
Computational Chemistry 2 – Chapter 3 

 

Solid systems 
 
 

The most obvious application to periodic DFT is the modelling of the 

solid systems. We need to know the unit cell and atomic positions in 

it. Almost all solid materials can be modelled. The unit cell is 

usually small enough (excluding proteins and polymers). Also almost 

all elements in the periodic table can be modelled. The heaviest 

elements, like lantanides and actinides, are difficult. The DFT/GGA 

models are not very good in the case of f-electrons. Note that the 

scalar relativistic effects are included to the pseudopotentials so 

the relativistic effect e.g. in gold (Au) and be handled.    

 

 
 

For most materials the good GGA/MGGA works well. The material can be 

metal, semiconductor or insulator. Also hydrogen bonded systems works 

quite well and even the weakly interacting materials can be modelled 

with dispersion corrected GGA’s. Many of the new materials like 

carbon nanotubes of graphene can be modelled with DFT.  

 

 



 

 
Figure: (6,0) carbon nanotube 

 

 

The largest system we have studied is Zeolite A with 3x3x3 unit cell. 

It has 1944 atoms, and 10368 (valence)electrons. Note that the unit  

cell has 72 atoms. 

 

  
 



 
Computational cell is usually larger than the unit cell.  
 

It is very common to make the calculations with larger cell than the 

unit cells. From the point of view of the k-points the Brilloun zone 

is shrinking and k-points are more densely. If the computational cell 

is twice as large as the unit cell one can reduce the k-points in 

this direction to half and have the same sampling. This is not very 

effective way to improve the sampling since the computational scaling 

of the DFT calculations is (Nat)3 but it is linear in the k-points, 

Nkp. The increase of the computational cost is ~(Nat)2. 

 

The reason to use larger computational cell is always physical. We 

wanted to study some defect or phenomena that do not have the 

periodicity of the unit cell.   

 

 

 
 

Figure: Si band structure in (1,0,0) direction at 2-atom cell (diamond structure) and 8-atom cell (cube). 

Also below a broader picture of the Si8 and Si64 band structures. 

 



 

 
 



 
Point defects  
 
Very often the materials defects like impurities are interesting. The 

simplest defects are point defects which are size of one atoms. The 

common point defects are vacancies (a missing atom), substitutional 

defects (a “wrong” atom in a lattice site) and interstitial atoms (an 

atom out of the lattice sites). Sometimes there can be two point 

defect near each other. Here we ignore these cases.    

 

What a point defect will do to the electronic structure of the 

material? It cases so called impurity state (or band). This is very 

narrow band. In semiconductors the impurity band is often in the band 

gap but it can also be in the occupied band. 

 

The former is interesting. The conductivity increases a lot if there 

is an impurity state near the conduction band. The conduction depend 

on the number of electrons in the conduction band and for ideal 

semiconductor at finite temperature it is proportional to exp(-

Egap/kT) but with the impurity it is proportional to exp(-(Econd- 

Eimp)/kT). The Econd- Eimp is much smaller than Egap and due to the 

exponent the difference in conduction band occupancy is very large 

and thus the conductivity is larger. This is the key method to make 

n- or p-type silicon.     

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Impurity state (occupied) 

Filled band (occupied) 

Conduction band (empty) 



 
 

Figure: P impurity in 64 atom Si lattice 

 
The computations of point defects are quite a bit more time consuming 

than bulk materials but still doable in some hours (wihuri 12 cores). 

For Si the smallest reasonable systems is Si63X. The picture above 

shows Si63P system and below is the density of states of the same 

system. The impurity band is very close to the conduction band and it 

does not show in this DOS.  

 

 

 



 
 

 

The point defect studies are rather easy if one knows the type of 

defect.  

 

 

Density of states, DOS 
 
The band structure is rather complex way to analyze the bands and 

much simpler quantity is the density of states (DOS). The normal DOS 

tells how many quantum states there are at given energy: 

 

 

𝜌(휀) =∑⟨𝜑𝑛|𝜑𝑛⟩

𝑛

𝛿(휀 − 휀𝑛) 

From the DOS one can see the energy gap and were the energy states 

are. The DOS is easy to compute.   

 

from gpaw import * 

from pylab import * 

 

# Density of States 

si, calc = restart('Si2.gpw') 

e, dos = calc.get_dos(spin=0, npts=2001, width=0.4) 

e_f = calc.get_fermi_level() 

plot(e-e_f, dos) 

axis([-15, 10, None, None]) 

ylabel('Si DOS') 



 

 

 

 
Figure: Bulk Si DOS  (8x8x8 k-points) 

 

 
 

Figure: Cu DOS 

 
From these figure one can see that Si is semiconductor and Cu is a 

metal. So called projected DOS is much more useful. In pDOS one can 

take an atomic (or atomic-like) state 𝜑𝑚 and project the orbitals to 
it. The most useful projection states are s-,p- or d-states. 
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Below is a calculation of d-projection of Cu states. 

 

from gpaw import * 

from pylab import * 

 

# Local Density of States 

cu, calc = restart('Cu.gpw') 

e, dos = calc.get_orbital_ldos(a=0, spin=0, angular=’d’, npts=2001, width=0.3) 

e_f = calc.get_fermi_level() 

plot(e-e_f, dos) 

axis([-15, 10, None, None]) 

ylabel('d-DOS') 

 

 

 

 
Figure: Cu projected DOS. On left, the d-states and on right s-states. Note the different scale. Compare 

these to the Cu total DOS. In Cu the conductivity is mostly due to the s-electrons.  

 

 
The Si63P is also interesting. Below topmost figure is the total DOS. 

The two next ones are s- and p-projected Si pDOS. The first is from a 

Si atom far from the P defect and the second is from Si next to P 

(Si1). The last is the s- and p-projection of P. As one can see there 

is a state at EF (energy =0). This has contribution of the P (and 

neighboring Si). Warning reading the DOS or pDOS is sometimes 

confusing but it will help to understand the bulk orbitals. The low 

energy peak in Si1 DOS is interesting. It is clearly where P has an 

s-state but Si has no states at this energy. Now an important fact: 

the dos sees bulk (or molecular) states NOT atomic states. This peak 



comes from P-Si bond: some Si s- and p-states make a bond between P’s 

s-state. Similar bonding is also seen around -5 eV. There is stronger 

p-peaks at Si1 than Si. Similar p-peaks are also seen in P’s DOS.   

 

Note that the concentration of real point defects is very low, few 

ppm or so. Unit cell of 1 milj. atoms cannot be computed so a 

compromise of the computational cost and concentration has to be 

made. Unit cell of ca. 100 atoms is OK. Also the geometry of the 

system need to be optimized. The atoms near the defect will move from 

the ideal positions.  

 

 
Note that the DOS figures can change quite a bit when different 

amount of k-points are used. Below are the same Si63P system with 

 

 



2x2x2 k-points. With more k-points the dos is smoother (the figure 

above is with 6x6x6 k-points)  

 
Magnetic materials  
 
Some of the elements have permanent magnetic moment. The most well 

known is iron. One can solve the Kohn-Sham equations with spin. One 

need to solve the spin-up and spin-down states separately. This will 

lead to two “densities” ρ↑(r) and ρ↓(r), the total density is the sum 

of these. The Exc now depend both the total density and the 

difference of the spin densities. Exc[ρ(r),ρ↑(r)-ρ↓(r)]. For all xc-

models there is the spin version, so the magnetic calculations are as 

easy as normal DFT calculations.  



 

The py script is easy  

 

Fe = bulk('Fe','bcc',a=2.87) 

Fe.set_initial_magnetic_moments([2.2]) 

 

calc=(GPAW(h=hp, nbands=-10, xc='PBE',kpts=(k, k, k),  

occupations=FermiDirac(FD),mixer=Mixer(beta=0.10, nmaxold=4, weight=90.0), 

convergence={'eigenstates': 5.0e-5, 'density': 1.0e-4}, txt='Fe-mag.out')) 

 

Fe.set_calculator(calc) 

energy=Fe.get_potential_energy() 

Fe.calc.write('Fe-mag-new.gpw') 

 

One can then plot the pDOS for both spin states.  

 

 
 

  

Bulk properties  
 

Almost any quantity of the bulk material can be computed. Antti 

Karttunen will discuss of phonons and elastic properties. Naturally 



the lattice constant need to be computed. The DFT/GGA lattice 

parameter is not the same as the experimental one and in computations 

the computed one should be used. The impurity energies and impurity-

impurity energies can be computed. In addition, mixed systems can be 

studied. Especially interesting are the metal mixtures. In all cases 

the atoms are assumed to be roughly on ideal positions.  

 

In the case of mixed metals the system size is rather large. Below is 

an example of 32 atoms FCC unit cell of 30 Cu and 2 Ag atoms. In 

figure a) the Ag atoms are next to each other and in b) a bit 

further. With these type of geometries one can estimate the Ag-Ag 

interaction in Cu. With this type of calculations a lot of properties 

of mixed metals systems can be studied but the calculations are a bit 

time consuming.  

 

 

 

a) b) 


