
Computational Chemistry 2 – Chapter 1 

Kari Laasonen, C221b 
 
This course will first focus on solid and surface systems. Many of 

the concepts has been introduced in the course Computational Chem 1. 

Almost all calculation in this course will be done with Density 

Functional Theory (DFT) or with DFT-HF hybrid methods. The higher 

level methods are usually not implemented with periodic boundaries.  

 

In chemistry, the surfaces are usually more relevant than individual 

molecules since many chemical processes happen on surfaces. 

Heterogeneous catalysis is a good example also all growth processes 

(like ALD) happen at surfaces. Almost all inorganic materials are 

solids. The periodic simulations can be used to model the solid-

liquid interphase.  

 

 

Density Functional Theory (DFT) 
 

The most important correlated method now is DFT. It is based on a 

proof that the total energy depend only on the electron density 𝜌(𝑟). 
The proof is seemingly simple. The true Schrödingerin equation can be 

written as 𝐸[𝜓] = ⟨𝜓|𝐺 − 𝑉(𝑟, 𝑅𝐼)|𝜓⟩ = ⟨𝜓|𝐺|𝜓⟩ − ∫𝑑
3 𝑟 𝑉(𝑟, 𝑅𝐼)𝜌(𝑟), here the G 

contain all terms except the interaction between the electrons and 

nucleus. This term is 𝑉(𝑟, 𝑅𝐼) and it is called external potential. The 

density is 𝜌(𝑟) = ∫𝑑3𝑟2𝑑
3𝑟3…𝑑

3𝑟𝑛𝜓
∗(𝑟, 𝑟2, . . , 𝑟𝑛)𝜓(𝑟, 𝑟2, . . , 𝑟𝑛) 

 

1) The external potential V (it depend only on the atomic 
positions) determine uniquely the wave function and the total 

energy: ψ(V) → E[V] (Proof: Assume two different potentials (V 

ja V’, they differ more than a constant) produce the same wave 

function:  (𝐺 − 𝑉(𝑟, 𝑅𝐼))|𝜓⟩ = 𝐸|𝜓⟩ and (𝐺 − 𝑉′(𝑟, 𝑅𝐼))|𝜓⟩ = 𝐸′|𝜓⟩; subtract 
them from each other:  (𝑉(𝑟) − 𝑉′(𝑟)|𝜓⟩ = (𝐸 − 𝐸′)|𝜓⟩. Because E and E’ 
are constants the equation can be true on if the potentials 

differ with a constant. This is in contradiction with the 

assumption, so the potential will determine the wave function.) 

 

2) The wave function determine uniquely the density, ψ → ρ. 

(Proof: Assume that two different wave function ψ and ψ’ will 

produce the same density ρ. The definition of the density is not 

convenient. We use here the variational principle:  𝐸[𝜓] =
⟨𝜓|𝐻|𝜓⟩ < ⟨𝜓′|𝐻|𝜓′⟩ = ⟨𝜓′|𝐻′ + 𝑉 − 𝑉′|𝜓′⟩ = 𝐸′ + ∫𝑑3 𝑟 (𝑉(𝑟) − 𝑉′(𝑟))𝜌′(𝑟) so 𝐸 <



𝐸′ + ∫𝑑3 𝑟 (𝑉(𝑟) − 𝑉′(𝑟))𝜌′(𝑟). We can use the same logic starting from  

H’, ψ’and E’. This leads to equation 𝐸 < 𝐸′ + ∫𝑑3 𝑟 (𝑉(𝑟) − 𝑉′(𝑟))𝜌(𝑟). 
if ρ=ρ’ then we will have an absurd result E+E’ < E+E’, so the 

wave function will determine the density uniquely.  

 

3) The later statement can be inverter: ρ → ψ, so the energy 
depend only on the density E(ρ) 
 

Note: DFT is valid only for the ground state. It cannot be used for 

exited states.  

 

It has turned out that the E(ρ) is directly not very useful. Formally 

we can write the total energy as 

  

𝐸[𝜌] = 𝑇[𝜌] +𝑊[𝜌] − ∫𝑑3 𝑟 𝑉(𝑟, 𝑅𝐼)𝜌(𝑟)   
 

where T is the kinetic energy of the systems and W is the electron-

electron interaction. 

 

𝑇[𝜌] = −∑⟨𝜓|∇𝑖
2|𝜓⟩

𝑖

;          𝑊[𝜌] = ∫
𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
 𝑑3 𝑟𝑑3𝑟′ + 𝐸𝑥𝑐(𝜌) 

 

In this form the T[ρ] and Exc(ρ) are unknown. For Exc(ρ) there are 

reasonable approximations but T[ρ] is not well known.  

 

This so called density-only-DFT (or orbital free DFT, OF-DFT) can be 

used in some approximations but it is not very accurate. There are 

now some research projects trying to improve the OF-DFT. It is 

unlikely that the OF-DFT will be very accurate but it should be very 

fast and it should be very useful for screening calculations.  

 

The Kohn-Sham method 
 

Kohn and Sham proposed (1964) a very useful DFT scheme. We can assume 

that there is a non-interacting system that will produce the correct 

density (and the correct density will produce the correct energy). 

For a non-interaction system the Slater determinant IS the correct 

wave function, ψKS = det[φ1,KS,φ2,KS,.. φN,KS] and the density is 

 

𝜌(𝑟) = ∑𝜑𝑛,𝐾𝑆
∗(𝑟)𝜑𝑛,𝐾𝑆(𝑟)

𝑁

𝑛=1

 

 

This lead to Kohn-Sham equations to the orbital 

 



[−
ℏ2

2𝑚𝑒
 ∑∇𝑖   

2

𝑖

+ 𝑉𝐾𝑆[𝜌; 𝑅](𝑟)]𝜑𝑛
𝐾𝑆(𝑟𝑖; 𝑅𝐼) = 𝐸𝑛𝜑𝑛

𝐾𝑆(𝑟𝑖; 𝑅𝐼) 

   

(KS1) 

Here the VKS(r) is an unknown potential, r is electron positions and 

R are atomic positions. It is usually written as: 
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   (KS) 

 

We have taken the large and known terms separately but the Vxc(r) is 

still unknown. Fortunately it is not very large and with good 

approximations good results can be obtained. Note that Exc is not the 

same as in traditional quantum chemistry (Exc=ʃVxc(r)ρ(r)d3r) 

 

  𝐸𝑥𝑐
𝐷𝐹𝑇[𝜌] = 𝑇[𝜌] − 𝑇𝐾𝑆[𝜌] + 𝐸𝑥𝑐

𝑄𝐶[𝜓] 
  

Since we do not know the exact kinetic energy either. Secondly the 

quantum chemical XC function is very, very complex and it is not easy 

to approximate it with density functional. For example we know 

exactly the exchange function (it is the HF theory). 

 

One can write a formal equation for Exc  

 

       𝐸𝑥𝑐 =
1

2
∫
𝜌(𝑟)𝜚𝑥𝑐(𝑟, 𝑟

′)

|𝑟 − 𝑟′|
 𝑑3 𝑟𝑑3𝑟′ 

Where ϱxc(r,r') is so called xc-hole. It can be shown that an 

integral of the xc-hole is  

      ∫ 𝜚𝑥𝑐(𝑟, 𝑟
′)𝑑3𝑟′ = −1 

 

The asymptotic limit of the x-potential is known but c-potential is 

not known 

 

   𝑉𝑥(𝑟)
𝑟 →∞
→    

1

𝑟
  

 

Approximations for  Vxc 
 
We need to have have the xc energy and potential, Exc, Exc=ʃVxc(r)ρ(r) 

and Vxc(r)= δExc/δρ(r)   



 

Local density approximation (LDA): The total energy of a homogenous 

electron gas can be computed very accurately. So we know the 

homogenous electron gas Exc,homog(ρ). Now we make a big approximation 

and use that function locally at every point in space.  

 

 𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫𝐸𝑥𝑐,ℎ𝑜𝑚𝑜𝑔(𝜌(𝑟)) ∗ 𝜌(𝑟)𝑑

3𝑟   (LDA) 

 

The xc is not a local function but the LDA still contain correlation. 

In fact LDA is a surprisingly good approximation. It will give good 

bonding geometries and dipole moments. Even the energies are 

reasonable.  

 

The exchange is easy  

 

𝐸𝑥
𝐿𝐷𝐴 = −

3

4
(
3

𝜋
)
1/3

∫𝜌(𝑟)4/3𝑑3𝑟,     𝑘𝐹 = (3𝜋
2𝜌)1/3   

 

the correlation is more complex and it is traditionally fitted to 

Quantum Monte Carlo calculations. There is also very simple Chachiyo 

correlation functional (a=ln(2)-1)/2π2, b=20.456325..) which works 

well. 

  

 

 
 



Picture form:  https://en.wikipedia.org/wiki/Local-density_approximation 
 

The next level is to include the gradient of the density to the 

model. We also know that the xc potential  

 

GGA for  Vxc 
 

The LDA can be model can be improved including the gradient of the 

density  

  

 𝐸𝑥𝑐
𝐺𝐺𝐴 = 𝐸𝑥𝑐

𝐿𝐷𝐴 + ∫𝐸𝑥𝑐(𝜌(𝑟), ∇𝜌) ∗ 𝜌(𝑟)𝑑
3𝑟  (GGA)

  

This looks simple but is has been hard to find good approximation. 

One of the simplest one that works is due to Axel Becke (1986), 

 

𝐸𝑥
𝐺𝐺𝐴 = ∫𝐸𝑥,ℎ𝑜𝑚𝑜𝑔(𝜌) ∗ 𝑓𝑥(𝜉)𝑑

3𝑟,   𝜉 =
(∇𝜌)2

(2𝑘𝐹𝜌)2
,  𝑘𝐹 = (3𝜋

2𝜌)1/3, 𝑓𝑥
𝐵86(𝜉) = 1 +

𝑎𝜉

1 + 𝑏𝜉
  

 

Where a and b are parameters, a=0.2351 and b=0.24308. 1988 Becke 

proposed an improvement to this equation 

 

𝑓𝑥
𝐵88(𝜉) = 1 +

𝑎𝜉

1 + 𝑏√𝜉 arsh(2(6𝜋2)1/3√𝜉 )
 

 

Now a=0.2743 and b=9a/4. This is very much used approximation for x-
energy. The correlation have also several models. One very used model 

is PBE (Perdew-Burke-Ernzerhof) 

 

𝐸𝑐
𝐺𝐺𝐴 = ∫𝜌(𝑟) ∗ 𝑓𝑐(𝑡)𝑑

3𝑟,   𝑡 =
|∇𝜌|

2𝑘𝐹𝜌
, 

 

 𝑓𝑐
𝑃𝐵𝐸(𝑡) =

𝛽2

2𝛼
ln [1 +

2𝛼

𝛽

𝑡2 + 𝐴𝑡4 

1 + 𝐴𝑡2 + 𝐴2𝑡4
] , 𝐴 =

2𝛼

𝛽
[exp (−

2𝛼

𝛽2
𝜖𝑐
ℎ𝑜𝑚𝑜𝑔

(𝜌)

𝜌
) − 1]

−1

  

 

 and  are constants. 
 

There are far too many DFT approximations. Some of them have 

empirical parameters like the B86, B86, and HCTH. The HCTC model 

contain several parameters that have been fitted to accurate quantum 

chemical results (like CCSD(T)).   

 



See: 

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc 

 

Hybrid functionals 
 

The Hartree-Fock model will describe the exchange exactly, so it 

would be tempting to use the HF for it and a DFT/GGA model for 

correlation:  

 

𝐸𝑥𝑐
ℎ𝑦𝑏

= 𝐸𝑥
𝐻𝐹 + 𝐸𝑐

𝐺𝐺𝐴 

 

This model is not very good because there is some error cancelation 

in the Ex and Ec terms and it is hard to model only Ec. Much better 

results can be obtained if the HF and DFT:n Ex are mixed.   

  

𝐸𝑥𝑐
ℎ𝑦𝑏

= 𝑎𝐸𝑥
𝐻𝐹 + (1 − 𝑎)𝐸𝑥

𝐺𝐺𝐴+𝑏𝐸𝑐
𝐺𝐺𝐴 

 

Sometimes the LDA and GGA have different weights. The most important 

hybrid is B3LYP 

 

𝐸𝑥𝑐
ℎ𝑦𝑏

= 𝑎𝐸𝑥
𝐻𝐹 + (1 − 𝑎)𝐸𝑥

𝐿𝐷𝐴 + 𝑏𝐸𝑥
𝐵88+(1 − 𝑐)𝐸𝑐

𝐿𝐷𝐴+𝑐𝐸𝑐
𝐿𝑌𝑃 

 

The constants are a=0.20, b=0.72, c=0.81. (Note LYP-GGA includes LDA, 

so in normal BLYP calculation a=0.0, b=1.0 and c=1.0). 

 

Most of the hybrid functional are variant of the equation above. The 

PBE0 (should be PBE1PBE) 

  

𝐸𝑥𝑐
ℎ𝑦𝑏

= 𝑎𝐸𝑥
𝐻𝐹 + (1 − 𝑎)(𝐸𝑥

𝐿𝐷𝐴 + 𝐸𝑥
𝑃𝐵𝐸)+𝐸𝑐

𝐿𝐷𝐴+𝐸𝑐
𝑃𝐵𝐸 

 

where a=0.25. This is simple. There are also some reasonable 

arguments that a should be = 0.25. This is the reason for name PBE0.  

 

 

Meta-GGA functionals 
 

The meta-GGA functionals are next level functional form GGA. They 

utilize information of second derivative of the density, ∇2 𝜌, and/or 
kinetic energy density. 

 

𝑡𝑠(𝑟) =  ∑|∇𝜑𝑘(𝑟)|
2

𝑘

 

The MGGA functional, like PKZB, TPSS, are rather complicated but they 

are usually a bit better than best GGA’s.   



 
Dispersio 
 

Dispersion (or van der Waal interaction) describes weak non-dipolar 

interactions between molecules. It is the leading interaction between 

rare-gas atoms, it is important in aromatic molecules and it has some 

contribution in all molecules. The dispersion is based on virtual 

molecular excitations and it is very difficult to include to DFT. The 

dispersion is also absent in HF theory. In practice all DFT and 

hybrid models will lack dispersion. NOTE: many DFT models will result 

molecular binding e.g. for He dimer, but from wrong reason.  

  

 

 
 

 

The simplest way to add dispersion is the use empirical potentials. 

The most popular one is developed by Stefan Grimme and his research 

group.   

 

𝐸𝑣𝑑𝑤
𝐷𝐹𝑇 = 𝐸𝑥𝑐

𝐺𝐺𝐴 + 𝐸𝑔𝑟𝑖𝑚𝑚𝑒
𝑣𝑑𝑤 (|𝑅𝐼 − 𝑅𝐽|) 

 

This model need parameters for all atoms and the parameters depend on 

the GGA. Computationally the method is light. No information of the 

density or wave functions are needed. Also the approach of Tkatchenko 

and Scheffler is popular. There are DFT models that includes the 

dipersion but they are not much used.  

 

More details: 



http://www.compchemhighlights.org/2014/04/approaches-to-dispersion-

in-dft.html 

 

On the other hand, most of the quantum chemistry methods, like MP2, 

CCSD, etc. include dispersion interactions. Thus if they can be used 

they are convenient for testing the dispersion effects.   

 

PROBLEMS WITH DFT  

 
The main problem with DFT is rather obvious. There is not systematic 

way to improve the XC-potential. This is very clearly seen from the 

huge number of XC-models and their slow progress. We also know that 

the “exact” XC-potential is extremely complex. It is very unlikely 

that a universal and very good XC-potential will be ever found. But 

slowly better XC-models will be developed. One can crudely order the 

DFT model with increasing accuracy:  

 

  LDA (bad) < GGA < meta-GGA ~ hybrid functionals  

          GGA < GGA + dispersion  

 

 

SI PROBLEM 
 

One deep DFT problem is the self-interaction interaction. The main 

problem is that in DFT every electron will feel itself. The SI can 

formally be corrected by subtracting the orbital dependent SI  

 

 

𝐸𝑥𝑐
𝑆𝐼𝐶−𝐺𝐺𝐴 = 𝐸𝑥𝑐

𝐺𝐺𝐴[𝜌↑, 𝜌↓] −∑{𝐸𝐻 (|𝜑𝑘,𝜎|
2
) + 𝐸𝑥𝑐

𝐺𝐺𝐴(|𝜑𝑘,𝜎|
2
, 0)}

𝑛,𝜎

 

 

This correction is complicated since it depend on orbitals, not on 

density. It is not anymore a DFT model. This also causes several 

computational problems. It is very difficult the converge the SIC-DFT 

equations.   

There are also new SI models but they are rather complex. On the 

other hand the HF model is free of SI error and thus the hybrid 

methods are working better than the pure GGA models.  

 

http://www.compchemhighlights.org/2014/04/approaches-to-dispersion-in-dft.html
http://www.compchemhighlights.org/2014/04/approaches-to-dispersion-in-dft.html

