Computational Chemistry 2 - Chapter 1
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This course will first focus on solid and surface systems. Many of
the concepts has been introduced in the course Computational Chem 1.
Almost all calculation in this course will be done with Density
Functional Theory (DFT) or with DFT-HF hybrid methods. The higher
level methods are usually not implemented with periodic boundaries.

In chemistry, the surfaces are usually more relevant than individual
molecules since many chemical processes happen on surfaces.
Heterogeneous catalysis is a good example also all growth processes
(like ALD) happen at surfaces. Almost all inorganic materials are
solids. The periodic simulations can be used to model the solid-
liquid interphase.

Density Functional Theory (DFT)

The most important correlated method now is DFT. It is based on a
proof that the total energy depend only on the electron density p(r).
The proof is seemingly simple. The true Schrddingerin equation can be
written as E[Y] = @|G =V (r,R)IY) = @|GlY)— [d3rV(r,R)p(r), here the G
contain all terms except the interaction between the electrons and
nucleus. This term is V(r,R;) and it is called external potential. The
density is p(r) = [ d3rd3r; ... 3y (r, 1y, .., )Y, 1y, .., )

1) The external potential V (it depend only on the atomic
positions) determine uniquely the wave function and the total
energy: Y (V) - E[V] (Proof: Assume two different potentials (V
ja V', they differ more than a constant) produce the same wave
function: (G—-V(r,R))|Y)=E|Y) and (G —V'(r,R))|Y) = E'|Y); subtract
them from each other: (V(r)-=V'(r)|Y)=(E—E")|Y). Because E and E’
are constants the equation can be true on if the potentials
differ with a constant. This is in contradiction with the
assumption, so the potential will determine the wave function.)

2) The wave function determine uniquely the density, ¥ — p.
(Proof: Assume that two different wave function ¥ and ¥’ will
produce the same density p. The definition of the density is not
convenient. We use here the variational principle: E[Y]=

WIHY) < @'[HIY)Y = @Q'|H' +V =V'IY)=E"+ [d®r V() - V'()p'(r) so E<



E'+[d3r (V(r) =V'(r)p'(r). We can use the same logic starting from
H', V’and E’. This leads to equation E<E'+ [d3r V() —=V'()p(r).
if p=p’ then we will have an absurd result E+E’ < E+E’, so the
wave function will determine the density uniquely.

3) The later statement can be inverter: p — Y, so the energy
depend only on the density E(p)

Note: DFT is valid only for the ground state. It cannot be used for
exited states.

It has turned out that the E(p) is directly not very useful. Formally
we can write the total energy as

Elp] =Tlp] + Wlp] — [ d®r V(r,R)p(r)

where T is the kinetic energy of the systems and W is the electron-
electron interaction.

p(r)p(r’) ,
Tlp] = —Z(¢|Vi2|¢); Wip] = IW d*rd3r' + Exc(p)
i
In this form the T[p] and Exc(p) are unknown. For Exc(p) there are
reasonable approximations but T[p] is not well known.

This so called density-only-DFT (or orbital free DFT, OF-DFT) can be
used in some approximations but it is not very accurate. There are
now some research projects trying to improve the OF-DFT. It is
unlikely that the OF-DFT will be very accurate but it should be very
fast and it should be very useful for screening calculations.

The Kohn-Sham method
Kohn and Sham proposed (1964) a very useful DFT scheme. We can assume
that there is a non-interacting system that will produce the correct

density (and the correct density will produce the correct energy).
For a non-interaction system the Slater determinant IS the correct

wave function, Ygs = det[@1,ks, 02,ks,.. On,ks] and the density is

PI) = D s’ (N0nis(r)
n=1

This lead to Kohn-Sham equations to the orbital



ZVZ + V](s[p, ](T) S(ruRI)_ n(pns(ruRI)

[ 2m,

(KS1)
Here the Vks(r) 1is an unknown potential, r is electron positions and

R are atomic positions. It is usually written as:

Z—VZ ofa, P B [l o R) =Bl (iR,
J|r_r| = 47T€0|E—RJ| Xc n i n i Ks)

We have taken the large and known terms separately but the Vic(r) is
still unknown. Fortunately it is not very large and with good
approximations good results can be obtained. Note that Exc is not the
same as in traditional quantum chemistry (Exc=[Vxc(r)p (r)d3r)

ERFT[p] = Tlp] — Tyslpl + EX ]

Since we do not know the exact kinetic energy either. Secondly the
quantum chemical XC function is very, very complex and it is not easy
to approximate it with density functional. For example we know
exactly the exchange function (it is the HF theory).

One can write a formal equation for Exc

1 r r,r'
Exc — _jp( )Qxc(l ) d3 Td3T,
2 |[r —17|
Where oOxc(r,r') 1s so called xc-hole. It can be shown that an

integral of the xc-hole is

.[Qxc(rfrl)d3 '=-1

The asymptotic limit of the x-potential is known but c-potential is
not known
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Approximations for Vi

We need to have have the xc energy and potential, Exc, Exc=[Vxc(r)p(r)



Local density approximation (LDA): The total energy of a homogenous
electron gas can be computed very accurately. So we know the
homogenous electron gas Exc, homog (P) . Now we make a big approximation
and use that function locally at every point in space.

EEPA = [ Erchomog(p() * p(r)d3r (LDA)

The xc is not a local function but the LDA still contain correlation.
In fact LDA is a surprisingly good approximation. It will give good
bonding geometries and dipole moments. Even the energies are
reasonable.

The exchange is easy

3 /3\1/3
P4 = —2(2)7 [p(r)* B3Py, kp = (3n2p)13

the correlation is more complex and it is traditionally fitted to
Quantum Monte Carlo calculations. There is also very simple Chachiyo

correlation functional (a=1ln(2)-1)/2n?, b=20.456325..) which works
well.
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Picture form: https://en.wikipedia.org/wiki/Local-density_approximation

The next level is to include the gradient of the density to the
model. We also know that the xc potential

GGA for Vixc

The LDA can be model can be improved including the gradient of the
density

Eic® = Exd + [ Exc(p(r),Vp) * p(r)d°r (GGR)

This looks simple but is has been hard to find good approximation.

One of the simplest one that works is due to Axel Becke (1986),
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EJ?GA = fEx,homog(p) * fx(f)d3r: § =

Where a and b are parameters, a=0.2351 and b=0.24308. 1988 Becke

proposed an improvement to this equation
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Now a=0.2743 and b=9%9a/4n. This is very much used approximation for x-
energy. The correlation have also several models. One very used model
is PBE (Perdew-Burke-Ernzerhof)

Vol
£G4 — fp(r) < f.(OdPr, t= T

-1

2 2a t?+ At* 2a 2q ehomed
fCPBE(t)='B—1n 14— , A=—|exp _Zae. () -1
2a B 1+ At? + A%t* B B2 p

o and B are constants.

There are far too many DFT approximations. Some of them have
empirical parameters like the B86, B86, and HCTH. The HCTC model
contain several parameters that have been fitted to accurate guantum
chemical results (like CCSD(T)) .



See:

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

Hybrid functionals

The Hartree-Fock model will describe the exchange exactly, so it
would be tempting to use the HF for it and a DFT/GGA model for
correlation:

hyb _ pHF GGA
EXC - Ex + EC

This model is not very good because there is some error cancelation
in the Ex and Ec terms and it is hard to model only Ec. Much better
results can be obtained if the HF and DFT:n Ex are mixed.

EyY” = aEHF + (1 - a)ESSA+bESEA

xc

Sometimes the LDA and GGA have different weights. The most important
hybrid is B3LYP

E! = GEF + (1— a)ELPA + BEESS+(1 — ¢)ELPA+CEL'P

xc

The constants are a=0.20, b=0.72, c¢c=0.81. (Note LYP-GGA includes LDA,
so in normal BLYP calculation a=0.0, b=1.0 and c=1.0).

Most of the hybrid functional are variant of the equation above. The
PBEO (should be PBE1PRE)

EMY = aEfF + (1— a)(EL + EEPF)+ELPALELPE

xc

where a=0.25. This is simple. There are also some reasonable
arguments that a should be = 0.25. This is the reason for name PBEO.

Meta-GGA functionals

The meta-GGA functionals are next level functional form GGA. They
utilize information of second derivative of the density, Vzp, and/or
kinetic energy density.

) = ) V()P
Kk
The MGGA functional, like PKZB, TPSS, are rather complicated but they

are usually a bit better than best GGA’s.



Dispersio

Dispersion (or van der Waal interaction) describes weak non-dipolar
interactions between molecules. It is the leading interaction between
rare-gas atoms, it is important in aromatic molecules and it has some
contribution in all molecules. The dispersion is based on virtual
molecular excitations and it is very difficult to include to DFT. The
dispersion is also absent in HF theory. In practice all DFT and
hybrid models will lack dispersion. NOTE: many DFT models will result
molecular binding e.g. for He dimer, but from wrong reason.
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The simplest way to add dispersion is the use empirical potentials.
The most popular one is developed by Stefan Grimme and his research
group.
DFT _ 1;GGA d
Evdw - Exc + E;ri"/rvnme |RI - R]D

This model need parameters for all atoms and the parameters depend on
the GGA. Computationally the method is light. No information of the
density or wave functions are needed. Also the approach of Tkatchenko

and Scheffler is popular. There are DFT models that includes the
dipersion but they are not much used.

More details:



http://www.compchemhighlights.org/2014/04/approaches-to-dispersion-
in-dft.html

On the other hand, most of the quantum chemistry methods, like MP2,
CCSD, etc. include dispersion interactions. Thus if they can be used
they are convenient for testing the dispersion effects.

PROBLEMS WITH DFT

The main problem with DFT is rather obvious. There is not systematic
way to improve the XC-potential. This is very clearly seen from the
huge number of XC-models and their slow progress. We also know that
the “exact” XC-potential is extremely complex. It is very unlikely
that a universal and very good XC-potential will be ever found. But
slowly better XC-models will be developed. One can crudely order the
DFT model with increasing accuracy:

LDA (bad) < GGA < meta-GGA ~ hybrid functionals
GGA < GGA + dispersion

S| PROBLEM

One deep DFT problem is the self-interaction interaction. The main
problem is that in DFT every electron will feel itself. The SI can
formally be corrected by subtracting the orbital dependent SI

B30 = G4 pn, py] = ) {Eu (|0uol ) + EEEA (il ', 0))

n,o

This correction is complicated since it depend on orbitals, not on
density. It is not anymore a DFT model. This also causes several
computational problems. It is very difficult the converge the SIC-DFT
equations.

There are also new SI models but they are rather complex. On the
other hand the HF model is free of SI error and thus the hybrid
methods are working better than the pure GGA models.
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