonance frequency imaginary part of admittance is zero, i.e. impedance is infinite

Load resonant converters

- Series Load Resonant (SLR) Converter
 - Discontinuous area $\omega_{\rm s} < \omega_0/2$
 - Continuous area $\omega_0/2 < \omega_s < \omega_0$
 - Continuous area $\omega_s > \omega_0$
 - Steady state characteristics
 - Control of SLR
- Parallel Load Resonant (PLR) Converter
 - Discontinuous area
 - Continuous area $\omega_{\rm s} < \omega_0$
 - Continuous area $\omega_s > \omega_0$
 - Steady state characteristics
- Hybrid-resonant converter

Load resonant converters

 Converter has LC-resonant circuit and load current goes through it

– Both series and parallel resonance

- Voltages and current in the resonant circuit are introducing zero voltage or current switching
- Load power is controlled by adjusting switching frequency in relation to resonance frequency
 - Impedance of the resonant circuit changes

Series Load Resonant (SLR) Converter

Figure 9-10 SLR dc-dc converter: (a) half-bridge; (b) equivalent circuit.

• The transformer is ignored in this equivalent circuit

Principle

- Full-bridge and transformer connection are also possible
- Current of the resonant circuit is rectified in the diode bridge
- Output voltage U_{o} is assumed to be constant and its polarity depends on the sign of current $i_{\rm L}$ of the resonant circuit

Polarity of voltages

• Positive current

$$T_+$$
 conducts $u_{AB} = \frac{U_d}{2}$ $u_{AB} = \frac{U_d}{2} - U_o$

$$D_{-}$$
 conducts $u_{AB} = -\frac{U_d}{2}$ $u_{AB} = -\frac{U_d}{2} - U_o$

• Negative current T_{-} conducts $u_{AB} = -\frac{U_d}{2}$ $\dot{u_{AB}} = -\frac{U_d}{2} + U_o$

$$D_+$$
 conducts $u_{AB} = \frac{U_d}{2}$ $u_{AB} = \frac{U_d}{2} + U_o$

SLR Waveforms, DCM, $\omega_s < \omega_0/2$

Figure 9-11 SLR dc-dc converter; discontinuous-conduction mode with $\omega_s < \frac{1}{2}\omega_0$.

Operation

- Current of T+ is zero
 - Turned on at $\omega_0 t_0$
- At $\omega_0 t_1$ current of resonant circuit turns and D+ conducts, because T- is not turned on yet ($\omega_s < \omega_0/2$)
- After 180°, at \omega_0 t_2 current goes to zero
 Because of symmetry, capacitor voltage is 2U_o
- Because $2U_o < U_d/2 + U_o$ inductor current is not increasing but it is discontinuous
- At $\omega_0 t_3$ control is given to T- and negative half cycle starts

Remarks

- Switches are turnig of naturally as current goes to zero
 - Even thyristors could be used
- Switches are turning on when current is zero but voltage not
- Peak value of current in the resonant circuit is much higher than the average of output current

SLR Waveforms, CCM, $\omega_0/2 < \omega_s < \omega_0$

Figure 9-12 SLR dc-dc converter; continuous-conduction mode with $\frac{1}{2}\omega_0 < \omega_s < \omega_0$.

Operation

- Switch T+ current $\neq 0$
 - It is turned on at $\omega_0 t_0$, voltage is U_d
 - Switch conducts less than 180°
 - At $\omega_0 t_1$ current *i* becomes negative and D+ conducts
- T- is turned on at $\omega_0 t_2$
 - This is earlier than in the previous DCM operating area $\omega_{\rm s} < \omega_{\rm 0}/2$
 - D+ conducts less than 180°

Devices

- Turning on
 - Current and voltage are not zero => losses
- Turning off
 - Current and voltage are zero
 - Even thyristors could be used
- Reverse recovery current of the diodes must be small

SLR Waveforms, CCM, $\omega_s > \omega_0$

Figure 9-13 SLR dc-dc converter; continuous-conduction mode with $\omega_s > \omega_0$.

Operation

- Current of T+ is zero and it is turned on at $\omega_0 t_0$
- T+ is turned on at $\omega_0 t_1$
 - This is before the current has become zero
 - D- starts to conduct
 - Voltage over the LC-circuits is high and diode current goes rapidly to zero
- T- is turned on immeadiately as D- starts to conduct
 - T- can conduct as the polarity of the current changes

Switches

- Turn-on at zero current and voltage
- Turning off takes place close to the peak of the resonant current

– Turn-off losses

- Before the switch starts to conduct the antiparall diode has conducted
 - Voltage over switch is ≈ 0
 - It is possible to use lossless snubbers, i.e. only snubber capacitor in the circuit as there is no discharge current when the switch is turned on

Lossless Snubbers in SLR Converters

Figure 9-14 Lossless snubbers in an SLR converter at $\omega_s > \omega_0$.

• The operating frequency is above the resonance frequency

SLR Converter Characteristics

 Output Current as a function of operating frequency for various values of the output voltage Chapter 9 Resonant Converters

SLR Converter Control

- The operating frequency is varied to regulate the output voltage
- In full-bridge converters frequency can also be constant and voltage is controlled phase-shifting leg voltages, (D = 50%)

Figure 9-16 Control of SLR dc-dc converter.

Parallel Load Resonant (PLR) Converter

Figure 9-17 PLR dc-dc converter: (a) half-bridge; (b) equivalent circuit.

• The transformer is ignored in this equivalent circuit

Principle

- Voltage of C_r is recitified and filtered
- Output current is assumed to be constant during switching cycle
- Voltage over the resonant circuit

$$u_{AB} = \frac{U_d}{2} \qquad T_+ \text{ or } D_+ \text{ conducts}$$

$$u_{AB} = -\frac{U_d}{2} \qquad T_- \text{ or } D_- \text{ conducts}$$
Operation depends on i_1 and U_c

PLR Waveforms, DCM

Figure 9-18 PLR dc-dc converter in a discontinuous mode.

• The current is in a discontinuous conduction mode
Operation (1/2)

- T+ is turned on at $\omega_0 t_0$, $i_L = u_C = 0$
- Constant output current flows through the diode bridge and keeps capacitor voltage as zero
 - After $\omega_0 t_1$ current difference charges resonant capacitor
- *LC*-circuit current $i_{\rm L}$ goes to zero at $\omega_0 t_2$ and becomes negative
 - D+ conducts as T- is not turned on

Operation (2/2)

- Gate of T+:n is removed before $\omega_0 t_3$:a
 - $-i_{\rm L}$ remains zero
 - Cr discharges in time $\omega_0(t_3 t_4)$ with I_o
 - After this we are in the beginning
- Output voltage average is adjusted with time $t_5 t_4$
- No turn-on or turn-off losses in diodes

PLR Waveforms, CCM, $\omega_s < \omega_0$

Figure 9-19 PLR dc-dc converter in a continuous mode with $\omega_s < \omega_0$.

• The operating frequency is below the resonance frequency

PLR Converter Waveforms, CCM, $\omega_s > \omega_0$

Figure 9-20 PLR dc-dc converter in a continuous mode with $\omega_s > \omega_0$.

• The operating frequency is above the resonance frequency

PLR, CCM

- No trun-on losses
- Turn-off with current
 - Losses
 - Losses can be reduced with lossless snubber as in SLR

PLR Converter Characteristics

Figure 9-21 Steady-state characteristics of a PLR dc-dc converter. All quantities are normalized.

 Output voltage as a function of operating frequency for various values of the output current Chapter 9 Resonant Converters

PLR Characteristics

- DCM
 - Output voltage doesn't depend on current
 - Many parallel outputs are possible
 - Output voltage depends linearly from switching frequency
- Output voltage can be higher than input
- Maximum current and voltage much higher than $I_{\rm o}$ and $U_{\rm d}$

PLR versus SLR

- PLR
 - Acts as voltage sourc
 - Fits for multiple output SMPS
 - No built in overload protection
 - Both step up and step down operation

Hybrid-Resonant DC-DC Converter

Figure 9-22 Hybrid-resonant dc-dc converter.

Combination of series and parallel resonance

Figure 9-23 Basic circuit for current-source, parallel-resonant converter for induction heating: (a) basic circuit; (b) phasor diagram at $\omega_s = \omega_0$; (c) phasor diagram at $\omega_s > \omega_0$.

• Basic circuit to illustrate the operating principle at the fundamental frequency

Parallel-Resonant Current-Source Converter

 Using thyristors; for induction heating

Figure 9-24 Current-source, parallel-resonant inverter for induction heating: (a) circuit; (b) waveforms.

Figure 9-25 Class E converter (optimum mode, D = 0.5).

Class-E Converters

Non-Optimum mode

Figure 9-26 Class E converter (nonoptimum mode).

Resonant Switch Converters

Classifications

Figure 9-27 Resonant-switch converters: (a) ZCS dc-dc converter (step-down); (b) ZVS dc-dc converter (step-down); (c) ZVS-CV dc-dc converter (step-down).

Resonant Switch Converters

- Similar ideas was used before gate turnoff devices
 - Thyristors were used in dc-dc converters and dc-ac inverters => additional LC circuit used to turn-off conduction thyristor (e.g. McMurray-circuit)
- Nowadays also in power supplies
- Transformer parasitic inductances and other parasitics can be used in LC-circuits

Classification

- ZCS, zero-current-switching
 - Switch turns on and off without current
- ZVS, zero-voltage-switching
 - Switch turns on and off without voltage
- ZVS-CV, zero-voltage-switching, clamped voltage
 - As before but at least two switches
 - Voltage over switch is limited to the supply voltage

ZCS Resonant-Switch Converter

Figure 9-28 ZCS resonant-switch dc-dc converter.

Operation principle

- Current I_{o} goes through the diode
 - $-C_{\rm r}$ is charged to the supply voltage $U_{\rm d}$
- Switch is turned on
 - Diode D conducts untill at t_1 current is equal to the load current
- L_rC_r is a resonant circuit discharging C_r
 At t₂ current goes to zero and switch turns off
- Output current I_o charges C_r to the supply voltage
 - At t_3 diode starts to conduct

ZCS Resonant-Switch Converter

Figure 9-29 v_{oi} waveform in a ZCS resonant-switch dc-dc converter.

• Waveforms; voltage is regulated by varying the switching frequency, time interval $t_4 - t_3$

Properties

- Resonant frequency in MHz area resonanssitaajuus valitaan MHz-alueelle
- Switch turns on and off without current – At turn-off switch voltage is $U_d =>$ turn-off losses
- Output current $I_o < V_o/Z_0, Z_0 = \sqrt{L_r/C_r}$
- When output current increases output voltage decreases
 - Switching frequency is increased
- Antiparallel connected diode
 - At low load resonant circuit energy can be supplied back to the supply

Electromagnetic Interference, EMI

- Losses and EMI due to the converter are reduced when soft switching is used
- Peak current of switch
 - High when compared to the output current
 - Conduction losses are higher than in hard switching
 - EMI increases???

ZCS Resonant-Switch Converter

• A practical circuit

•Capacitor is in parallel with the diode

Figure 9-30 ZCS resonant-switch dc-dc converter; alternate configuration.

Operation

- When switch is turned on its current increases linearly untill i_T = I_o
 Diode turns off
- Current $i_{T} I_{o}$ charges capacitor after t_{1}
- At t₂ current i_T goes to zero and switch turns off
- Capacitor is discharged with output current

ZVS Resonant-Switch Converter

- Capacitor is connected in paralle with the switch => limits voltage changes
- Serious limitations

Figure 9-31 ZVS resonant-switch dc-dc converter.

Chapter 9 Resonant Converters

V,

Operation

- Switch is turned off when it conducts *I*_o
 Capacitor *C*_r charges with constant current
- At $t_1 u_C = U_d$ - Diode D conducts, $C_r L_r$ resonant circuit
- At $t_2 C_r$ voltage becomes zero
 - D_r starts to conduct, gate control is given to switch and current i_L increases linearly
 - $-At_2$ current is positive and it goes through the switch
- At $t_3 i_L$ is equal to I_o and D stops to conduct

ZVS Resonant-Switch Converter Output voltage

Figure 9-32 The v_{oi} waveform in a ZVS resonant-switch dc-dc converter.

Comparison of ZCS and ZVS

- ZCS
 - Switch maximum current $I_{o} + V_{d}/Z_{0}$
 - Output current limited $I_o < V_o/Z_0, Z_0 = \sqrt{L_r/C_r}$

- ZVS
 - Switch maximum voltage $V_d + I_o Z_0$
 - Output current must be larger than V_d/Z_0
 - High voltage switch is needed if output power variation is large

MOSFET Internal Capacitances

Figure 9-33 Switch internal capacitances.

- These capacitances affect the MOSFET switching
- ZVS is better for MOSFET
- ZCS good e.g. for IGBT's because of tail current

Zero-voltage-switching, clamped-voltage, ZVS-

• The inductor current must reverse direction during each switching cycle

ZVS-CV

- Switch turn on and off with zero voltage
 - Maximum voltage is clamped to input voltage
- L_f is small when compared to hard switching
 - Its current is both positive and negative
- T+ conduct current and it is turned off
 Voltage over it is zero because of C₊

ZVS-CV DC-DC Converter

Figure 9-35 ZVS-CV dc-dc converter; T_+ , T_- off.

Operation (1/2)

- Condensator C_{-} has discharged at t_0'
 - Inductor's current decreases linearly as D- conducts and $u_{\rm L} = -U_{\rm o}$.
 - At the same time gate control to T-
 - When current polarity changes at t_0 switch starts to conduct
- T- is turned of at t_1 with zero voltage ($u_{C_1} = 0$)
 - When C₋ is charged to U_d and C_+ has discharged, negative current flows through diode D+

Operation (2/2)

- After t₁' voltage over inductor is positive
 Its current is positive after t₂ when T+ conducts
- For ZVS capacitor is connected parallel to the switch
 - Capacitor must be discharged when switch is turned on
 - It is discharged if antiparallel diode has been conducting
 - Therefore current $i_{\rm L}$ has to have both polarities

Control of output voltage

- Constant frequency PWM can be used
 - Durations $t_0 t_0'$ and $t_1' t_1$ can be assumed short
 - Output voltage is square wave $=> U_o \approx D U_d$
- $L_{\rm f}$ must be dimensioned so that
 - Even with smallest U_d and highes load current instantaneous value of i_L is also negative

ZVS-CV Principle Applied to DC-AC Inverters

- •Even in dc-dc converter inductor current had negative values, now both polarities are equal
- Very large ripple in the output current

Figure 9-36 ZVS-CV dc-to-ac inverter: (a) half-bridge; (b) square-wave mode; (c) current-regulated mode.

Control of output voltage

 In full bridge delay between pole voltages can be adjusted

Three-Phase ZVS-CV DC-AC Inverter

Figure 9-37 Three-phase, ZVS-CV dc-to-ac inverter.

• Very large ripple in the output current

ZVS-CV with Voltage Cancellation

Commonly used

• Lm is magnetizing inductance of transformer

Figure 9-39 ZVS-CV full-bridge dc-dc converter: (a) circuit; (b) idealized switch-mode waveforms; (c) ZVS-CV waveforms.

Chapter 9 Resonant Converters

Resonant DC-Link Inverter

Figure 9-40 Resonant-dc-link inverter, basic concept: (a) basic circuit; (b) lossless $R_l = 0$; (c) losses are present.

Three-Phase Resonant DC-Link Inverter

Figure 9-41 Three-phase resonant-dc-link inverter.

• Modifications have been proposed

High-Frequency-Link Inverter

Figure 9-42 High-frequency-link integral-half-cycle inverter.

• Basic principle for selecting integral half-cycles of the high-frequency ac input

Figure 9-43 Synthesis of low-frequency ac output.

• Low-frequency ac output is synthesized by selecting integral half-cycles of the high-frequency ac input

High-Frequency-Link Inverter

Figure 9-44 High-frequency ac to low-frequency three-phase ac converter.

• Shows how to implement such an inverter