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Abstract
Metadynamics is a powerful algorithm that can be used both for reconstructing the free energy
and for accelerating rare events in systems described by complex Hamiltonians, at the classical
or at the quantum level. In the algorithm the normal evolution of the system is biased by a
history-dependent potential constructed as a sum of Gaussians centered along the trajectory
followed by a suitably chosen set of collective variables. The sum of Gaussians is exploited for
reconstructing iteratively an estimator of the free energy and forcing the system to escape from
local minima. This review is intended to provide a comprehensive description of the
algorithm, with a focus on the practical aspects that need to be addressed when one attempts to
apply metadynamics to a new system: (i) the choice of the appropriate set of collective
variables; (ii) the optimal choice of the metadynamics parameters and (iii) how to control the
error and ensure convergence of the algorithm.

(Some figures in this article are in colour only in the electronic version)

This article was invited by Professor M Finnis

Contents

1. The algorithm 3
1.1. Lagrangian metadynamics 5
1.2. Discrete metadynamics 6

2. The choice of CVs 7
2.1. Examples of collective variables 7

3. Estimating the error 10
3.1. Reducing the error by averaging several profiles 14

4. The algorithm in practice 14
4.1. Implementation 14

4.2. A practical example: alanine dipeptide in vac-
uum 15

5. Extensions 17
5.1. Multiple walkers 17
5.2. Parallel tempering metadynamics 17
5.3. Bias exchange 18

6. Conclusions and outlook 19
Acknowledgments 19
References 20

List of Abbreviations

CV collective variables
FES free energy surface
MD molecular dynamics
FPMD first-principle molecular dynamics
VG metadynamics potential
TMA tetramethylammonium

AChE acetylcholinesterase
PCV path-like variables
RMSD root mean square displacement
CMAP contact map
Nhb number of backbone hydrogen bonds
NCα number of carbon alpha contacts
δs width of the deposited Gaussian
w height of the deposited Gaussian
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τG frequency of Gaussians deposition
WHAM weighted histogram analysis method
PTMetaD Parallel tempering metadynamics
BE bias exchange
cHP C-terminal headpiece (of Villin

and Advillin)

Atomistic simulations of complex systems are nowadays
routinely exploited in solid state physics, biophysics and
chemistry and are becoming increasingly useful, as they have
the potential to investigate processes with a high resolution
in time and space. However in several important cases
simulations are still not competitive if compared with more
empirical methods. This is mainly due to the fact that using
atomistic models is computationally expensive, as sufficiently
realistic potential energy functions are intrinsically complex.
Moreover, the dynamics of realistic systems spans a wide range
of characteristic times and the integration time step that is
used for evolving the system has to be commensurate with
the fastest dynamics, namely of the order of 1 fs. As a result,
the time scales that can be currently simulated are in the range
of hundreds of nanoseconds for classical molecular dynamics
and in the range of hundreds of picoseconds for first-principles
molecular dynamics (FPMD). Most phenomena of interest
take place on time scales that are orders of magnitude larger,
and are, therefore, rare events on the currently accessible
simulation time. Examples of rare events are chemical
reactions and structural phase transitions and, in biophysics,
protein folding, protein–protein interactions and molecular
recognition. Given the spectacular increase in computer
efficiency that we are witnessing, it is very probable that in the
near future it will be possible to observe by direct simulation
the reactive trajectories of more and more complex systems.
Industry and academia are building larger and larger machines
designed at this scope. Prominent examples are Blue Gene,
the massively parallel supercomputer developed at IBM, and
Desmond, the purpose-built machine developed at DESRES.
Both supercomputers are designed to make the time scale
necessary for folding an average size protein accessible to
simulation, and the enormous sum of money that is invested in
the projects is justified by the striking practical and theoretical
importance of this goal. Still, the brute-force approach will
probably remain for a long time available only to a few
research groups. Moreover, observing one or a few reactive
trajectories might not be sufficient for converging statistical
averages and computing observables that can be compared with
experiments.

A different way to overcome these difficulties is to
renounce the all-atom description and use instead a coarse-
grained model. This would retain only those characteristics
which are essential but would require a detailed knowledge of
the systems that is often unavailable.

If one does not want to renounce the atomistic description,
one can exploit a methodology aimed at accelerating rare
events using the available computer time with improved
efficiency. Using these approaches, notable success has been
achieved in several fields, ranging from solid state physics to
quantum chemistry. Broadly speaking these methods can be

classified in four categories, according to their scope and range
of applicability:

(i) Methods aimed at reconstructing the probability distribu-
tion or enhancing the sampling as a function of one or a few
predefined collective variables (CVs). For instance, in a
chemical reaction one would choose the distance between
two atoms that have to form a bond or, in the study of nucl-
eation, the size of the nucleus and enhance the sampling
as a function of these coordinates [1]. Examples of these
methods include thermodynamic integration [2, 3], free
energy perturbation [4], umbrella sampling [5], confor-
mational flooding [6], weighted histogram techniques [7–
9], Jarzynski’s identity-based methods [10, 11], adaptive
force bias [12, 13], steered MD [14] and adiabatic molec-
ular dynamics [15]. These approaches are very powerful
but require a careful choice of the CVs that must provide
a satisfactory description of the reaction coordinate. If an
important variable is forgotten they suffer from hysteresis
and lack of convergence. Moreover, when more than a
few CVs are used, the computational performance rapidly
degrades as a function of the number of variables.

(ii) Methods aimed at exploring the transition mechanism and
constructing reactive trajectories [16], such as nudged
elastic band [17], finite-temperature string method [18,
19], transition path sampling [20–22], transition interface
sampling [23], milestoning [24] and forward flux
method [25]. These methods do not require in most of
the cases the explicit definition of a reaction coordinate,
but require an a priori knowledge of the initial and final
states of the process that has to be simulated. For instance,
if applied to the study of folding, these methods require a
knowledge of the folded and ‘unfolded’ state [26].

(iii) Methods for exploring the potential energy surface
and localizing the saddle points that correspond to
the transition states such as eigenvalue following [27],
the dimer method [28], hyperdynamics [29], multiple-
time scale accelerated molecular dynamics [30] event-
based relaxation [31]. These approaches are extremely
powerful for exploring potential energy surfaces of low
dimensionality, but their reliability degrades with the
complexity of the system. Indeed, for very large or
complex systems the number of possible transition states
surrounding a minimum becomes rapidly too large for
a deterministic search. Even if strategies have been
designed to alleviate this problem that are effective in
some special cases [31], in solvated systems the concept
of saddle point on the potential energy surface becomes
fuzzy, and these approaches cannot easily be applied.

(iv) Methods in which the phase space is explored
simultaneously at different values of the temperature, such
as parallel tempering [32] and replica exchange [33], or as
a function of the potential energy, such as multicanonical
MD [34] and Wang–Landau [35]. These approaches are
very general and powerful; however, they are not immune
from some of the limitations listed in point 1. Indeed,
these methods exploit more or less explicitly the potential
energy as a generalized CV. In several cases, ordered and
disordered states may correspond to the same value of
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potential energy, or be present in the thermal ensemble at
the same temperature. This may lead to hysteresis and
convergence problems [36].

The metadynamics method [37] encompasses several
features of other techniques and provides in many cases
a unified framework for computing free energies and
accelerating rare events. The algorithm is based on
a dimensional reduction, in the spirit of the work by
Kevrekidis [38, 39]. Like the approaches listed in point (i)
above, metadynamics requires the preliminary identification
of a set of CVs which are assumed to be able to describe
the process of interest. Its power, as will be shown in the
following, lies in its ability to treat several CVs simultaneously
and in its flexibility: the method can be proficiently used both
for reconstructing the free energy and for accelerating rare
events. The dynamics in the space of the chosen CVs is
enhanced by a history-dependent potential constructed as a
sum of Gaussians centered along the trajectory followed by
the CVs. This manner of biasing the evolution was first used
by the taboo search method [40] and, in the context of MD,
by the local elevation method [41]. A similar approach is
also found in the Wang and Landau algorithm [35], adaptive
force bias [12] and self-healing umbrella sampling [42]. In
metadynamics the sum of Gaussians is exploited to reconstruct
iteratively an estimator of the free energy.

The working principle of the algorithm can be qualitatively
understood by a simple example. Imagine a walker who,
during the night, falls into an empty swimming pool. The walls
of the swimming pool are too steep for the walker to climb and
the complete darkness makes it difficult for him to localize
the shallowest point (lowest saddle). In these conditions the
walker will move more easily downhill, and it is rather unlikely
that he will find by chance the lowest saddle. His walk in these
conditions resembles that performed by microscopic systems
in normal molecular dynamics or Monte Carlo: a random walk
with a bias in the direction of lower free energy, with a very
small probability to explore transition regions (climb out of
the pool). In metadynamics, the walker has access to a large
source of sand that he can deposit in his current position. The
sand will slowly fill the pool. Thus, even if at the beginning
he visits more often the region at the bottom of the pool, little
by little he fills the pool with sand (Gaussians), and he almost
deterministically starts exploring regions that are higher and
higher. Sooner or later, the walker is destined to fill sufficiently
the pool to be able to climb out of it. And most probably he will
climb out from the shallowest point of the pool. The novel idea
that differentiates metadynamics from pre-existing methods is
that if the walker is able to keep memory of all the positions in
which he has deposited sand (the Gaussians), he will be able to
reconstruct a negative image of the underlying pool (the free
energy). More precisely, one assumes that the time dependent
potential defined by the sum of Gaussians deposited up to
time t provides an unbiased estimate of the free energy in the
region explored during the dynamics. This property, that does
not follow from any ordinary thermodynamic identity, such
as umbrella sampling [5], was postulated on a heuristic basis
in [37], and afterwards verified empirically in several systems
of increasing complexity. Successively [43], it was shown

that this property derives from rather general principles, and
can be demonstrated rigorously for a system evolving under
the action of a Langevin dynamics. This will be discussed in
detail in section 3.

Since the history-dependent potential iteratively compen-
sates the underlying free energy, a system evolved with meta-
dynamics tends to escape from any free energy minimum via
the lowest free energy saddle point. This makes metadynam-
ics a rather flexible tool that can be used not only to compute
efficiently the free energy but also to explore new reaction path-
ways and accelerate the observation of rare events. If the CVs
are chosen sensibly the system will quickly find its way over
the lowest free energy saddle point and evolve over the next
minimum as it would eventually do in a very long MD simula-
tion. This flexibility is reflected in the disparate fields to which
the method has been applied so far, including solid state and
material science [44–53], crystal structure prediction [54–60],
biophysics [61–74] and chemistry [75–105].

This review is organized as follows. In section 1 the
metadynamics algorithm is described along with its main
variants. In section 2 the manner in which the CVs have to
be chosen is described and the most useful CVs used in the
literature are listed. In section 3 the algorithm is analyzed
in more detail, proving that the sum of the Gaussians that
bias the dynamics provides an unbiased estimate of the free
energy. Moreover, an explicit expression of the error as a
function of the metadynamics parameter is provided. Section 4
contains practical examples of implementation and application
of metadynamics. Finally, section 5 reports on the most recent
extensions of the method, aimed at improving the capability of
the algorithm to treat systems in which it is not easy to select
a priori a small yet complete set of CVs.

1. The algorithm

Consider a system described by a set of coordinates x and
a potential V (x) evolving under the action of a dynamics,
which could be for instance Langevin, Newtonian (under the
action of a thermostat) or Monte Carlo, whose equilibrium
distribution is canonical at a temperature T . The set of
coordinates x may include ordinary atomic positions, but
also electronic coordinates, as in Car–Parrinello molecular
dynamics [106], box shape, as in Parrinello–Rahman [107], or
any other auxiliary variables. We are interested in exploring
the properties of the system as a function of a finite number of
collective variables (CVs) Sα(x), α = 1, d where d is a small
number, assuming that they provide a good coarse-grained
description. The CVs can be any explicit function of x such as
an angle, a distance, a coordination number or the potential
energy (see section 2). The equilibrium behavior of these
variables is completely defined by the probability distribution:

P(s) = exp(−(1/T )F (s))∫
ds exp(−(1/T )F (s))

, (1)

where s denotes the d dimensional vector (s1, . . . , sd) and the
free energy F(s) is given by

F(s) = −T ln

(∫
dx exp

(
− 1

T
V (x)

)
δ(s − S(x))

)
. (2)
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In equation (2) (and in the following) capital S is used for
denoting the function of the coordinates S(x), while lower
case s is used for denoting the value of the CVs.

Consider now a trajectory x(t) at a temperature T . If this
trajectory could be computed for a very long time, P(s) could
be obtained by taking the histogram of the CV s along this
trajectory, i.e. at time t , P(s) ∼ 1

t

∫ t

0 dt ′δ(S(x(t ′))− s). If the
system displays metastability, the motion of s will be bound
in some local minimum of the free energy F(s) (i.e. in a local
maximum of P(s)) and it will escape from this minimum with a
very low probability. In thermodynamic integration [2, 3] and
weighted histogram analysis method [8, 9], the sampling of the
phase space is enhanced by adding a constant external potential
or a constraint. If, for example, the dynamics is restrained
by an external potential of the form k

2 (s − S(x))2 [8], the
system will explore preferentially the region around s even
if it is not at the bottom of a free energy well. The free
energy is then reconstructed using the combined information
obtained from simulations restrained or constrained at several
values of s. In this way it is possible to collect sufficient
statistics for every value of s. In these methods the CV
space is explored sequentially and systematically following a
predefined scheme. In metadynamics, instead, the free energy
is reconstructed recursively, starting from the bottom of the
well by a history-dependent random walk that explores a larger
and larger portion of configuration space. In the simplest
molecular dynamics implementation of the algorithm the
mathematical equivalent of the sand deposited by the walker, in
the example of the introduction, is a small repulsive Gaussian
potential added every τG MD steps. This manner of biasing
the dynamics is usually referred to as ‘direct metadynamics’.
The external (‘metadynamics’) potential acting on the system
at time t is given by

VG(S(x), t) = w
∑

t ′ = τG, 2τG, . . .

t ′ < t

exp

(
− (S(x) − s(t ′))2

2δs2

)
,

(3)

where s(t) = S(x(t)) is the value taken by the CV at time t .
Three parameters enter the definition of the VG:

(i) the Gaussian height w

(ii) the Gaussian width δs

(iii) the frequency τG at which the Gaussians are added.

These parameters influence the accuracy and efficiency of the
free energy reconstruction as will be discussed in detail later.
Qualitatively, they define the volume of the ‘sand’ the walker is
depositing. If the Gaussians are large, the free energy surface
will be explored at a fast pace, but the reconstructed profile will
be affected by large errors. Instead, if the Gaussians are small
or are placed infrequently the reconstruction will be accurate,
but it will take a longer time.

As a first example, consider the system depicted in figure 1.
Metadynamics is performed on the one-dimensional potential
with three minima represented in the lower panel with a
thick black line. The system evolves through an overdamped
Langevin equation [108] with time step 1, diffusion coefficient

-6 -4 -2 0 2 4 6
s

-15

-10

-5

0

0 100 200 300
Number of Gaussians

-6

-4

-2

0

2

4

s
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10

15

20
20 Gaussians
69 Gaussians
180 Gaussians

Figure 1. (Colour online.) Upper panel: trajectory of a
one-dimensional system evolved by a Langevin equation on the
3-minima potential represented in the lower panel. The dynamics is
biased with a metadynamics potential VG as defined by equation (3).
The parameters are δs = 0.4, w = 0.3 and τG = 300. Middle panel:
time evolution of the metadynamics bias potential VG. Blue line:
VG as when the first minimum is filled and the system ‘escapes’
to the second minimum; red line: VG as when also the second
minimum is filled; orange line: VG when the entire profile is filled
and the dynamics becomes diffusive. Lower panel: time evolution
of the sum of the metadynamics potential VG and of the external
potential, represented as a thick black line.

D = 0.005 and at a temperature of 1. The dynamics is
started from the central minimum. Without any bias the system
would escape from this minimum with very low probability,
since the barrier separating it from the minimum on the left
is approximately four times the thermal energy. The upper
panel shows the trajectory followed by the system under the
action of a metadynamics bias. A Gaussian of width δs = 0.4
and height w = 0.3 is added every 300 steps. After ∼20
Gaussians (corresponding to 6000 steps) the central minimum
is filled and the system escapes from the well through the lowest
saddle point (blue lines in figure). The second well is filled
after ∼70 Gaussians (red lines). The second highest saddle
point is reached after ∼100 Gaussians, and the full free energy
surface is filled with a total of ∼180 Gaussians (orange lines).
After that time, the motion of the system becomes diffusive
and unbound in the region of CV space between ∼ − 5 and 5.
The metadynamics potential VG (equation (3)) is represented
at different times in figure 1, middle panel. The lower panel
of figure 1 reports the sum of VG and of the external potential

4

laasonk1
Highlight

laasonk1
Highlight

laasonk1
Highlight

laasonk1
Highlight



Rep. Prog. Phys. 71 (2008) 126601 A Laio and F L Gervasio

(thick black line). Clearly, as the simulation proceeds, VG

iteratively compensates the underlying potential.
This example provides a hint of the two different manners

in which metadynamics can be used:

• It can be used to ‘escape free energy minima’ [37], i.e. to
find the lowest free energy saddle point out of a local
minimum. In this case the metadynamics should be
stopped as soon as the walker exits from the minimum
and starts exploring a new region of space. In figure 1,
this happens after ∼20 Gaussians are placed.

• It can be used to exhaustively explore a predefined region
in the CV space and reconstruct the free energy surface.
In this case the simulation should be stopped when the
motion of the walker becomes diffusive in this region. In
figure 1, this happens after ∼180 Gaussians are placed.

The basic assumption of metadynamics is that VG(s, t)

defined in equation (3) after a sufficiently long time provides
an estimate of the underlying free energy:

lim
t→∞ VG(s, t) ∼ −F(s). (4)

This equation states that an equilibrium quantity, namely the
free energy, can be estimated by a non-equilibrium dynamics
in which the underlying potential is changed every time
a new Gaussian is added. This relation does not derive
from any standard identity for the free energy, such as the
umbrella sampling equality or the perturbation free energy
formula. In [37], equation (4) was postulated heuristically,
observing the effect of the history-dependent potential on
the dynamics of the CVs on free energy surfaces of known
functional form. For instance, in the example of figure 1,
it is clear that the sum of F and VG after ∼180 Gaussians
is approximately a constant, except for small ripples that
would be in different positions in a statistically independent
run. For an atomistic system in which the potential depends
on the position of several atoms and the free energy is the
result of a complex dimensional reduction, equation (4) can
be qualitatively understood in the limit of slow ‘deposition’
(i.e. w → 0). In this limit, VG(s, t) varies very slowly
and the probability to observe s is always approximately
proportional to exp[− 1

T
(F (s) + VG(s, t))]. If the function

F(s) + VG(s, t) has some local minimum, s will preferentially
be localized in the neighborhood of this minimum and
increasing numbers of Gaussians will be added there until
this minimum is completely filled. Let us consider instead
the case in which F(s) ∼ −VG(s, t) in a region �(s).
The probability distribution will be approximately flat in this
region, and the location of the new Gaussians will not be
affected by the bias deriving from the difference F(s) +
VG(s, t). Hence, if w → 0, the only corrugations in the
free energy that are not flattened by the dynamics will be
of the order of the size of the newly added Gaussians. The
validity of equation (4) for finite w will be discussed in detail
in section 3.

If the CV is a d-dimensional vector, namely two or more
CVs are used at the same time, the metadynamics potential is

given by

VG(S(x), t)

= w
∑

t ′ = τG, 2τG, . . .

t ′ < t

exp

(
−

d∑
α=1

(Sα(x) − sα(t ′))2

2δs2
α

)

(5)

and it is necessary to choose a width δsα for each CV. The
time required to escape from a local minimum in the free
energy surface is determined by the number of Gaussians that
are needed to fill the well. This number is proportional to
(1/δs)d , where d is the number of CVs used in the system.
Hence, the efficiency of the method scales exponentially with
the number of dimensions involved. If d is large, the only way
to obtain a reasonable efficiency is to use Gaussians with a size
comparable to that of the well. On the other hand, a sum of
Gaussians can only reproduce features of the FES on a scale
larger than ∼δs. Already from these simple considerations it is
clear that the metadynamics works properly only if d is small,
and that the quality of the reconstructed free energy is strongly
influenced by the parameters w and δs. These parameters
have to be carefully chosen to strike the best balance between
accuracy and sampling efficiency. Large values for w and δs

allow for a fast sampling of the CV space at the price of a low
accuracy. However, if a large volume of Gaussians is placed in
a short time, the reconstructed free energy can be totally wrong
(see [79]).

1.1. Lagrangian metadynamics

If the metadynamics method is used for simulating chemical
reactions by FPMD [75, 78, 106], the history-dependent
potential has to force the system to cross barriers of several
tenths of kcal mol−1 in a short time, usually a few picoseconds.
This implies that a lot of energy has to be injected in the degrees
of freedom associated with the CVs. This might lead to a
significant inhomogeneity in the temperature distribution of
the system, and possibly to instabilities in the dynamics.

To address this problem, in the spirit of the
extended Lagrangian approach [106, 107, 109], reference [75]
introduces auxiliary variables s̃ coupled to the system by
harmonic restraining potentials of the form 1

2k(̃s − S(x))2. A

fictitious kinetic energy 1
2M ˙̃s

2
is also assigned to the auxiliary

variables. The dynamics of these extra degrees of freedom
can be explicitly controlled by suitable thermostats and the
trajectory of s̃ can be smoothened so as to control the stability
of the algorithm.

The modified potential for the system is

Ṽ (x, s̃) = V (x) + 1
2k(̃s − S(x))2. (6)

The free energy as a function of the s̃ variables is given by

F̃ (̃s) = −T ln

(∫
dx d̃s′ exp

(
− 1

T

[
V (x)

+
1

2
k(̃s ′ − S(x))2

]))
δ(̃s ′ − s̃)

= −T ln

(∫
dx exp

(
− 1

T

[
V (x) +

1

2
k(̃s − S(x))2

]))
.
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Since limk→∞ exp(− 1
T

1
2k(̃s − S(x))2) ∝ δ(̃s − S(x)),

limk→∞ F̃ (̃s) = F (̃s), modulus an additive constant. Hence,
the free energy of a system of potential V (x) can be obtained by
performing metadynamics on the extended system of potential
given by equation (6) if k is large enough. In practice, the value
of this parameter is assigned by performing an ordinary MD
run on the extended system. k must be chosen in such a way
that the typical value of the difference s̃ −S(x) is smaller than
the length on which the free energy varies of approximately T .
This leads to the condition

〈(̃s − S(x))2〉 ∼ T

k
(〈̃s2〉 − 〈̃s〉2), (7)

where the averages are taken at a temperature T and in the
absence of the metadynamics bias.

The value of the mass is a free parameter, that can be
tuned in order to obtain a smooth evolution of the s̃. Within a
Car–Parrinello scheme [106] an important requirement is the
adiabatic separation from the electronic degrees of freedom.
Since the extra term in the Hamiltonian introduces frequencies
of the order of

√
k/M , and since k is fixed by equation (7),

this defines a lower bound for M . On the other hand, if M is
very large, the collective variables will relax to the equilibrium
distribution slowly, reducing the efficiency of the method. For
a detailed review about the proper way to tune these parameters
see [79].

An advantage of taking a large M is also that, as will be
shown in section 3, the metadynamics potential is an exact
unbiased estimator of the free energy only if the unbiased
dynamics along s can be described by a Markovian stochastic
process. Markovianity in the s evolution can be imposed, at
least in principle, by taking a sufficiently large M [110]. In
fact, for large M all the coordinates of the system relax to
their equilibrium distribution before s moves significantly, and
this ensures a memory-less dynamics [108, 111]. However,
in practical applications, if the CVs are properly chosen,
the systematic error deriving from memory effects on the s

dynamics is negligible (see sections 3 and 4.2). The situation
is dramatically different if an important variable is not included
in the CVs that determine the metadynamics bias. In this case,
as will be discussed in section 2, the method does not converge
in a finite simulation time, and the bias potential evolves
unpredictably, in a way that is determined by the transitions in
the hidden variables. This can be viewed as an extreme case
of memory effect and one can imagine to cure the problem by
choosing M so large that the system has time to perform several
transitions in the hidden degrees of freedom before s moves
significantly [109]. Unfortunately, this approach is impractical
if the barriers in the hidden degrees of freedom are higher than
a few kBT .

1.2. Discrete metadynamics

Metadynamics was originally formulated [37] so as to enforce,
at least in principle, the exact separation between the dynamics
of the CVs and the dynamics of the normal microscopic
variables. This variant of the algorithm, that will be referred
to as discrete metadynamics, requires a stepwise evolution of

the CVs. The true dynamics of the system is used only for
computing the derivative of the free energy F(s) at fixed values
of the CVs, fα(s) = −∂F/∂sα . This is done by performing
short finite temperature molecular dynamics runs in which
the normal Lagrangian of the system is modified with a term∑

α=1,d λα(Sα(x) − sα), where λα are Lagrange multipliers.
The derivative of the free energy with respect to the sαs is
calculated as the time-average of the Lagrange multipliers:
fα(s) = 〈λα〉 [2, 3]. Kinematic corrections due to the influence
of inertial terms on the constraints can also be included [3].
The f s determined in this way are then used together with the
forces coming from a history-dependent potential to update the
collective variables as

sα(t + 1) = sα(t) + εδsα

fα(s(t)) + f meta
α (s(t))

|f (s(t)) + f meta(s(t))| , (8)

where ε is a stepping parameter of the order of one. The
history-dependent forces f meta

α are derived by a potential that
is identical to the one defined in equation (5), but depends
directly on s and not on S(x):

f meta
α (s) = − ∂

∂sα

VG(s, t)

= − ∂

∂sα

w
∑
t ′�t

exp

(
−

∑
α

(sα − sα(t ′))2

2δs2
α

)
.

After the collective coordinates have been updated using
equation (8), an ensemble with values s(t + 1) is prepared,
and the new forces f (t + 1) are evaluated in another MD run.
Similarly to what happens in the continuous algorithm, the
forces due to the bias potential discourage the walker from
revisiting the same spot and encourages an efficient sampling of
the free energy surface. As the walker diffuses through the CV
manifold, the Gaussian potentials accumulate and fill the free
energy basins, allowing the system to explore all the minima.
Eventually the sum of Gaussians, VG, will approximately
compensate the underlying free energy, i.e. F(s) + VG(s) will
become approximately constant.

In [112] the quality of VG as a statistical estimator of
the free energy F is analyzed in detail, and a few tricks for
improving the performance of the algorithm are described.
Since in the discrete algorithm the force f is estimated by
a molecular dynamics or a Monte Carlo simulation, its error
will scale with the square root of the total computational
time, and this will ultimately determine the cost of the free
energy reconstruction. The recipe proposed in [112] is to
stop sampling when the estimated uncertainty on the force is
equal to the maximum force introduced by a single Gaussian,
w exp(−1/2)/δs. This choice ensures that for large values
of t the typical force is of the order of w/δs. Improving
the accuracy on the force calculation would lead to the
same uncertainty because of the repeated superposition of
the Gaussians. If this choice is made, the error at fixed
δs becomes in practice linear in w and can be controlled.
This allows merging, by weighted histogram techniques [8],
free energy estimates obtained in two or more independent
metadynamics [112].

As already mentioned, discrete metadynamics builds on
the separation of time scales between the dynamics of the CVs
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and the dynamics of the normal coordinates of the system.
This feature makes it, at least in principle, more rigorous than
the continuous version of the algorithm described in section 1.
Nevertheless, as already underlined, systematic error deriving
from memory effects on the s dynamics are not observed in
practical applications, except when an important variable is
left apart. If this is the case, also the discrete version of the
algorithm does not converge, as the derivatives of the free
energy are affected by large systematic errors. This has led to
a wider diffusion of the continuous version of the algorithm,
that is easier to implement in molecular dynamics codes (see
section 4).

2. The choice of CVs

Similarly to other methods that reconstruct the free energy in a
set of generalized coordinates, the reliability of metadynamics
is strongly influenced by the choice of the CVs. Experience
has demonstrated that choosing the right set of CVs is difficult
but not impossible also in complex cases. If this is done,
metadynamics provides very reasonable transition pathways
and, more importantly, is able to discover new unpredicted
stable and metastable states. Ideally the CVs should satisfy
three properties:

• They should clearly distinguish between the initial state,
the final state and the intermediates.

• They should describe all the slow events that are relevant
to the process of interest.

• Their number should not be too large, otherwise it will
take a very long time to fill the free energy surface.

Clearly, the second and third conditions might be mutually
exclusive, and in many cases it can be very difficult to find a
‘good’ set of CVs. This happens, for instance, in the study of
the folding of β-hairpin, a small polypeptide that forms a 20
residues-long β-turn [113]. In this case no combination of two
or three variables was able to describe all the slow degrees of
freedom. In similar cases the combination of metadynamics
with parallel tempering or bias exchange or the use of path-like
CVs provide good alternatives. These ‘special’ methods will
be described in section 5.

Why is it so important to bias explicitly all the ‘slow’
variables and what happens if a relevant CV is neglected? In
this respect, a simple metadynamics run on an idealized model
can be enlightening. Consider the Z-shaped two-dimensional
free energy depicted in figure 2. If a metadynamics simulation
is performed biasing only CV1 and neglecting CV2 the
simulation, that is started in basin B, is not able to perform
in due time a transition toward A, and metadynamics goes on
overfilling this minimum. A transition is finally observed only
when the height of the accumulated Gaussians will largely
exceed the true barrier height. This behavior will continue
indefinitely without ever reaching a situation in which the free
energy grows evenly as in the example of figure 1.

A similar behavior is often observed in real cases and
is a strong indication that an important CV is missing. For
instance, it was observed in the metadynamics simulation
of the translocation of tetramethylammonium (TMA) in the

Figure 2. The effect of neglecting a relevant degree of freedom.
Left side: 2D Z-shaped potential. Right side: the trajectory of
a metadynamics simulation generated using only s1 as CV.
Transitions from A to B are properly described by CV1, causing
strong hysteresis in the reconstructed free energy.

acetylcholinesterase (AChE) gorge [63]. The study was aimed
at describing the mechanism of penetration of TMA in the
gorge. A first metadynamics run was attempted using only one
CV: the distance of the TMA center of mass from the active site
of AChE. This resulted in a typical hysteretic behavior of the
reconstructed FES. By an in-depth analysis of the trajectories
it was then found that some aromatic residues block the gorge
of AChE and act as a gate for the TMA translocation. If a
second variable describing the opening of the gate is added,
hysteresis is not observed anymore [63].

From the above discussion it should be clear that there is
no a priori recipe for finding the correct set of CVs, and in many
cases it is necessary to proceed by trial and error, attempting
several metadynamics simulations with different combinations
of variables. Of course, one can check a posteriori if the
description provided by the chosen set is accurate, for instance
by using transition path sampling techniques [20, 21] or by
performing a committor test (see [20, 21]). Even without
performing a specific check, an hysteretic behavior in the free
energy reconstruction always signals the lack of a relevant CV.
If, instead, the free energy grows ‘smoothly’ it is likely that
the set of variables is complete [37, 114] (see also the example
in section 4.2).

2.1. Examples of collective variables

In this section some of the variables that have been used in
applications are briefly described.

Geometry-related variables. The simplest type of CVs are
geometry related, such as distances, angles and dihedrals
formed by atoms or groups of atoms. These variables
are frequently used in the study of chemical reactions
and biophysical systems. For example, to study protein-
ligand recognition, metadynamics can be performed with the
‘standard’ variables used by many docking programs, namely
the distance between the ligand and the cavity and one or more
angles defining the orientation of the ligand [62].

Coordination numbers. The coordination number is prob-
ably the most general and useful collective variable. It is
defined as

S(r) =
∑
i,j

f (rij ) (9)
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with

f (rij ) = 1 − (rij /r0)
n

1 − (rij /r0)m
, (10)

where the sums on i and j run on two sets of atoms. The
function f (r) is approximately 1 for r < r0 and goes to zero
for large r . The parameters n and m can be used for tuning
the smoothness of the function and its asymptotic behavior as,
for large r , f (r) ∼ 1/rm−n. The coordination number can be
used, for instance, to detect the presence of a bond between two
atoms or for counting the bonds between two different atomic
species. It is very commonly exploited for exploring and
discriminating different pathways in chemical reactions [75–
78, 115–117]. In biophysical systems, it can be used to count
the hydrogen bonds or the hydrophobic contacts [65, 113, 118].

Potential energy. The potential energy of the system can be
used as a CV and it is particularly useful for studying phase
transitions [49, 112]. As shown previously [7], computing the
free energy as a function of V allows estimating the density
of states �(V ) and extracting the temperature dependence of
the observables, the specific heat, etc from a run performed at
a single temperature. In fact

FT (V ) = − T log
∫

dre− 1
T

V (r)δ(V − V (r))

= V − T log
∫

drδ(V − V (r))

= V − T log �(V ),

where the last equation defines the density of states �(V ). The
free energy at a temperature T ′ different from T is given by

FT ′(V ) = V − T ′ log �(V ) = V − T ′

T
(V − FT (V ))

and the average value of V at T ′ is given by

〈V 〉 =
∫

dV V exp(−(1/T ′)FT ′(V ))∫
dV exp(−(1/T ′)FT ′(V ))

.

These relations are at the basis of the Ferrenberg and Swendsen
approach [7] for combining energy histograms estimated at
different temperatures, and, as shown in [112], can be used
for combining the results of metadynamics runs performed at
different T .

As also discussed in [112] the Wang and Landau
sampling [35], a very popular approach aimed at reconstructing
the density of states of complex systems, can be mimicked
by performing metadynamics at a very high temperature and
reducing iteratively the height of the Gaussians every time
the system explores all the energy range. In fact, at large T

the free energy is largely dominated by the density of states
contribution, namely T log �(V ).

Box shape. In [54] metadynamics was combined with the
Parrinello and Rahman approach [107] for studying crystal
structure transformations. The three super-cell edges a, b, c,
arranged as a 3 × 3 matrix h = (a, b, c) [54, 55], are used
as CVs. For relatively small systems, where the creation of
defects is too expensive, the box matrix h is likely to be simply

related to the unit cell u via the relation h = um, where m is an
integer matrix. The matrix h can therefore distinguish between
different unit cells and crystal structures. As the matrix h
can always be chosen to be upper triangular, the independent
CVs are 6. At pressure P and temperature T the appropriate
thermodynamic potential for studying crystal transformations
is the Gibbs free energy G(h) = F(h) + PV where F(h)

is the Helmholtz free energy of the system at fixed box and
V = det(h) is the volume. During metadynamics the box
shape changes, the wells in G(h) get filled and the system
evolves from the initial structure toward novel structures,
which correspond to new minima of the Gibbs free energy
at the thermodynamic conditions of interest [56–60].

For studying crystal structure transformations it is
convenient to use the algorithm in its discrete version. This
requires calculating the derivatives of the free energy with
respect to the collective variables

− ∂G
∂hij

= V [h−1(p − P)]ji , (11)

where p is the internal pressure tensor, which can be
evaluated in MD or Monte Carlo simulations at constant h
from the averaged microscopic virial tensor [119]. Further
technical details on how to perform the simulation, choose the
metadynamics parameters and analyze the results can be found
in a dedicated review [55]. For the scope of the present review it
is sufficient to note that the number of independent CVs used in
crystal structure prediction, 6, is larger than that used in most
other applications and precludes an accurate reconstruction
of the free energy surface, as the complete exploration of
the six-dimensional space would require a prohibitively long
simulation time. This is a case where metadynamics is only
used as a tool for exploring efficiently the configuration space
and finding new structures. Once the structures are found, their
free energy difference can be efficiently computed with other
techniques [120].

Path variables. The ansatz of approximating the intrinsic
reaction coordinate with a path connecting two stable basins in
energy or free energy space has been used in several powerful
approaches aimed at elucidating the reaction mechanism [16–
19]. Path variables can also be used in metadynamics
and effectively help alleviating the ‘curse of dimensionality’,
namely the rapid loss of efficiency of the approach that takes
place when more and more variables are biased. In fact,
a path can be defined in a very high-dimensional space, in
principle even in the full phase space [17–19], but the position
of a system along a path is an intrinsically one-dimensional
quantity.

Ensing et al [79] propose a multi-stage approach in which
first a ‘coarse’ free energy surface is built with metadynamics
in several dimensions (up to six). In the second step a
path connecting different stable free energy basins is built on
the coarse multidimensional FES. The free energy along the
optimized path is then refined with umbrella sampling or one-
dimensional metadynamics. This approach is very powerful as
it exploits one of the most important features of metadynamics,
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namely its capability of providing a quick and efficient coarse-
grained map of the free energy, exploring rapidly the relevant
metastable states.

In [121] two path-like variables (PCV) are introduced that
are able to describe the position of a point in configurational
space relative to a pre-assigned path:

s(x) = lim
λ→∞

∫ 1
0 te−λ‖S(x)−S(t)‖2

dt∫ 1
0 e−λ‖S(x)−S(t)‖2 dt

, (12)

z(x) = lim
λ→∞

−1

λ
ln

∫ 1

0
e−‖S(x)−S(t)‖2

dt (13)

where t parametrizes a path S(t) in a high-dimensional CV
space and ‖ . . . ‖ indicates the distance in this space. For
any microscopic configuration x, s(x) and z(x) measure,
respectively, the progression along the path and the distance
from the path. In practical applications, a first guess for the
path is discretized with a discrete number of frames S(l), l = 1,
P with S(1) = SA and S(P ) = SB , and equations (12) and
(13) are approximated by finite sums over l. The distance
‖ . . . ‖ in equations (12) and (13) can be defined in different

Figure 3. Schematic representation of the alanine dipeptide
molecule. The backbone dihedral angles φ and ψ are shown.
The C7eq configuration corresponds to structures having
−150◦ < φ < −30◦ and 0◦ < ψ < 180◦ . The C7ax configuration
corresponds to structures having 30◦ < φ < 130◦ and
−180◦ < ψ < 0◦.

Figure 4. Correspondence between minimum free energy paths in Ramachandran plot representation (panel a) and s, z space (panel b). The
isoline separation is 1.0 kcal mol−1. The yellow path is the reference path. The cyan and red paths represent alternative low-free energy
paths found by PCV.

spaces. A possible simple metric is the RMSD between
the two structures after they are optimally aligned using the
Kearsley [122] algorithm. Different choices for the metric are
also possible, as e.g. the contact map (CMAP) matrix C(x)

defined as f (rij ) in equation (10) where ri,j is the distance
between the ith and j th Cα atoms of the protein backbone, n

and m set to 6 and 10, respectively and the cutoff distance r0

is taken to be r0 = 8.5 Å [123]. The square distance ‖ . . . ‖2

between a generic state x and a point along the path described
by the CMAP SC(l) is measured in this case as

‖SC(x) − SC(l)‖2 =
∑
j>i

(Ci,j (x) − Ci,j (l))
2, (14)

where nearest neighbors are excluded from the sum.
As shown elsewhere [19], the initial guess on the path can

be refined at will, eventually finding a rigorous parametrization
of the committor. Still, if a totally independent reaction
mechanism exists, it will be explored with vanishingly small
probability as a transition between the two mechanisms is
a ‘rare event’ in paths space. Using z(x) together with
metadynamics allows exploring reaction pathways that are
further and further from the initial guess, eventually finding
a reaction pathway that is completely different [121]. Indeed,
independent reaction mechanisms are similar to different free
energy minima in path space, and metadynamics can help in
escaping local minima. An example taken from [121] of path
variables applied to study the reactive coordinates connecting
the two minima of alanine dipeptide in vacuum (represented
in figure 3) is reported in the following.

In figure 4, panel A the bi-dimensional FES as a function
of φ and ψ is reported. The yellow line corresponds to the
‘reference path’. In panel B the corresponding FES as a
function of S and Z is reported. As the distance from the
yellow path increases, two other independent low-free energy
paths are found (in red and cyan).

Normal modes. Normal modes and essential coordinates
have a long history in enhanced sampling methods, especially
for studying biological systems [124]. By analyzing relatively
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short MD trajectories or, even more simply, analyzing the
topology of the system, one can gather useful information
on what are the ‘slow’ or ‘soft’ modes of the system. Then
the sampling in the direction of these modes can be enhanced
applying various methods [6, 124]. For example, the system
can be evolved in at finite temperature in a local minimum
of the potential energy surface. The covariance matrix in a
suitably chosen space is then evaluated, and its normal modes
are used for constructing an appropriate bias potential, that
favours the transitions in the direction of the slow modes. The
normal modes can be used as CVs in metadynamics. In [125]
trajectories of the alanine dipeptide have been analyzed by
essential dynamics analysis [124] to trace major collective
motions. In this method, first the covariance matrix of the
atomic positional deviations is calculated. Diagonalization of
the matrix leads to eigenvalues and eigenvectors. The first and
second eigenvectors have been used to perform metadynamics
leading to a reconstructed FES in good agreement with other
computational as well as experimental studies of the model
system.

Protein-specific variables. In addition to the variables
described so far several other CVs have been developed to
explore the free energy surface of peptide (un)folding and
aggregation with metadynamics. These are the number of
Cγ contacts (NCγ ), number of Cα contacts (NCα or CMAP),
number of backbone H-bonds (Nhb), ‘helicity of the backbone’
(�α) and ‘dihedral correlation’ (�corr). NCγ , NCα or CMAP
and Nhb are defined as coordination numbers (equation (10)),
where rij is the distance between atoms i and j (either the Cγ

contacts , the Cα contacts, the HN, and O backbone atoms
or the functional groups of the charged amino acids). l = 8,
m = 10 and r0 = 5.0, 6.5 and 2.0 Å for NCγ , NCα and Nhb,
respectively. A slightly different definition of NCα, where the
exponents where l = 6, m = 10 and r0 was set to 8.5 Å was
used to study peptide aggregation in [69].

The helicity of the backbone is defined as [118]

�α =
n∑

i=1

1

2
[1 + cos(φi − φ0)], (15)

where φi is the backbone dihedral angle of residue i and φ0 is
−45◦. This variable counts the number of residues that have
φi ∼ φ0 and is useful for monitoring the presence of an α-helix.

The dihedral correlation is defined as

�corr =
N∑

i=2

√
[1 + cos2(φi − φi−1)], (16)

where φi is the backbone dihedral angle of residue i. In α-helix
and β-sheets, successive φ dihedrals have approximately the
same value. Thus, a large value of �corr is related to the
presence of secondary structure elements. These CVs have
been used in [71, 118] to study the folding of small proteins
and in [70] to study the helix–coil transition in DNA.

Collective variables for studying phase transformations.
Studying phase transformations by computer simulation is a
very important goal and has sometimes been defined the ‘holy
grail’ of computational physics. Clearly, in realistic systems it
is not possible to reconstruct systematically the energy density
of states, as can be done in model systems. Moreover, phase
transformations in realistic systems are usually first order
transitions, which means that a phase can exist for a finite
time also in conditions of metastability. For instance, liquid
water can exist also below zero degrees Celsius. Metastability
has very severe consequences: phenomena that are ordinary
on a human time scale correspond to extremely rare events in
computer simulation, so rare that they will simply not take
place unless a proper bias is applied. Several techniques
have been developed for computing the free energy difference
between two ordered (crystalline) phases [120] or a crystalline
and a disordered (liquid) phase [126–128] with the aim of
predicting the transition temperature or pressure. These
techniques are nowadays successfully applied to systems of
increasing complexity [129]. Usually these approaches do not
explicitly simulate the transformation between the two phases,
but rather compute the two free energies separately or rely
on phase coexistence [128]. The techniques used to simulate
how one phase is converted to the other by nucleation are
completely different [130], and usually require biasing one
or more order parameters that distinguish the two phases and
can drive the appropriate microscopic rearrangements. This
approach has also been followed in metadynamics. Usually,
appropriate order parameters are biased together with the
classical variable for phase transitions, the potential energy.
For instance, the reader is referred to [46], where the number
of five and six membered rings is used to describe the
hydrogen bonding pattern of water to study the nucleation
of the liquid phase in hexagonal ice. In [49] the nucleation
of a Lennard-Jones fluid was studied as a function of the
degree of supercooling in a metadynamics simulation where
the CVs were the potential energy and the Steinhardt order
parameter Q6 [131]. In [52] ice freezing was studied by using
a continuous version of the general Steinhardt parameter and
a tetrahedral order parameter ζ . Using these CVs the authors
showed homogeneous nucleation and growth of ice at 180 K
in the isothermal–isobaric ensemble without the presence of
external fields or surfaces.

3. Estimating the error

In order to best allocate the available computational resources
to study with metadynamics a given system, it is useful to
estimate a priori the performance of the method, and choose
the parameters to obtain the best possible accuracy in a given
simulation time. The accuracy and efficiency of the free
energy reconstruction is determined by the Gaussian width
δs , the Gaussian height w and the Gaussians deposition time
τG. Since metadynamics is usually applied for reconstructing
free energies in several dimensions, one can in principle
fix independently the Gaussian width in each dimension.
However, the relative units of different collective variables can
always be chosen in such a way that the shape of free energy
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well is approximately spherical. For instance, if the region
of interest is a single well, this can be done by computing
the standard deviations of the CVs in a preliminary finite
temperature run. Therefore in the following we will consider
only the case of a free energy well with spherical symmetry.
The parameter w and τG determine the height and the rate at
which the Gaussians are placed. In [132] it has been shown
that the error on the reconstructed profile is approximately
determined by the ratio w/τG and not by w and τG separately.
Indeed, adding a Gaussian of height, say, 0.2 kcal mol−1 every
picosecond is approximately equivalent to adding a Gaussian
of height 0.1 kcal mol−1 every 0.5 ps, as long as τG remains
much shorter than the time required to fill the free energy
basin. In real-life applications it is not practical to take a
very small τG as it implies deposing many Gaussians in a
short time, meaning that the evaluation of the metadynamics
forces a computational bottleneck. This problem, however, is
easily solvable. If instead of storing the Gaussian centers, the
program stores directly the history-dependent potential on a
grid, as proposed in [66], or the small Gaussians are from time
to time re-fitted with a few, larger Gaussians, τG can be further
reduced (see also section 4).

In order to understand how δs and w/τG influence the
accuracy and construct an explicit expression for the error,
consider first the idealized case in which the CVs evolve
following an overdamped Langevin dynamics:

ds = − 1

T
D

dF(s)

ds
dt +

√
2D dW(t), (17)

where dW(t) is a Wiener process and D is the diffusion
coefficient. The motion of the walker described by
equation (18) is assumed to satisfy reflecting boundary
conditions at the boundary of a region �. The evolution of this
system under the action of metadynamics is modeled adding a
history-dependent term to the free energy:

ds = − 1

T
D

d

ds

(
F(s) +

∫ t

0
dt ′g(s, s(t ′))

)
dt+

√
2D dW(t),

(18)
where g(s, s ′) is a kernel that specifies how fast the
metadynamics potential changes. In normal implementation g

is a Gaussian of width δs and height w/τG (see equation (3)):

g(s, s ′) = w

τG
exp

(
− (s − s ′)2

2δs2

)
.

It should be noted that in real systems the evolution of the CVs
is described by a much more complex stochastic differential
equation [133, 134] with memory and inertial terms. Still, as
will be discussed in the following, the quantitative behavior
of metadynamics is reproduced rather precisely by this simple
model. This is because, if the CV set is properly chosen, all
the relaxation times are smaller than the time required to fill
the free energy wells.

Equation (18) describes a non-Markovian process in CV
space. In fact, the forces acting on the CVs depend explicitly
on their history. Due to this non-Markovian nature it is not
clear whether, and in which sense, the system can reach a
stationary state under the action of this dynamics. In [43]

a formalism was introduced which allows one to map this
history-dependent evolution into a Markovian process in the
original variable and in an auxiliary field that keeps track of
the visited configurations. Defining

ϕ(s, t) =
∫ t

0
dt ′δ(s − s(t ′)), (19)

equation (18) can in fact be written as

dϕ = δ(s − s(t)) dt (20)

ds = − 1

T
D

(
d

ds

(
F(s) +

∫
ds ′ϕ(s ′, t)g(s ′, s(t))

))
dt

+
√

2D dW(t). (21)

These equations are fully Markovian, i.e. the state of the
system at time t + dt , (s(t + dt), ϕ(s, t + dt)), depends only
on the state of the system at time t, (s(t), ϕ(s, t)). Using this
property equation (18) can be rigorously analyzed to obtain,
for instance, its long time behavior.

The history-dependent potential at time t is related to
ϕ(s ′, t) by

VG(s, t) =
∫

ds ′ϕ(s ′, t)g(s, s ′). (22)

In order to characterize the average properties of a system
described by equation (21) it is convenient to consider the
probability P(s, [ϕ], t), to observe s and the field realization
ϕ. P(s, [ϕ], t) satisfies a Fokker–Planck equation that
can be directly derived from equation (21) using standard
techniques [111]. [43] shows that, for large t , P(s, [ϕ], t)
converges to a distribution P∞([ϕ]) that does not depend on s.
This distribution is Gaussian in functional space and is given by

P∞([ϕ]) ∝ exp

(
D

2T

∫
ds ds ′(ϕ(s ′)

−ϕ0(s
′))∂2

s g(s, s ′)(ϕ(s) − ϕ0(s))

)
, (23)

where ϕ0(s
′) is defined in such a way that its convolution with

the kernel g gives minus the free energy of the system F(s):

ϕ0(s
′) :

∫
ds ′ϕ0(s

′)g(s, s ′) = −F(s). (24)

Using equation (23) it is straightforward to prove that
the average value of VG(s, t) over several independent
metadynamics runs is exactly equal to −F(s). In fact, denoting
by 〈·〉M the average over several metadynamics realizations,
equation (22) gives

〈VG(s)〉M =
∫

ds ′g(s, s ′)〈ϕ(s ′)〉M

=
∫

ds ′g(s, s ′)
∫

dϕP∞(ϕ)ϕ

=
∫

ds ′g(s, s ′)ϕ0(s
′) = −F(s). (25)

This property is also illustrated in figure 5 in which the
results obtained integrating numerically equation (18) for four
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Figure 5. Metadynamics results for four different free energy profiles. (a) F(s) = −4; (b) F(s) = −5 exp(−( s

1.75 )2);
(c) F(s) = −5 exp(−( s−2

0.75 )2) − 10 exp(−( s+2
0.75 )2); (d) F(s) = −5 exp(−( s−2

0.75 )2) − 4 exp(−( s

0.75 )2) − 7 exp(−( s+2
0.75 )2). The average

〈F(s) + VG(s, t)〉 computed over 1000 independent trajectories is represented as a dashed line, with the error bar given by equation (27).
Errors are measured in units of the free energy. The metadynamics parameters are δs = 0.1 and w/τG = 4 × 10−4. We also have
D = 0.0005 and T = 1 and the CVs satisfy reflecting boundary conditions in a region of length 8. After [132].

different profiles F(s) are shown. The average value of
VG(s, t)+F(s) is represented as a continuous line in all the four
profiles, and is constant in all the explored region, as predicted
by equation (25).

The metadynamics error in s is given by the expected
deviation of VG(s, t) from −F(s):

ε2(s) = 〈(VG(s) + F(s))2〉M (26)

= 〈(VG(s) − 〈VG(s)〉M)2〉M. (27)

This error was estimated numerically for the four
profiles in figure 5, repeating several statistically independent
metadynamics runs. Remarkably, the error does not depend
on F(s), as shown by the error bars, that are indistinguishable
in the four cases. Moreover, the error is only marginally larger
close to the reflecting walls. Thus, ε2(s) can be conveniently
characterized by its average over the entire domain

ε2 = 1

vol(�)

∫
�

ds ε2(s). (28)

Using the explicit expression for the probability to observe
a given ϕ, equation (23), allows computing explicitly ε2(s) or
ε2 and these turn out to be independent of F(s). The specific
value depends only on the metadynamics parameters, on the
shape of the domain on which the system is confined, on the
diffusion coefficient and on temperature. For example, in a

cubic domain of side S in d dimensions [43] the error is

ε2 = S2wT

DτG

(
δs

S

)d

(2π)d/2
∑

k

1

π2k2

× exp

(
−k2π2

2

(
δs

S

)2
)

, (29)

where the sum is performed over all the d dimensional vectors
of integers with non-zero norm.

In [132] an alternative expression for the error was
deduced by performing extensive numerical simulations of
the stochastic differential equation (18). The metadynamics
parameters, w/τG, δσ , and the system-dependent parameters,
T , D and S were systematically varied, and for each choice
of the parameters the error was computed by repeating several
metadynamics reconstructions. A proper data fit (∼20% of
accuracy) was provided by the formula

ε2
approx = Cd

S2wT

DτG

δs

S
, (30)

where Cd is a constant that depends only on the dimensionality.
The two expressions for the error share the same functional
dependence on w/τG, T , D and S. The dependence on δs/S

in equation (29) is instead much more complicated. The ratio
between the two expressions is approximately a constant as a
function of δs only for d = 1 and d = 2, while significant
deviations are observed in higher dimensions.
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The dependence of the error on the simulation parameters
becomes more transparent if ε is expressed as an explicit
function of the total simulation time. Consider in fact a free
energy profile F(s) that has to be filled with Gaussians up to
a given level Fmax, for example the free energy of the lowest
saddle point in F(s). The total computational time needed to
fill this profile can be estimated as the ratio between the volume
that has to be filled and the volume of one Gaussian times τG:

tsim ≈ τG
Fmax

w

(
S

δs

)d

. (31)

Substituting in equation (29) yields

ε2 ≈ τS

tsim
FmaxTfd

(
δs

S

)
, (32)

where τS
.= S2/D is the average time required for the CVs to

diffuse on a distance S and

fd

(
δs

S

)
= (2π)d/2

∑
k

1

k2π2
exp

(
−k2π2

2

(
δs

S

)2
)

is a function of δs/S and of the dimensionality alone.
Equation (32) states that the error of a metadynamics
reconstruction is inversely proportional to the square root of
the total simulation time, measured in units of the diffusion
time. The error will be large for slowly diffusing systems, in
which the walker takes a long time to explore the CVs space.

The error at fixed simulation time is determined by the
pre-factor fd(δs/S), plotted in figure 6 for d = 2 and
d = 3 as a function of δs/S. For a comparison, the
function f real

d (δs/S) = ε2
fixed is also plotted, where ε2

fixed is
the error measured by equation (28) on several independent
metadynamics reconstructions performed in a parabolic well.
All runs were performed by changing δs/S and choosing w

so as to obtain the same filling velocity, i.e. w ∝ (S/δs)d .
Moreover, the parameters of the system are chosen in such a
way that (τS/tsim)FmaxT = (S2wT/DτG)(δs/S)d = 1. The
function f real

d (δs/S) measured under these conditions is an
estimate of the error at fixed filling time in a free energy well.
For a fixed total simulation time, the error always decreases as
a function of δs/S and the higher the dimensionality the more
this dependence is significant. Equation (29) is accurate only
for small δs/S and deviations are observed when δs becomes
comparable with the dimension of the well. Indeed, the ‘filling’
behavior of metadynamics depicted in figure 1 can be observed
only if δs is smaller than the typical length scale of variation of
the free energy. Equation (29) describes the error only when
the walker is freely diffusing in a confined region in which
reflecting boundary conditions are imposed. For a large δs

the error will be large while the walker is filling each well.
In conclusion, δs should be chosen as large as possible, but
an upper bound is imposed by the features of the free energy
profile that has to be filled.

In [132] the performance of metadynamics is estimated
for a system consisting of a tetracationic cyclophane
(cyclobis(paraquat-p-phenylene)4+

8 ) ring and a 1,5-dihydroxy-
naphthalene. This system was used to study the unthreading
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Figure 6. Effect of δs/S on the error ε computed with equation (28)
for a system in d = 2 (top panel) and d = 3 (bottom panel), with
S = 8, T = 1 and D = 0.0005. The dashed line corresponds to the
theoretical error given by equation (29). w/τG is chosen so that
(τS/tsim)FmaxT = (S2wT/DτG)(δs/S)d = 1.

behavior of [2]-catenane which has recently attracted much
interest as fully reversible bistable molecular switch and was
used as a basic component in the realization of a molecular
elevator [135]. For this system the free energy is computed
as a function of two collective variables, the distance between
the centroids of the cyclophane and the naphthalene and the
coordination number of the naphthalene with the atoms of
the acetonitrile. F(s) is first estimated by a two-dimensional
umbrella sampling using the WHAM scheme [8] (see [132]
for technical details). This free energy has two minima, one
corresponding to the threaded state (s1 ∼ 0 and s2 ∼ 6) and
one corresponding to the unthreaded state. The barrier toward
the dissociated state is ∼12 kcal mol−1. On the same system,
several metadynamics runs were performed with different
choices of w, δs and τG and the error was estimated from
the deviation of −VG(s) from the ‘exact’ WHAM free energy.
In total, more than fifty different combinations of parameters
were tested.

In figure 7 the standard deviation from the WHAM result
is compared with the one predicted by equation (30). A
correction factor for a finite τG derived in [132] is also included.
The difference between the predicted and the computed value
is always rather small, showing that equation (30) accurately
predicts the true metadynamics error.
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Figure 7. Metadynamics error on the free energy for the
pseudo-rotaxane naphthalene complex as a function of the run
number. Upper panel: the error computed by equation (28) (dashed
line with circles) and the error predicted by equation (30), including
the correction factor for a finite τG derived in [132] (continuous line
with diamonds). Lower panels: the metadynamics parameters w, δs
and τG as a function of the run number. After [132].

This result requires some comment. Equations (29) and
(30) were derived under the assumption that metadynamics
can be modeled with a stochastic differential equation of the
form equation (18). In this equation the noise is independent
of the position in the CV space and there are no inertial
effects. These approximations might sound severe, but the
example described in this section show that in real systems the
quantitative behavior of metadynamics is perfectly reproduced
by this equation. This is because the error in metadynamics
is due to the relaxation time required for the CV to diffuse
through the region in which the free energy is reconstructed,
S2/D. Other characteristic times, that are certainly present
in real systems, are averaged out during the metadynamics
reconstruction. Once again, it should be underlined that such
a behavior depends crucially on the appropriate choice of CVs.

3.1. Reducing the error by averaging several profiles

The expressions for the error derived in this section quantify
the typical deviation of a single metadynamics profile VG(s, t)

from F(s). This error is relevant and has to be kept under
control if the available computer time allows running the
system only for a short time, for example only until it escapes
from the initial free energy minimum. In this case the exit free
energy barrier is reliable only if ε is small. In many relevant
cases the metadynamics reconstruction can be continued until
the collective variable explores diffusively a large region of CV
space, crossing backward and forward several times from the
product to the reactant region. A consequence of the derivation
presented above, and in particular of equation (23), is that all
the profiles VG(s, t) are equally reliable estimates of the free
energy. Thus, as proposed in [112], after the entire FES has

been filled the best possible estimate of the free energy is not
the single profile, but the arithmetic average of all the profiles.
More precisely, if tF is the time at which the CV starts diffusing
in all the relevant region and ttot is the total simulation time,
the best estimate of the free energy is

Fmeta(s, ttot) = − 1

ttot − tF

∫ ttot

tF

VG(s, t) dt. (33)

The standard deviation of this estimate from the free energy
decays to zero with a law that is determined by the
autocorrelation time of the profiles (see also the results
presented in section 4.2). Once again, in slowly diffusing
systems, successive profiles are very correlated and even taking
the average does not significantly improve the free energy
estimate.

In order to take the average over different profiles in
equation (33) it is necessary that the dynamics of the CV after
tF is bound in a finite region of CV space. In several cases, this
happens automatically, as the free energy outside the ‘relevant’
region is very large. In other cases one has to artificially restrain
the system inside the region. This can be done, for example,
by adding a suitable harmonic potential that is active when the
CVs cross the boundaries of the region.

A different way to converge the free energy profile has
been proposed in [136] where the authors propose a ‘well-
tempered-metadynamics’ algorithm in which the height of the
added Gaussian depends on the underlying bias, decreasing
to zero when a given energy threshold is reached. The
convergence of this algorithm to the correct free energy
profile can be proved rigorously also in the presence of
memory effects. An additional advantage of the well-
tempered algorithm is that the exploration of the CV space
is automatically limited by the control parameters. Thus, it
is not necessary to restrain the simulation inside the relevant
region.

4. The algorithm in practice

4.1. Implementation

Metadynamics can be easily implemented by using the
continuous formulation described in section 1. Here we
present and describe a practical example of the Fortran code
that can be inserted with minimal effort in most molecular
dynamics packages. The call to this subroutine should be
inserted in the main MD loop, after the forces are computed and
before the positions/velocities are updated. In this example the
CV is the distance between atom 1 and atom 2, but it is easy to
include other variables and extend the metadynamics to several
dimensions. The routine performs three tasks:

(i) It computes the value of the CV s = S(x).
(ii) Every τG time steps, it stores the value of s in an array that

contains the centers of all Gaussians.
(iii) It computes the derivative of VG(S(x), t) with respect

to x using the chain rule: (∂/∂x)VG(S(x), t) =
(∂VG(s, t)/∂s)(∂S(x)/∂x). These derivatives are then
added to the usual forces on the atoms, biasing the
dynamics of the system.
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In the example, all the metadynamics parameters are hard-
coded, but, of course, their correct value will depend on the
units of measure used in the code and on the specific system
of interest.

subroutine metadynamics(r,f,N,it)
implicit none
integer N ! the number of atoms
integer it ! time step number
real*8 r(3,N) ! positions of the atoms (input)
real*8 f(3,N) ! forces from metadynamics (changed in this subroutine)
!variables for metadynamics
real*8, save :: w=0.1 !height of the Gaussians
real*8, save :: ds=0.1 !width of the Gaussians
integer, save :: tau G=100 !frequency of Gaussian deposition
integer, save :: NG=0 !number of Gaussians
real*8, save :: s of t(1000) !position of the center of the Gaussians
!local variables
real*8 rij(3),s,ds dr(3,N),gauss,dVg ds
integer i
! first, compute the value s of the CV and of its derivatives ds dr
! with respect to the atomic positions. This is the only part that should
! be changed
! to make the code perform metadynamics on another variable
rij(:)=r(:,1)-r(:,2)
s=sqrt(sum(rij(:)**2))
ds dr(:,1)=rij(:)/s
ds dr(:,2)=-rij(:)/s
! every tau G time steps, save the value of s
if(mod(it,tau G)==0)then
NG=NG+1
if(NG>1000)stop
s of t(NG)=s
write(10,’(i6,3f12.4)’)it,s,ds,w
endif
! now compute the derivative of the history-dependent potential
! Vg(s,t) ! with respect to s
dVg ds=0
do i=1,NG
gauss=w*exp(-(s-s of t(i))**2/2/ds**2)
dVg ds=dVg ds-gauss*(s-s of t(i))/2/ds**2
enddo
! finally, compute the forces on the atoms
f(:,1)=f(:,1)-dVg ds*ds dr(:,1)
f(:,2)=f(:,2)-dVg ds*ds dr(:,2)
return
end subroutine metadynamics

The subroutine produces a file, fort.10, containing the
positions of the centers of all Gaussians. This file can be used
by an external program to reconstruct the potential VG(s) on
a grid and visualize it, eventually as a function of the number
of Gaussians. In this manner it is possible to obtain the free
energy profiles as a function of time, as shown in figure 9.

The computational overhead of computing metadynamics
forces is usually negligible, unless the number of Gaussians
is very large. In fact, at each step it is necessary to compute
a number of exponentials that becomes larger and larger as
the simulation proceeds. A simple solution to this problem
has been proposed in [66], and consists of storing the history-
dependent potential on a regular grid. Every time a new
Gaussian is added, the potential is updated. At every MD
time step, the derivative ∂VG(s, t)/∂s is estimated from the

finite difference of VG evaluated on the two grid points that are
closest to s. By this simple trick, the computational overhead
of metadynamics does not grow linearly with simulation time
but remains constant.

4.2. A practical example: alanine dipeptide in vacuum

In order to discuss how metadynamics works in practice it is
interesting to consider a very simple case, alanine dipeptide
(ACE-ALA-NME) in vacuum. The system, depicted in
figure 3, is simulated with the Amber99SB force field [137]
using a modified version of the NAMD MD code [138].
The temperature is maintained at 300 K by a Langevin
thermostat. The conformation of alanine dipeptide is
satisfactorily described by its two backbone dihedral angles
φ and ψ . In figure 8, left panel, the free energy is shown
as a function of these two angles, estimated with umbrella
sampling using the WHAM scheme [8, 139]. Clearly, the
free energy depends non-trivially on both variables, but the
dependence on φ is more important, as the highest barriers
correspond to changes in φ. In such a case, it is possible to
perform metadynamics using only one CV, the angle φ. Thus,
the history-dependent potential reads

VG(φ(x), t) = w
∑

t ′ = τG, 2τG, · · ·
t ′ < t

exp

(
− (φ(x) − s(t ′))2

2δs2

)
,

(34)

where s(t) = φ(x(t)). A preliminary unbiased run at 300 K
is used to choose the Gaussian width δs. As shown in [132]
and discussed in section 3 the optimal δs is approximately
one half of the fluctuation of the CV in an unconstrained
MD run. Indeed, metadynamics cannot reconstruct features
of the free energy on a scale that is smaller than δs. This
criterion gives, for the φ angle, δs = 0.2 rad. Clearly the
fluctuations of the CV may depend on the local free energy
minimum in which the system is found. Thus, there is no
single best choice for δs and in practice it is convenient to
take δs smaller than the smallest observed fluctuation. As
shown in [132] and discussed in section 3 the error made on
the reconstructed profile depends on the ratio w/τG and not
on w and τG separately. Taking, for instance, τG = 2 ps, the
Gaussian height w is the only parameter thet determines the
computational time required for the free energy reconstruction.
A useful criterion for choosing w is provided by equation (31),
that states the total time required for filling a d-dimensional
region of size S and with free energy wells of depth Fmax

scales approximately as tsim ≈ τG(Fmax/w)(S/δs)d . If, for
instance, one wants to invest approximately 3 ns in the free
energy reconstruction and estimates that the free energy wells
have a typical depth of ≈5 kcal mol−1, an optimal choice would
bew ∼ 0.1 kcal mol−1. The typical deviations ofVG(s, t) from
F(s) will be of the order of

√
wT δsS/DτG (see equation (30)).

If necessary, one can preliminarily estimate the value of the
diffusion coefficient D, evaluate this error and decide whether
the accuracy is sufficient or excessive, and eventually change
the value of the parameters.
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Figure 8. Metadynamics results for the alanine dipeptide. Upper left panel, a 2D FES as a function of φ and ψ obtained by umbrella
sampling. Central panel: the first 2 ns of metadynamics trajectory on the CV φ. Right profile: the dashed curve is the result of averaging
the profiles obtained by 1D metadynamics; the continuous curve is the 1D projection of the above 2D FES.

Figure 9. Left panel: reconstructed free energy profile as a function of time. The metadynamics run was 8 ns long; the profiles have been
reconstructed every 0.8 ns. The continuous black curve is the history-dependent potential at the end of the simulation. Right panel: standard
deviation of the metadynamics free energy with respect to the umbrella sampling result as a function of time calculated for the alanine
dipeptide φ CV.

The central panel of figure 8 shows the value of φ

during the first 2 ns of metadynamics performed with these
parameters. The initial configuration corresponds to a C7ax

conformation. As the history-dependent potential is added,
the fluctuations of φ increase, until the system ‘fills’ the free
energy basin to reach a C7eq conformation, with a behavior
similar to that in figure 1. After approximately 0.8 ns, the
added potential has mostly filled the two energy basins and
the CV starts to show a diffusive behavior, visiting repeatedly
the two basins. The reconstructed free energy profile as
a function of time is shown in the right panel of figure 9.
The metadynamics trajectory was run for a total of 8 ns.
Accumulated profiles at 0.8 ns intervals are shown. It can
be seen that after 2.4 ns the profile has reached an almost
complete convergence, and the history-dependent potential
defined by the sum of Gaussians is qualitatively similar to the
free energy profile. Deviations are mainly due to the volume of
the ‘computational sand’, the Gaussians, that are continuously
thrown. Using smaller Gaussians would improve the accuracy
of free energy reconstruction, as discussed in section 3.

It is also clear from figure 8 that, as discussed in section 3
all the profiles after 2.4 ns are equally reliable estimates of
the free energy. Thus the best possible estimate of the free

energy is

Fmeta(φ, ttot) = − 1

ttot − tF

∫ ttot

tF

VG(φ, t) dt

with tF = 2.4 ns. The averaged profile Fmeta(φ, ttot) is
shown in figure 8 right panel, black dashed line. It is almost
indistinguishable from the profile calculated by integrating
over ψ the ‘exact’ 2D profile obtained by umbrella sampling.
Figure 9, right panel, reports the standard deviation of
the metadynamics free energy with respect to the umbrella
sampling result F(φ),

ε(t) =
[

1

2π

∫ 2π

0
dφ[Fmeta(φ, t) − F(φ)]2

−
(

1

2π

∫ 2π

0
dφ(Fmeta(φ, t) − F(φ))

)2
]1/2

as a function of ttot. Clearly, taking the average over a longer
and longer ttot systematically improves the estimate.

Systematic errors due to memory, inertia, lack of adiabatic
separation, etc, are, in this case, negligibly small. This happens
even if the choice of the CV is not optimal, as a relevant degree
of freedom, the angle ψ , is not included in the bias. Of course
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the situation would be totally different if metadynamics was
performed using ψ as a collective variable. In this case the free
energy reconstruction would be affected by large systematic
error and hysteresis, and would probably never converge in a
finite simulation time.

In conclusion, a successful metadynamics run requires
following the steps that have already been described in the
previous sections, and that are summarized here:

(i) Equilibrate the system by normal molecular dynamics at
the temperatures of interest.

(ii) Choose the collective variables (see section 2), taking
into account a few general rules: (i) the performance
of metadynamics is optimal with two or three variables.
With one variable the method is practically equivalent to
thermodynamic integration [2, 3] or WHAM [7–9]. With
more than three variables the time required to fill the free
energy surface becomes very long. (ii) The CVs should
clearly distinguish the metastable states that are already
known before starting the simulation: the initial state and,
if these are known, the final and the intermediate states.

(iii) Choose the metadynamics parameters (see section 3),
keeping in mind that: (i) the width(s) δs is (are) chosen
by monitoring the value of standard deviation the CV(s)
in a finite temperature run. (ii) The height w and the time
between two successive Gaussians τG are not independent
parameters, but the accuracy is determined by their ratio
according to equation (30).

(iv) Check the convergence of the results. If one uses
metadynamics for reconstructing the free energy in a finite
region of CV space, the estimate is reliable only if the
observed behavior is similar to that shown in figure 9: the
history-dependent potentials evaluated at different times
must be approximately similar. When this is the case,
the best possible estimate of the free energy is given by
the average of all the profiles, according to the procedure
described in section 3.1.

5. Extensions

As underlined in the previous sections, metadynamics requires
selecting, before starting the simulation, a set of two or three
CVs that are used for constructing the history-dependent bias.
The method provides useful and accurate results only if this
set includes all the relevant (slow) variables. Unfortunately,
there is no way to ensure that this condition is satisfied before
performing the simulation. Moreover, in several important
cases the ‘relevant’ variables are not two or three, but many
more. In these cases, the method cannot be applied, as
filling a free energy surface in many dimensions would be
computationally too expensive. In this section we describe
some recent extensions of the methodology that are aimed at
alleviating this serious drawback. All the approaches described
here are based on running metadynamics simultaneously on
several replicas of the system, gathering the information from
all the replicas in order to improve the statistics of the free
energy estimate.

5.1. Multiple walkers

The multiple walkers version of metadynamics [140] was
the first approach taking advantage of running metadynamics
on multiple replicas of the system simultaneously. It was
originally developed with the purpose to speed up free energy
calculations in loosely coupled parallel machines. It is
based on running multiple interacting simulations, walkers,
all contributing to construct the same metadynamics bias, that
is shared by all walkers. Denoting by xi(t) the trajectory of
the walker i, the history-dependent potential at time t is

VG(S(x), t) = w
∑
t ′<t

NR∑
i=1

exp

(
− (S(x) − si(t

′))2

2δs2

)
,

where si(t) = S(xi(t)). This potential biases the dynamics of
all walkers simultaneously. In [140] it was shown that the error
on the reconstructed free energy does not depend on the number
of walkers, and is still approximately given by equation (30).
Since NR walkers contribute simultaneously to the history-
dependent potential, any free energy profile is reconstructed
in 1/NR of the time. This leads to a linear scaling algorithm
even on inexpensive loosely coupled clusters of PCs. Indeed
the only information that has to be shared among the walkers
is the list of added Gaussians. In a Linux cluster this can be
easily achieved by sharing a single file containing the list. The
same article [140] reports also that the accuracy and stability of
the method can be improved by combining it with a weighted
histogram analysis [8, 112].

5.2. Parallel tempering metadynamics

Parallel tempering metadynamics (PTmetaD) [113] is another
method based on running several metadynamics in parallel.
It is based on a combination of parallel tempering [32] and
metadynamics and provides a possible solution to the problem
of neglected CVs. Multiple replicas of metadynamics are
run at different temperatures. In the spirit of the replica
exchange method, an exchange of the coordinates of two
replicas at adjacent temperatures is attempted with frequency
1/τx . The acceptance ratio takes into account the fact that
different replicas experience different bias potentials [141].
The acceptance ratio for an exchange involving replicas i and
j is thus

P = min

{
1, exp

[(
1

Tj

− 1

Ti

)
(U(rj ) − U(ri)) +

1

Ti

(Vi(s(ri))

−Vi(s(rj ))) +
1

Tj

(Vj (s(rj )) − Vj (s(ri)))

]}
,

where U is the ordinary potential, ri and Ti are the coordinates
and the inverse temperature of replica i and Vi is the bias
potential of replica i before the exchange. If the move is
accepted, the coordinates are exchanged and the momenta are
rescaled as

r ′
i = rj ; p′

i =
√

Ti

Tj

pj , (35)

r ′
j = ri; p′

j =
√

Tj

Ti

pi. (36)
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In PTmetaD the free energy profile is filled in parallel
at all temperatures, and the dynamics of the system rapidly
becomes diffusive in CV space. Combining parallel
tempering and metadynamics in this way leads to a very
efficient approach. Parallel tempering is improved because
metadynamics explores high free energy regions within each
replica ultimately leading to a more reliable estimate of the
height of the relevant free energy barriers. Metadynamics is
strengthened as the parallel tempering improves the sampling
over degrees of freedom not explicitely included in the CV
space. PTmetaD has been used in [32] to reconstruct the FES
of the β-hairpin folding and in [69] to study the dynamics of
aggregation of the peptides that form the folding nucleus of
the HIV-1 protease.

A similar scheme can be used to combine solute
tempering [142] or other variants of parallel tempering with
metadynamics. In [142] a combination of metadynamics
with solute tempering was used to reconstruct the free energy
landscape of the α-helix of protein G. The results obtained are
in good agreement with many experimental observations.

5.3. Bias exchange

Bias exchange (BE) [118] is another technique based on the
combined use of replica exchange and metadynamics. The
method is an extension of replica exchange metadynamics
(see section 5.2) designed in order to allow the simultaneous
reconstruction of the free energy as a function of a large number
of variables. One runs in parallel, at the same temperature, a
large number NR of molecular dynamics, biasing each replica
with a metadynamics potential acting on just one or two CVs.
If all the variables were relevant for describing the process
and the replicas were run independently all the metadynamics
would be affected by hysteresis and systematic errors. BE,
at fixed time intervals, attempts to swap the bias potentials
between pairs of replicas. Let us denote by Sk , k = 1, . . .,NR
the NR different CV sets on which the metadynamics biases
are constructed. For two replicas of coordinates xi and xj and
bias potentials VG(Sk(xi), t) and VG(Sl(xj ), t), an exchange
move consists of swapping VG(Sk, t) and VG(Sl, t). The move
is accepted with a probability

P = min

{
1, exp

[ 1

T
(VG(Sk(xi), t) + VG(Sl(xj ), t)

−VG(Sk(xj ), t) − VG(Sl(xi), t))
]}

.

In this way, each trajectory evolves through the high
dimensional free energy landscape sequentially biased by low
dimensional potentials acting on one or two CVs at each
time. Due to the multidimensional nature of the bias, the
dynamics is able to explore a complex free energy landscape
with great efficiency. A simple example will clarify how the
swap moves are defined. Consider a system in which the
relevant variables are two, e.g. two dihedral angles ψ and φ.
Two replicas are then run in parallel, one with a bias on ψ

and the other on φ. At a given time t a swap is attempted.

If the move is accepted, the simulation proceeds as follows:

Before the swap After the swap

Coordinates CV Bias potential CV Bias potential

Replica 1 x1 ψ VG(ψ(x1), t) φ VG(φ(x1), t)
Replica 2 x2 φ VG(φ(x2), t) ψ VG(ψ(x2), t)

When a swap is accepted the bias potential acting on the
two replicas changes direction. Simultaneously, the values of
the CVs involved in the swap perform a jump from ψ(x1)

to ψ(x2) and from φ(x1) to φ(x2) in the example above.
These jumps greatly help in decorrelating the dynamics and
finally have the effect of improving the accuracy of the free
energy estimate. The efficiency of the method is enhanced
if the swaps are attempted not too frequently, say every
10 ps in classical MD simulations. Each replica should be
given sufficient time to relax under the effect of the added
bias, before attempting a swap that could change the bias
direction.

In BE the result of the simulation is not a free energy as
a function of NR CVs, but NR low dimensional projections of
the free energy. The swap moves have the effect of reducing the
hysteresis on the metadynamics potentials, that tend to behave
as in the example of figure 8 also in difficult cases. Of course,
hysteresis can be eliminated only if all the relevant variables
are included and are biased by at least one replica. Thus, the
approach of [118] does not solve (not even in principle) the
major drawback of metadynamics, namely the necessity of
‘inventing’ before the simulation an appropriate set of CVs.
Still, the approach allows treating simultaneously much more
CVs than normal metadynamics, and this is of great help in
setting up a simulation assuming as little as possible on the
reaction mechanism.

This methodology was successfully used to reversibly
fold a small protein, the tryptophan cage, using an all-atom
force field and eight replicas [118]. The variables that
were used are general, such as the number of backbone–
backbone hydrogen bonds, the fraction of α-helical content,
etc (see section 2.1), and did not require in their definition
the knowledge of the folded structure. For this small
system, within ∼300 nanoseconds of simulation time, it was
possible to identify the folded state and folding intermediates
within statistical accuracy starting from a completely extended
conformation. The same approach was also applied to
somewhat larger systems, the Villin and Advillin C-terminal
headpiece (cHP) and their Pro62Ala mutants [71]. The cHP
is a 36 aminoacids thermostable domain composed of three
tightly packed alpha helices. BE simulations of the Villin
cHP predict a native fold in good agreement with the nuclear
magnetic resonance data and indicate that the P62A mutation
destabilizes the native fold to the point that it is no longer
observed. Instead in Advillin cHP this mutation significantly
alters the entropic contribution to the folding free energy but
the mutant is still folded at room temperature. Finally, BE
was applied to study the hybridization of DNA, and predict
the free energies of the different helices that the system can
form [70].

18



Rep. Prog. Phys. 71 (2008) 126601 A Laio and F L Gervasio

6. Conclusions and outlook

Since metadynamics first appeared in 2002 the use of the
method among the computational community has steadily
spread, as shown by an increasing number of citations. The
many powerful extensions that have been recently introduced,
the continuous ongoing effort to solve the weaknesses of
the approach and the availability of an open source plug-
in for common MD programs [142] are a clear sign of a
thriving metadynamics community. In our opinion this is
not due to its uniqueness, as there are competing methods
based on similar ideas [12, 35, 40, 41], but to the simplicity of
implementation, and to the relatively easy manner in which one
can control its accuracy and efficiency. By simply changing
the dimensionality of the Gaussians entering in the history-
dependent potential one can pass continuously from a fast
(but coarse) exploration of the configuration space to an
accurate (but expensive) evaluation of the free energy. This
versatility has been exploited in applications, and the method
is very often used not only for computing free energies, but
also for predicting new structures, new reaction pathways,
etc. For example in crystal structure prediction [54] the
method is used only with the aim of efficiently exploring
the configuration space and the fact that the sum of
Gaussians provides an estimate of the free energy is not used
at all.

In other popular algorithms for reconstructing the
free energy, such as thermodynamic integration [2, 3] and
WHAM [7–9], the free energy is reconstructed following a
predefined scheme designed for covering deterministically all
the CV space. In metadynamics, instead, the free energy
is reconstructed recursively, starting from the bottom of a
free energy well by a history-dependent random walk that
explores a larger and larger portion of configuration space.
This makes the algorithm very efficient as, by construction, the
dynamics explores first the low-free energy regions, which are
also the most interesting, avoiding spending time in regions
that are irrelevant. Another advantage of metadynamics is
that during the free energy reconstruction each point in CV
space is explored several times during the simulation (see,
for instance, the CV trajectory in figure 8). This greatly
enhances de-correlation and leads to an improved accuracy
in the free energy estimate. This feature is also exploited in
the adaptive force bias, a method that shares many strengths
with metadynamics [12].

The algorithm has significantly evolved since it was first
introduced, and several variants and improvements have been
developed. In practical applications it has proved to be more
efficient to evolve the collective variables in a continuous
fashion (see section 1.1). Moreover, a proof has been given
that in conditions of adiabatic separation the method provides
an unbiased estimator of the free energy (see section 3). As
discussed in sections 1.1 and 1.2, adiabatic separation can
be enforced, at least in principle, by using the Lagrangian
or the discrete version of the algorithm. However, if the
CVs are properly chosen, systematic errors deriving from
memory effects on the s dynamics are negligible and the
history-dependent potential provides a reliable estimate of the

free energy even if adiabatic separation is not enforced. An
example of such a behavior has been presented in section 4.2,
another example has been discussed in section 3. Once again,
it is important to note that this extremely useful property
holds only if the appropriate set of CVs is chosen. If an
important variable is forgotten the bias potential evolves in an
unpredictable manner that is determined by the transitions in
the hidden variable. At the moment a theoretical framework for
understanding and quantifying the degradation of the accuracy
in the presence of memory effects and/or hidden variables is
not available. One has to rely on empirical rules like the ones
presented in section 4 (‘the metadynamics potential is growing
evenly’) to verify if the choice of the CVs is appropriate and
the method is converging.

The necessity to choose a priori a limited number of
CVs is possibly the major drawback of the method, as there
is no manner to ensure that the choice is appropriate before
performing the simulation. The choice of the CVs for a
completely new system is guided only by chemical or physical
intuition, and in several cases one has to proceed by trial and
error. Often a preliminary analysis based on methods that
can cope with a fully unknown reaction mechanism, such
as the ones listed in point (ii) of the introduction, might
be preferable to a ‘blind’ metadynamics performed with a
wrong variable. Moreover, in many important cases, such
as proteins, the ‘relevant’ variables are just too many. In
these cases, the method in its original formulation cannot be
applied, as filling a free energy surface in more than three–
four dimensions would be too computationally expensive.
All the most recent extensions of metadynamics have been
developed with the aim of alleviating this drawback, and, as
discussed in section 5, important success has been achieved.
In the future more effort will have to be spent in this
direction, in order to make the choice of the CVs less and less
critical.

Finally, it is important to note that experience has
demonstrated that the best strategy for extracting useful
numbers from numerical simulations is using synergically
several tools exploiting the advantages of each. In this respect,
metadynamics is perfectly complementary to other techniques,
such as transition path sampling, that are less efficient in
sampling, but allow the detail of a transition to be analyzed
without choosing a priori a reaction coordinate or a set of
CVs.

Availability

Currently metadynamics is implemented in numerous MD
and FPMD codes, including (but not limited to): gromacs
(grometa), NAMD, Amber, cpmd, cp2k. Albeit there
is no ‘official’ code repository to metadynamics, at this
moment the most up-to-date semiempirical MD distribu-
tion resembling an ‘official’ code repository is grometa
(http://lxmi.mi.infn.it/∼provasi/grometa/Site/Welcome.html)
where numerous people contribute to add the latest feature to
the code. The corresponding up-to-date FPMD code is cp2k
(http://cp2k.berlios.de/).
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Micheletti, Artem Oganov, Stefano Piana, Paolo Raiteri
and Andras Stirling. We gratefully acknowledge Gianluca
Lattanzi and Gareth Tribello for several useful suggestions
in writing this manuscript and also Giovanni Ciccotti, David
Chandler, Eric Vanden-Eijden and Michael L Klein for
a number of illuminating discussions and many precious
suggestions. Finally, a particular acknowledgment goes
to Jannis Kevrekidis, who first stimulated us to consider
dimensional reduction as a tool for efficiently exploring the
phase space.

References

[1] Warshel A 1991 Computer Modeling of Chemical Reactions
in Enzymes and Solutions (New York: Wiley)

[2] Carter E A, Ciccotti G, Hynes J T and Kapral R 1989 Chem.
Phys. Lett. 156 472–7

[3] Sprik M and Ciccotti G 1998 J. Chem. Phys. 109 7737–44
[4] Bash P A, Singh U C, Brown F K, Langridge R and

Kollman P A 1987 Science 235 574–6
[5] Patey G N and Valleau J P 1975 J. Chem. Phys. 63 2334–9
[6] Grubmüller H 1995 Phys. Rev. E 52 2893–906
[7] Ferrenberg A and Swendsen R 1988 Phys. Rev. Lett. 61 2635
[8] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and

Kollman P A 1995 J. Comput. Chem. 16 1339–50
[9] Roux B 1995 Comput. Phys. Commun. 91 275–82

[10] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[11] Crooks G 1998 J. Stat. Phys. 90 1481–7
[12] Darve E and Pohorille A 2001 J. Chem. Phys. 115 9169–83
[13] Rodriguez-Gomez D, Darve E and Pohorille A 2004 J. Chem.

Phys. 120 3563–78
[14] Gullingsrud J, Braun R and Schulten K 1999 J. Comput.

Phys. 151 190–211
[15] Rosso L, Minary P, Zhu Z and Tuckerman M 2002 J. Chem.

Phys. 116 4389–402
[16] Elber R and Karplus M 1987 Chem. Phys. Lett. 139 375–80
[17] Henkelman G and Jónsson H 2000 J. Chem. Phys.

113 9978–85
[18] E W, Ren W Q and Vanden-Eijnden E 2005 J. Phys. Chem. B

109 6688–93
[19] Maragliano L, Fischer A, Vanden-Eijnden E and Ciccotti G

2006 J. Chem. Phys. 125 024106
[20] Dellago C, Bolhuis P, Csajka F S and Chandler D 1998

J. Chem. Phys. 108 1964–77
[21] Dellago C, Bolhuis P and Geissler P 2002 Adv. Chem. Phys.

123 1–78
[22] Peters B and Trout B L 2006 J. Chem. Phys. 125 054108
[23] van Erp T, Moroni D and Bolhuis P 2003 J. Chem. Phys.

118 7762–74
[24] Faradjian A and Elber R 2004 J. Chem. Phys. 120 10880–9
[25] Allen R, Warren P and ten Wolde P 2005 Phys. Rev. Lett.

94 018104
[26] Juraszek J and Bolhuis P G 2006 Proc. Natl Acad. Sci. USA

103 15859–64

[27] Fletcher R and Powell M J D 1963 Comput. J. 6 163–8
[28] Henkelman G and Jonsson H 1999 J. Comput. Phys.

111 7010–22
[29] Voter A 1997 Phys. Rev. Lett. 78 3908–11
[30] Miron R and Fichthorn K 2004 Phys. Rev. Lett. 93 128301
[31] Barkema G and Mousseau N 1996 Phys. Rev. Lett.

77 4358–61
[32] Merlitz H and Wenzel W 2002 Chem. Phys. Lett. 362 271–7
[33] Sugita Y and Okamoto Y 1999 Chem. Phys. Lett. 314 141–51
[34] Nakajima N, Higo J, Kidera A and Nakamura H 1997 Chem.

Phys. Lett. 278 297–301
[35] Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050
[36] Trebst S, Troyer M and Hansmann U 2006 J. Chem. Phys.

124 174903
[37] Laio A and Parrinello M 2002 Proc. Natl Acad. Sci. USA

99 12562–6
[38] Theodoropoulos C, Qian Y and Kevrekidis I G 2000 Proc.

Natl Acad. Sci. USA 97 9840–3
[39] Kevrekidis I G, Gear C W and Hummer G 2004 AICHE J.

50 1346–55
[40] Cvijovic D and Klinowski J 1995 Science 267 664–6
[41] Huber T, Torda A and van Gunsteren W 1994 J. Comput.

Aided Mol. Des. 8 695–708
[42] Marsili S, Barducci A, Chelli R, Procacci P and Schettino V

2006 J. Phys. Chem. B 110 14011–3
[43] Bussi G, Laio A and Parrinello M 2006 Phys. Rev. Lett.

96 090601
[44] Zipoli F, Bernasconi M and Martoňák R 2004 Eur. Phys. J. B
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