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Methods 

The results are based on density functional theory (DFT) calculations. The publicly available 

program DACAPO[1] was employed. The Kohn-Sham one-electron valence states are expanded in a 

basis of plane waves with kinetic energies up to 408eV (30 Ry). The density cutoff is 816 eV. The 

core electrons are treated with Vanderbilt non-local ultrasoft pseudopotentials.[2] The exchange-

correlation potential and energy are described employing the RPBE generalized gradient correction 

self-consistently.[1] Monkhorst-Pack meshes[3] with 1×1×1 or 6×6×1 k-grid sampling in the Brillouin 

zone are used for the clusters and 111-surfaces, respectively. The (111)-surface is modeled by a 2×2 

unit cell with a slab thickness of 4 layers where the two lower layers are fixed and the two upper 

layers are fully relaxed. The clusters are calculated in a box of 15×15×15 Å3 with periodic boundary 

conditions. All the atoms in the cluster are kept fixed with a lattice constant corresponding to the 

bulk value. Oxygen adsorption energies are calculated relative to H2O and H2 in the gas phase and 

then referred to O2 in the gas phase using the reaction energy of H2O formation from O2 and H2 from 

experiment.[4] This avoids the problems associated with a DFT treatment of the triplet state of the 

gas phase O2.
[5] For CO adsorption energies, we have included a recently proposed correction 

scheme to avoid the well known problem of over-binding and wrong site assignment for CO when 

using DFT (For CO on the cluster the correction for the same type of site on the (111)-surface is 

used.).[6,7]  
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Steady state kinetics 

For the 12-atom metal cluster an analytical solution to the micro-kinetic model can be  found as 

follows: 

(R1) CO+* � CO* 

(R2) O2+*�O2* 

(R3) O2*+* � 2O* 

(R4)  O*+CO* � CO2 + 2* 

(R5)  O2* + CO* � CO2 + O* + * 

The rate of forming CO2 is r(CO2) = r4 + r5 

Assume that the two first reactions are in equilibrium and write θO2 and θCO as functions of θO and 

θ*: 
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The rate expressions for the last 3 elementary reactions can be written as: 
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To simplify, the constants xi and yi, i=3,4,5 have been defined. 
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Looking at the total rate of forming O*, it is seen that for each R3 reaction 2 O* are formed, for each 

R4 reaction 1 O* is consumed, and for each R5 1 O* is formed. We now assume that the formation 

of O* is in steady state and thus that: 
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Viewing this as a second order equation in θO one gets: 
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Since all the constants xi and yi are positive, D is positive: 
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Since the coverages are always positive numbers, only the solution with the 'plus' is physical. We 

define the constant W as: 

WO *θθ =  

We can now calculate θ∗ using the sum-rule 
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The relations between the rate constants and the activation energies are found as follows: 

For the elementary reactions in equilibrium i.e. (R1) and (R2), the rate constants are: 
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We assume that the entropy of all surface bound species is zero. 

For the non-equilibrium reactions the activation energy of each direction is used: 
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For reaction (3), the O2 dissociation, O2*+* � 2O* one gets: 
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The change in entropy is zero for the O2 dissociation and the activation energy can be calculated 

using the BEP relation and the scaling relation. 
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For reaction (4), O*+CO* � CO2 + 2*, one gets: 
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For the reverse reaction one gets: 
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For reaction (5), O2* + CO* � CO2 + O* + * one gets: 
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For the reverse reaction one gets: 
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In Fig. S1 we show the volcano for CO oxidation on the 12 atom clusters calculated using the full 

kinetics. It can be seen to be close to the Sabatier volcano in Fig. 4. 

 

Figure S1. The analogue of Fig. 4(a) calculate using the full steady state kinetics. 
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