
Computational Chemistry 2 – Chapter 2 

 
Periodic boundary conditions and solid systems 

 
 

Now we leave the DFT and start to look of quantum computations for 

periodic systems. This is natural setup for bulk materials where some 

unit cell is repeated to every direction. We can assume that the 

system is either infinite or very big.  

 

 

 

 

 

 

 

 

Here the essential point is that the potential the electrons will see 

is periodic, V(r)= V(r+R) where R is the systems lattice vector. More 

precisely R = n1A1 + n2A2 + n3A3 and here the vectors A1,A2,A3 will 

describe the unit cell.  

 

 

 

 

 

 

 

 

Now the energy is 

𝐸[𝜓] = ⟨𝜓|𝐺 − 𝑉(𝑟, 𝑅𝐼)|𝜓⟩ = ⟨𝜓|𝐺|𝜓⟩ − ∫ 𝑑3 𝑟 𝑉(𝑟, 𝑅𝐼)𝜌(𝑟) 

𝐻|𝜓⟩ = {𝐺 − 𝑉(𝑟, 𝑅𝐼)}|𝜓⟩ = 𝐸|𝜓⟩ 
 

Where V is periodic and G do not depend on atomic positions. How this 

will affect the wave function. We can show that the wave function has 

form (Bloch theorem) 

 

𝜓(𝑟 + 𝑅) = 𝑒−𝑖𝑘.𝑅𝜓(𝑟) 
 

Here k is so called inverse lattice vector. The proof is a bit 

complex, but let us define a translation operator TR, TRf(r)=f(r+R) 

in periodic system the TR will commute with H 

A1 

A2 



 

TR H = TR G - TR V = G TR – V TR = H TR 

 

because G do not depend on positions and V(r) is periodic. Now  

 
𝑇𝑅 (𝐻|𝜓⟩) = 𝐻(𝑇𝑅|𝜓⟩) = 𝑇𝑅 𝐸|𝜓⟩ = 𝐸 𝑇𝑅|𝜓⟩ ;     |𝜑⟩ =  𝑇𝑅|𝜓⟩  →      𝐻|𝜑⟩ = 𝐸|𝜑⟩ 

 

The wave function need to be also an eigen function of the 

translational operator. (Math: if two operators commute they will 

have same eigen functions.)  

 

𝑇𝑅 |𝜓⟩ = 𝑐(𝑅)|𝜓⟩ 
 

TRTR’ψ(r)=ψ(r+R+R’)=c(R)c(R’)ψ(r)=c(R+R’)ψ(r), so the eigenvalue of 

the translational operator have a special property c(R)c(R’)=c(R+R’). 

This is true only for an exponent function, so  

c(R) = exp(-ik.R) 

 

In principle k could be complex but the boundary conditions will 

force k to be real. k can be written using inverse lattice vectors 

Bn, k = x1B1 + x2B2 + x3B3, and Bi.Aj=2πδij x’s are real numbers. When 

the lattice vectors are known B’s can be computed as: B1=2π 

A2xA3/{A1.(A2xA3)}, B2=2π A3xA1/{A1.(A2xA3)}, B3=2π A1xA2/{A1.(A2xA3)} 

 

So 

𝜓(𝑟 + 𝑅) = 𝑐(𝑅)𝜓(𝑟) = 𝑒−𝑖𝑘.𝑅𝜓(𝑟) (Bloch) 

 

This is an interesting result. In periodic system, the wave function 

will change only with a phase factor when moving with one lattice 

vector. This means that the electron density does not change,  

 

𝜌(𝑟 + 𝑅) = ∑  [𝑒−𝑖𝑘.𝑅𝜓𝑛,𝐾𝑆 (𝑟)]∗𝑒−𝑖𝑘.𝑅𝜓𝑛,𝐾𝑆 (𝑟)

𝑁

𝑛=1

= ∑[𝜓𝑛,𝐾𝑆 (𝑟)]
∗
𝜓𝑛,𝐾𝑆 (𝑟)

𝑁

𝑛=1

= 𝜌(𝑟) 

 

Note that it is enough to know the density only in one unit cell. The 

discussion is completely valid for all quantum chemical methods.   

 

 
Periodic (Born-von Karman) boundary conditions for the wave functions 
 

Next let us look the periodicity of the wave function. We assume that 

the wf is periodic after (N1,N2,N3)  

 
𝜓(𝑟 + 𝑁1𝐴1 + 𝑁2𝐴2 + 𝑁3𝐴3) = 𝜓(𝑟) 

 



Bloch theorem  𝜓(𝑟 + 𝑅) = 𝑒−𝑖𝑘.𝑅𝜓(𝑟) = 𝜓(𝑟) and exp(-ik.R)=1.  
k.R = 2π(x1N1+x2N2+x3N3)= 2π*integer number. The periodicity is 

fulfilled in every direction so xi=mi/Ni (m is an integer). The 

equation above gives a good way to understand the k-vector. 

 

  𝑘 = (
𝑚𝑥

𝑁𝑥
,

𝑚𝑦

𝑁𝑦
,

𝑚𝑧

𝑁𝑧
) , 𝑚𝑖 = 0, … 𝑁𝑖  k vector contain equally spaced point in  

 

each direction. 

 

This is not very useful for computing the wave function. We can 

express the wf as a Fourier-series  

 

𝜓𝑘(𝑟) ≈ ∑ 𝐶𝑞𝑒𝑖𝑞.𝑟

𝑄𝑚𝑎𝑥

𝑞

 

 

Here the wave vector q fits always to the box (N1,N2,N3). We can also 

expand the potential to Fourier-series. (In both cases the Qmax and 

Kmax determinates the accuracy of the expansion.)  

 

𝑉(𝑟) ≈ ∑ 𝑉𝐾𝑒𝑖𝐾.𝑟

𝐾𝑚𝑎𝑥

𝐾

 

 

 

 

 

 
 

 

Here K fit always exactly to the unit cell. Note that q has 

periodicity of NiAi, and if N>1 q has longer wavelength.   



Now we can compute all the components of the Schrödinger equation. 

First the kinetic energy:  

−∇2𝜓(𝑟) = ∑ 𝑞2𝐶𝑞𝑒𝑖𝑞.𝑟

𝑄𝑚𝑎𝑥

𝑞

 

 

Now the Schrödinger equation can be written as (Note: in 1-particle 

or K-S formalism.)  

∑ 𝑒𝑖𝑞.𝑟 {(𝑞2−𝐸)𝐶𝑞  + ∑ 𝑉𝐾

𝐾

𝐶𝑞−𝐾}

𝑄𝑚𝑎𝑥

𝑞

= 0 

 

The Fourier vectors are linearly independent so the equation in 

brackets has to be =0  

 

{(𝑞2−𝐸)𝐶𝑞  + ∑ 𝑉𝐾

𝐾

𝐶𝑞−𝐾} = 0 

 

 

A new variable q=k+K’, where k is always < min K. Remember K is a 

wave vector related to the unit cell. 

 

{[(𝑘 + 𝐾′)2−𝐸]𝐶𝑘+𝐾′  + ∑ 𝑉𝐾

𝐾

𝐶𝑘−𝐾+𝐾′} = 0 

 

Still on more change of variable K-> K’-K 

 

{[(𝑘 + 𝐾′)2−𝐸]𝐶𝑘+𝐾′  + ∑ 𝑉𝐾′−𝐾

𝐾

𝐶𝑘+𝐾} = 0 

 

Now the wave function can be written with Ck-K where k is < min K and 

K is the wave vector of the unit cell. 

 

𝜓𝑘(𝑟) = ∑ 𝐶𝑞𝑒𝑖𝑞.𝑟

𝑄𝑚𝑎𝑥

𝑞

= ∑ 𝐶𝑘+𝐾𝑒𝑖(𝑘+𝐾).𝑟

𝐾𝑚𝑎𝑥

𝐾

= 𝑒𝑖𝑘.𝑟 ∑ 𝐶𝑘+𝐾𝑒𝑖𝐾.𝑟

𝐾𝑚𝑎𝑥

𝐾

= 𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟) 

 

Here the uk(r) is the part of wave function that has the periodicity 

of the unit cell. The only non-unit cell periodic part is the exp(-

ik.r) 

 

The density do not change but the kinetic energy will change. The 

impulse is 

−𝑖∇𝜓𝑘(𝑟) = −𝑖∇ (𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟)) = 𝑘𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟) − 𝑖𝑒𝑖𝑘.𝑟∇𝑢𝑘(𝑟) 



 

And the kinetic energy is 

 

𝑇𝜓𝑘(𝑟) = 1

2
(−𝑖∇ + 𝑘)2𝑢𝑘(𝑟)  (KIN) 

 

Finally, we can write the periodic Kohn-Sham equations 
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 (DFT-P) 

 

𝜌(𝑟) = ∑ ∑ 𝑢𝑛,𝑘
2 (𝑟)

𝑛𝑘  
 

So one need to solve wave functions uk,n(r) need to be solved with 

several k-points. Note that the density have the k-summation. It is 

important that the density and external potential are periodic. So it 

is enough to solve the problem only in the unit cell.  

 

The only complicated term is the electrostatic potential 

 

𝐸𝐶 =
1

2
∬ 𝑑3𝑟𝑑3𝑟′

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
− ∫ 𝑑3𝑟 ∑

𝜌(𝑟)𝑍𝐼

|𝑟 − 𝑅𝐼|
𝐼

+
1

2
∑

𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|
𝐼𝐽

 

 

First the whole system need to be neutral otherwise the electrostatic 

energy is infinite.  This makes it difficult to study charged 

systems. Mathematically a constant charged background will be added 

to the system. This do not affect the atomic geometries and it 

usually have only a small affect to the density but the energies of 

differently charged system cannot be compared.  

 

Note: periodic H-F is more complex and the computations need to be 

done carefully. Also the H-F computations are rather time consuming 

so the periodic hybrid-DFT calculations are much slower than pure DFT 

calculations. The computational speed can vary from one code to 

another.  

 

k-points 
 

In above the non-periodicity is described with the k-vector and then 

exp(-ik.r) term. Let us next look more carefully the k-vectors. In 

equation (DFT-P) the wave function u(r) need to be solved with 

different k-vectors. Earlier we assumed that the wave functions are 

periodic in a large (Nx,Ny,Nz) box and this discretize the k-vectors. 

 



𝑘 = (
𝑚𝑥

𝑁𝑥
,
𝑚𝑦

𝑁𝑦
,
𝑚𝑧

𝑁𝑧
) , 𝑚𝑖 = 0, … 𝑁𝑖 

  

This means that it is enough to focus on certain k-points. Often the 

high symmetry k-points have “names”. The k=(0,0,0) (= Γ point) means 

that the wave functions have the same symmetry as the unit cell. The 

point k=(0.5,0,0) means that the wave function is periodic in x-

direction after two boxes and in y- and z-dictions the wf have the 

unit cell symmetry. To get a good description of the system wave 

functions need to be solved with several k-points. The number of k-

points depend strongly on the system. Insulators do not need much k-

points, semiconductors needs more and good description of a metal 

require many k-points.    

 

 

SPECIAL POINTS  
 

  
   

First Brillouin zone of FCC lattice showing symmetry points (From: wikipedia, Electronic-band-

structure) 
 

If the external potential is weak V ≈ 0 

 

{[(𝑘 − 𝐾)2−𝐸]𝐶𝑘−𝐾  + ∑ 𝑉𝐾′−𝐾𝐾′ 𝐶𝑘−𝐾′} = {[(𝑘 − 𝐾)2−𝐸]𝐶𝑘−𝐾} =  0   
 

The energy is roughly parabolic in k. Note that the system is 

periodic due to the unit cell k-vectors K.   

http://upload.wikimedia.org/wikipedia/commons/5/53/Fcc_brillouin.png


 

 
 

There is always interactions in the system so the system will form 

energy bands. There is some times gaps between the bands.   

 

 
 

 

 

This is one dimensional case. In general case the bands are 3-D.  
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Band structure of Silicon 
 

(source:http://www2.warwick.ac.uk/fac/sci/physics/postgraduate/curren

t/regs/mpags/ex5/bandstructure/) 

 

The 3-D band structure is rather complex. We need to think how the 

electrons are distributed to the bands. Due to the spin there are two 

electrons in every band. The bands will be filled from below. The 

highest energy the electrons will have is the Fermi energy EF. This 

is often the 0-point of the energy. Note that each k-points can have 

different number of k-points.  

 

In silicon there is 4 (valence)electrons/atom, 1 s-electron and 3 p-

ones. The lowest band is the s-band and the p-bands are higher. Often 

the p-band are degenerate (have the same energy). Compare the upper 

band in , X, L and U points. In Si all the band are occupied with 
two electrons.   

  

The band structure can also be measured. 

 



 
 

 

 

How the k-points should be choosen? There are several possibilities 

but the simple Monkhorst-Pack method where the k-points are equally 

spaced works well.  

 

 
 

If the computaional box is (roughly) cubic the N’s are equal but is 

the box is elongated like Ax = 2Ay,Az then in x-direction it is 

enough to take half of the k-points (why?)  

 

A rough rule is that there should be atleast 100 k-point/atom. 

Usually there is a lot of symmetry so not every point is needed to 

compute. There is always k=-k symmetry.  

 

Computations 
 

 

There are several periodic DFT based codes. In this course we use the 

GPAW programm.  

 

from ase.structure import bulk 

from gpaw import GPAW, FermiDirac 

def groundstate(a, k): 

    si = bulk('Si', 'diamond', a) 

http://www.google.com/imgres?q=electron+band+structure&hl=en&sa=X&biw=1286&bih=738&tbm=isch&prmd=imvns&tbnid=K_ztRMYEQeNAXM:&imgrefurl=http://pages.uoregon.edu/kevan/fermi.html&docid=AfFKKi-SognHQM&imgurl=http://pages.uoregon.edu/kevan/fermi1_files/NbSe3_bandmap.JPG&w=739&h=575&ei=mytfT8Mi6JDiBNbgwc4H&zoom=1&iact=rc&dur=281&sig=111246583798525866390&page=3&tbnh=167&tbnw=215&start=45&ndsp=20&ved=1t:429,r:7,s:45&tx=131&ty=66


    si.calc = GPAW(kpts=(k, k, k), 

                   xc='PBE', 

                   gpts=(20, 20, 20), 

                   occupations=FermiDirac(0.01), 

                   txt='Si-PBE-%.3f-%d.txt' % (a, k)) 

    si.get_potential_energy() 

    return si 

Calculation for a lattice constant of 5.43 Å and a k-point sampling of 8*8*8 points: 

si = groundstate(5.43, 8) 

 
The band structure us rather easy to compute. The biggest mess is to 

find the k-points. GPAW have ready routines to do such calculations. 

We will look them in the excercises.  

 

 
 
 



GPAW can use also hybrid functionals. The hybrid functionals usually 

gives better band structure but qualitatively the results are usually 

the same.  

 

 
 

 

  

Si is a semiconductor but the band structure is also easy to compute 

for metals. Below is the band structure of Cu. Note that there is a 

band that crosses the Fermi energy = the system is a metal. The flat 

occupied bands comes from the d-electrons and parabolic band is the 

s-band. The s-band also crosses the Fermi energy. Cu have 11 valence  

electrons, 10 d-electrons and 1 s-electron. At  and L points all 
bands are occuped with 2 electrons! At W, X, and K points the s-band 

is empty. The d-bands are always occuped.   



 
 

Last the insulators have large band gap. Below is the band structure 

of NaCl as an example. Note that the occupied bands are rather flat. 

The lowest is Cl’s s-band and the next three are Cl’s p-bands. There 

is no Na occupied band since the Na valence electron has moved to Cl. 

 

 



 

 
Basis functions  
 
In principle, any basis function can be used in the periodic codes. 

Historically the periodic codes used plane waves as basis, so the 

wave functions were expressed with Fourier series (see equations 

above) 

 

𝜓𝑘(𝑟) = 𝑒𝑖𝑘.𝑟 ∑ 𝐶𝑘−𝐾𝑒−𝑖𝐾.𝑟

𝐾𝑚𝑎𝑥

𝐾

= 𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟) 

 

The plane waves is a good basis functions since they are periodic and 

orthogonal to each other. As before the Kmax determine the accuracy 

of the series. The orthogonality guarantees that always increasing 

the Kmax the results will improve. The main problem with plane waves 

is that a lot of them are needed if the wave functions have peaks. 

This is the case near nucleas.   

  



 
Figure: 1s function low resolution Fourier series.  

 

The plane wave codes are disappearing. The GPAW used grids, CP2K uses 

Gaussians and plane waves. VASP uses plane waves. Gaussian (or any 

other local basis) can be written as:  

 

𝜓𝑘(𝑟) = 𝑒𝑖𝑘.𝑟 ∑ 𝐶𝑛,𝑘 𝜁𝑛(𝑟 − 𝑅𝐼)

𝑛

= 𝑒𝑖𝑘.𝑟𝑢𝑘(𝑟) 

 

 

Pseudopotentials 
 
The Fourier series is inefficient when the function changes rapidly 

but this problem can be reduced if pseudopotentials are used. The 

pseudopotentials will replace the effect of the core electrons with 

an effective potential. Because the core electrons are very strongly 

bound to the nucleus and their wave functions are very localized they 

do not participate atoms chemical bonding, they can be leave out form 

the calculations. (They cannot be ignored since they e.g. screen the 

nuclear charge.) The pseudopotentials are unfortunately rather 

complex. They depend on the angular momentum, so s-type orbitals will 

see different potential than p-type.  

 

The pseudopotentials will have several benefits: 1) They reduce the 

number of electrons needed to include to the system. Often it is 

enough to include only the valence electrons. 2) They smoothens the 

orbitals. This is very important for plane wave and grid basis.  

 

The technical construction of pseudopotentials is rather complex. So 

we go through only the basic ideas. First, we define a cut-off radius 

after which the pseudopotential (and pseudo-orbital) match to the 

exact ones. Inside the cut-off a smooth pseudo-orbital is 

constructed. (Usually it is contain the same amount of charge as the 



true orbital, so called norm-conserving pseudopotential.) From the 

smooth pseudo-orbital a pseudopotential is constructed.  

 

 
 

 

Near nucleus, the orbitals have oscillations that guarantee that they 

are orthogonal to the core orbitals. When this oscillation is removed 

we still need to keep the othogonality. This will force the 

pseudopotentials to be angular momentum dependent. Mathematically 

this will be done with projections  

 

𝑉𝑁𝐿(𝑟) = ∑ 𝑉𝐿(𝑟)|𝑃𝐿⟩⟨𝑃𝐿|

𝐿

 

 

here |𝑃𝐿⟩ is a projection function which have L-dependent symmetry(s-, 
p-, or d-symmetry), PL(r) can be written as fl(r)Ylm(θ,φ), and f(r)=0 

when r > rc. 

 

⟨𝑟|𝑃𝐿⟩⟨𝑃𝐿|𝜓⟩ = 𝑓𝑙(𝑟)𝑌𝑙,𝑚(𝜃, 𝜑) ∫ 𝑑3𝑟 

𝑟𝑐

0

𝑓𝑙(𝑟)𝑌𝑙,𝑚(𝜃, 𝜑)𝜓(𝑟) 

 



These non-local pseudopotentials are computationally awkward but 

modern codes, like GPAW, can handle them well. Also, the reliability 

of the pseudopotentials is an important issue. There are challenging 

cases like the alkali metals, which have only one valence electron. 

Reasonable results can be obtained with one electron pseudopot but 

also the lower core can be included to the pseudopot. This of course 

increase the computational cost but if the system contain only few 

alkali metals the more accurate pseudopot is better. Often for early 

transition metals the lower core pseudopot can be better.      

 

For plane waves and grid basis the smoothness of the pseudopot is 

important. The norm-conserving pseudopotentials can be optimized for 

the smoothness but they are not very smooth (Troulier-Martins 

pseudopotentials). David Vanderbilt introduced so called ’ultra-soft’ 

pseudopotentials which are not norm-conserving. The missing charge 

will be corrected with and extra term in the density.   

 

𝜌(𝑟) = ∑|𝜓𝑛(𝑟)|2

𝑛

+ ∑ 𝑄𝐿(𝑟)⟨𝜓𝑛|𝑃𝐿⟩⟨𝑃𝐿|

𝑛,𝐿

𝜓𝑛⟩ 

 

The Vanderbilt pseudopotentials has been used quite a lot, but now a 

similar but more general PAW (Projected-Augmented-Wave)is much more 

common. The GPAW program uses the PAW pseudopot. The PAW methods 

allows also computation of all electron density. Also the PAW library 

covers almost all periodic table and the pseudopotentials are mostly 

reliable.  

 

 



Fig: CO molecules orbital. The blue crosses (and thin lines) are the smooth orbitals whereas the thick 

lines are the corrections to the orbitals. 

The hard pseudopotentials are more convenient than ultra-soft or PAW 

pseudopotential is the softness is not required. This is the case if 

gauss functions are used for basis. Orca has some pseudopotentials 

and CP2K which uses mixed plane wave Gaussian basis uses it “own” GHT 

(Gödeker-Hutter-Teter) pseudopotentials. 

Summary: the pseudopotentials are almost automatic and the user do 

not need to worry much of them.  


