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Agenda

1. Soft computing and fuzzy systems?
2. Fuzzy sets.
3. Model construction with fuzzy language.
4. Typical fuzzy reasoning models.
5. Neuro-fuzzy and genetic-fuzzy systems.
6. Tuning of models with control data.
7. Complex models and cognitive maps.

Matlab’s Fuzzy Logic Toolbox
is mainly used in our model constructions.

CI publications in my Box cloud:
https://app.box.com/s/fnroma6w3nb3edesr16dor73tr1vb48u

http://www.mathworks.com/products/fuzzylogic/?BB=1
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Computational
intelligence (CI)

better and even 
simpler 

computer 
models

fuzzy systems, probabilistic reasoning, 
natural computing (neural networks, 

evolutionary computing, cellular automata, 
DNA computing, swarm theory, etc.).

imprecision 
learning 

uncertainty 
optimization

adaptive and 
intelligent systems

or
soft computing

(belongs to AI)

mathematical or 
statistical methods 
(hybrid methods)

aims to includes

also known as

can cope 
with

can be used 
with
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Human sciences

quantitative qualitative

numerical data 
precise objects

conventional logic
complicated mathematics

computer models

non-numerical data
imprecise objects

approximate reasoning
interpretation
manual work

methods 
are

methods 
are

that means that means

often used 
separately

social sciences
behavioral sciences

the humanities
economics

law
medicine

include

CI a mediator?
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Traditional Approaches to Computer Modeling

• Mathematical models: 
Complicated, black boxes, 
number crunching.

• Rule-based systems 
(crisp & bivalent): 
Large rule bases.
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?

According to the theories of the engineering sciences, 
a bumble bee is unable to fly
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In the beginning, there was imprecision

Imprecision

Ontological EpistemologicalLinguistic

Syntactic Semantic Pragmatic

Intensional Extensional
(fuzziness):
linguistic 

expressions 
are imprecise

UncertaintyVagueness, etc.
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Then came fuzziness

– Fuzziness for imprecision, thus fuzziness = 
imprecision in practice (semantics).

– Probability for uncertainty (epistemology). 

• Fuzziness vs. probability:
• John is young (fuzziness)

• Probability(John is 20) = 0.8 (crisp probability)

• Probability(John is 20) = about 0.8 / fairly high 
(fuzzy probability)

• Probability(John is young) = high (fuzzy 
probability)
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Fuzzy Systems

• Fuzzy systems can cope with linguistic
and imprecise entities of a model in a 
computer environment.

• Invented by Prof. Lotfi Zadeh (1921-2017) 
at UC Berkeley in the 1960’s.

• Stem from novel theories on fuzzy sets
and fuzzy logic.

http://www.cs.berkeley.edu/~zadeh/
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Fuzzy systems

• Fuzzy set theory: Also partial
memberships to sets are used.

• Fuzzy logic: A version of multivalued
logic. The truth values may be numeric or
linguistic.

• Bivalent logic: either true or false.
• Fuzzy logic: degrees of truth from false to 

true.
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Advantages of Fuzzy Models

• Models aim to mimic real human 
reasoning. 

• Models can be
- linguistic 
- simple (no number crunching),
- comprehensible (no black boxes), 
- fast in computing,  
- good in practice.    
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Fuzzy Applications: Control

• Heavy industry 
(Matsushita, Siemens, 
Stora-Enso, Metso)

• Home appliances 
(Canon, Sony, Goldstar, 
Siemens, Whirlpool)

• Automobiles (Nissan, 
Mitsubishi, Daimler-
Benz, Chrysler, BMW, 
Volkswagen)

• Space crafts (NASA)
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Fuzzy Applications: Decision Making

• Fuzzy scoring for mortgage applicants,

• creditworthiness assessment, 

• fuzzy-enhanced score card for lease risk assessment, 

• risk profile analysis, 

• insurance fraud detection, 
• cash supply optimization, 

• foreign exchange trading, 

• trading surveillance, 

• investor classification etc. 

• Source: FuzzyTech
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Crisp and Fuzzy Sets

gradual change

©Escher



Gradual Change – the Sorites Paradox
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Stewing the frog in the pot

Sorites: How many grains of sand 
will constitute a heap?
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”Quantitative meanings” of 
linguistic values are fuzzy 

sets. 

E.g.
meaning of ”young” is a fuzzy 

set YOUNG

Fuzzy sets are denoted
as functions, 

membership functions, !

Crisp set
YOUNG
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Objects can also belong 
partially to a given fuzzy 

set. 

E.g., given fuzzy set YOUNG 
and ages of persons,
person aged 10: full 

membership
person aged 27: almost full 

person aged 35: small
person aged 70: no 

membership

Degrees of membership are
denoted as functions, 

membership functions, 0 < !(x) < 1

horizontal axis: values of ages, 0 to 100 (reference set, universe of discourse)
vertical axis: degrees of membeship, 0 to 1
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Crisp and Fuzzy Membership Functions
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Crisp: Five Fuzzy: About five
{(x,µ(x)) | xÎE, µ(x)Î[0,1]},
In which E is universe of 
dicourse (reference set). 
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Typical Fuzzy Sets

• Triangular,
• Bell-shaped,
• Trapezoidal.

• Normalized: max
membership = 1

• Convexity: 
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Basic Fuzzy Set Operations
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• Complement,
• Intersection,
• Union.
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Language



2/10/19 VAN 24

Type of Value Examples

Precise numerical values and intervals 5, 0.5, [4.5,6]

Approximate numerical values and 
intervals

about 5, about 0.5, about [4.5,6], about 
from 4.5 to 6

Precise numerical functions and relations X2+2y3+1, x=y

Approximate numerical functions and 
relations

Approximately x2+2y3+1, approximately 
x=y

Precise and approximate linguistic values 
and relations

male, negative, small negative, very high, 
fairly old, not good, young or fairly young, 
slightly greater than, approximately equal 
with

Possible Values for Variables in Fuzzy Language
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.

Very
oldOld

Fairly
oldNeutral

Fairly
youngYoung

e.g. variable  Age and set of ages.

Term: 
young

Antonym:
old

Select other expressions which are modified according to the 
primitive terms. The modifiers are adverbs. Use one of these terms as 
a neutral value or central value, and the rest of the values should 
usually be symmetrical with respect to the ne utral value: modifiers are 
e.g. very, fairly, more or less, slightly and almost.

Very
young

lingu
istic

scale
(Osg

ood)
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Formation of Fuzzy Language Expressions.

Primitive terms
young, old

Modifiers
fairly, very etc.

Negation
not

Connectives
and, or etc.

Quantifiers
all, most, some etc.

QNL expressions
some persons are very young
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Tentative Fuzzy Sets Denoting Linguistic Values of ”Age”

young, fairly young, middle-aged, fairly old, old
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Correspondence between Linguistic Expressions and Set-theoretical Operations.

Expression Fuzzy set-theoretical counterpart ("quantitative 
meaning")

Primitive terms: young, old Fuzzy sets: YOUNG, OLD

Modifiers: very, fairly, etc. Fuzzy sets modified by translation: VERY YOUNG
etc.

Negation: not Modified fuzzy sets: complement, etc.

Compound experessions: and, or, if-then etc. 1.Set-theoretical operations of fuzzy sets: 
intersection, union, etc.
2.Fuzzy relations: order relation, etc.

Quantifiers: all, most some, etc. Fuzzy sets: extension principle, etc.
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Inputs
(precise or fuzzy)

Fuzzy rules
(associative memory)

Reasoning system
(inference engine)

Outputs
(fuzzy)

Defuzzification
(making precise, 

if necessary)

Final outputs
(precise or fuzzy)

Model Construction with Fuzzy
Reasoning
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Defuzzification methods (Matlab)
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Fuzzy Rule-Based Models

• Types of fuzzy rules:
1. If height is tall, then weight is fairly heavy.
2. If height is tall, then weight is 80 kg. (zero-order)
3. If height is tall, then weight is f(x). (first-order)
4. If height is tall and body is fat, then weight is _.
5. If height is tall or body is fat, then weight is _ and risk 

of heart disease is _. 

• Rules have two parts: antecedent (if _) and 
consequent (then _).
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Example of Fuzzy Modeling when Data Unavailable 
(Mamdani Reasoning)

• Problem: How much should I give tip in the 
restaurant in the USA according to given criteria? 
(multicriteria decision-making)

• No data, based on expertise.
• Two criteria (inputs): 

– quality of service (0-10)
– quality of food (0-10)

• Output: 
– Tip (%).
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Decision Model (Variables)

Quality of food

Quality of service

Tipping
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Linguistic Values of Variables

• Service: poor, good, excellent.
• Food: rancid, delicious.
• Tip: cheap, average, generous.
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Examples of Fuzzy Rules

1. If service is poor and food is rancid, then tip is 
cheap.

2. If service is good and food is delicious, then tip is 
average.

3. If service is excellent or food is delicious, then tip is 
generous.



2/10/19 VAN 36

Example of a Fuzzy Decision Table

Service Food
Rancid Delicious

Poor Tip=?

Good Tip=?

Excellent Tip=?

E.g. If service is poor and food is rancid, then tip is cheap.
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Fuzzy Values and Model
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Fuzzy Control, Inverted Pendulum (Omron), Classical Model

M

V
L

Ø

s(t) H(t)

md2/dt2(s(t)+L∙sinø(t) = H(t)
md2/dt2(L∙cosø(t)) = V(t)-m∙g
Jd2/dt2 = (L∙V(t)∙sinø(t)-L∙H(t)∙cosø(t)) = V(t)-m∙g
Md2/dt2∙s(t) = μ(t)-H(t)-Fd/dt∙s(t)
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Fuzzy Control, Inverted Pendulum (Omron), Fuzzy Model

M

V
L

Ø

s(t) H(t)

• If error is big negative and angular velocity is zero, then velocity is big negative
• If error is small negative and angular velocity is small positive, then velocity is zero
• If error is small positive and angular velocity is small positive, then velocity is big 

positive
• etc.
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Inputs

Fuzzy Logic Control : Inference Method
State Variables Output Variable

Rules

Defuzzification

Inter-
polation
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Two Main Types of Fuzzy Reasoning

• Mamdani (Mamdani-Assilian); no data 
required

• Takagi-Sugeno (-Kang); data required

• Matlab fuzzy logic toolbox

http://www.mathworks.com/products/fuzzylogic/
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Comparison of fuzzy reasoning methods

Advantages of the Sugeno Method

• It is computationally efficient.
• It works well with linear techniques (e.g., PID control).
• It works well with optimization and adaptive techniques.
• It has guaranteed continuity of the output surface.
• It is well suited to mathematical analysis.

Advantages of the Mamdani Method

• It is intuitive.
• It has widespread acceptance.
• It is well suited to human input.
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Data Compression when Data: Clusters and Cluster Centers 
(2-D Data)

cluster center

Cluster center examples:
typical points in data

typical persons in data
typical customers

best local centers in area 
best central nodes

borderline case



Clustering methods

• K-means clustering (traditional)

• Fuzzy C-means clustering (fcm, Bezdek)

• Subtractive clustering (Yager, Chiu)

• Best for spherical clusters

• Appropriate number of clusters: methods

with Calinski-Harabasz, Davies-Bouldin, 

Gap, etc. (in Matlab: evalclusters)
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Fuzzy c-means

• Nr. of clusters fixed first
• Starts with random centers
• Aims to minimize variance

within clusters and 
maximize the variance between
them, step by step.

• The memberships to clusters
are used as weights

• ”Theoretical” cluster centers
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Fuzzy subtractive clustering (mountain clustering)
• Nr. of clusters is based on given radius (range of influence, 0<r<1)
• The smaller radius, the more clusters
• Subtractive clustering assumes that each data point is a potential cluster

center. 
1. Calculate the likelihood that each data point would define a cluster center, 

based on the density of surrounding data points.
2. Choose the data point with the highest potential to be the first cluster center.
3. Remove all data points near the first cluster center. The vicinity is determined

using r.
4. Choose the remaining point with the highest potential as the next cluster

center.
5. Repeat steps 3 and 4 until all the data is within the influence range of a 

cluster center.
6. The subtractive clustering method is an extension of the mountain clustering

method.
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Reasoning Based on Data: From Clusters to 
Fuzzy Sets and Rules

If X is about _, then Y is about _
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Fuzzy Rules Provide a Basis 
for Interpolation

data points cluster 
center

fuzzy rule:
If X is _, then Y is _

”Fuzzy models are
universal approximators”
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Earthquakes
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CO2 emission
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Population / Turku
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Example with Data: 
Population in the Globe

Year Population (millions)

1950 2515

1960 3019

1970 3698

1980 4448

1990 5292

2000 6045

Model: Year è Population
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2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

1940 1950 1960 1970 1980 1990 2000 2010

• Basic problem in modelling: 
find a relationship between inputs and outputs.

• Example of mathematical model: 
a curve based on function
population = 1043,06∙1,01803(year-1900)
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Generally: If Three Clusters, Fuzzy Model with Three Rules

1. If year is about _, then population is about _ million.

2. If year is about _, then population is about _ million.

3. If year is about _, then population is about _ million.

Cluster centers
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Takagi-Sugeno Model Example (Zero-Order)

1. If year is about 1950, then population is 2472 million.

2. If year is about 1975, then population is 4014 million.

3. If year is about 2000, then population is 6075 million.

These (precise) 
numerical values are

based on optimization
when goal is good
model (minimum

errors)

These values base
on equal intervals
(grid technique) or

cluster centers
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Takagi-Sugeno Model (First-Order)

1. If year is about 1950, then population is a1*year+b1 million.

2. If year is about 1975, then population is a2*year+b2 million.

3. If year is about 2000, then population is a3*year+b3 million.

These (precise) numerical values are
based on optimization of linear

functions when goal is good model
(minimum errors)

These values base
on equal intervals
(grid technique) or

cluster centers
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Takagi-Sugeno: Consequent Calculation Is Always Based on 
Optimization

Zero-order: Find 
consequent points 
that can minimize 

model errors.

First-order: Find 
linear functions that 
can minimize model 

errors.

Antecedent
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Takagi-Sugeno Reasoning with Scatter (clustering) 
Technique

• Antecedents base on fuzzy clustering, 
consequents with zero- or first-order methods.

• Grid technique: equal intervals for fuzzy sets
in inputs.

Antecedent

Consequent Equal intervals Clusters

Singleton Zero-order, grid Zero-order, scatter

Function First-order, grid First-order, scatter
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X Y Z (altitude)
16 1 2157
16 16 1904
31 16 1815
46 16 1808
61 16 2026
76 16 2184
91 16 1984
106 16 1877
121 16 1779
136 16 1733
151 16 1656

FUZZY MODEL

From Data to Fuzzy Model (Mt. Washington)

Data
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Age of buildings in center of Helsinki



Modeling Traffic Patterns (autotrips.mat)

• This example shows traffic patterns in an area based on the area's 
demographics.

• The Problem: Understanding Traffic Patterns
• In this example we attempt to understand the relationship between 

the number of automobile trips generated from an area and the 
area's demographics. Demographic and trip data were collected 
from traffic analysis zones in New Castle County, Delaware. 

• Five demographic factors are considered: population, number of 
dwelling units, vehicle ownership, median household income 
and total employment.

• Hereon, the demographic factors will be addressed as inputs and 
the trips generated will be addressed as output

• Two variables are loaded in the 
workspace, datin and datout., datout has 1 column representing the 
1 output variable.
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Goodness of Model

• Graphical presentations.
• Various goodness measures, e.g. 

– root mean square of errors (RMSE), or
– RMSE/mean of response * 100%
RMSE:
Σ(oi-pi)2 /n

• Statistical analysis of errors: mean=0, 
error distribution, outliers.
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Population in the Globe: Model Errors

Year Error
math
(di-pi)

Error
square
(di-pi)2

Error
2 rules

Error
square

Error
3 rules

Error
square

1950 -33,81 1143,37 146,70 21520,89 0,00 0,00
1960 -28,50 812,31 -69,60 4844,16 -0,10 0,01
1970 54,24 2942,10 -111,10 12343,21 0,00 0,00
1980 91,32 8339,84 -81,70 6674,89 0,00 0,00
1990 82,92 6875,47 41,60 1730,56 0,00 0,00
2000 -183,26 33585,20 74,10 5490,81 0,00 0,00

Sum 53698,29 52604,52 0,01

Rmse 94,60 93,63 0,04
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Neuro-Fuzzy Models

• Fuzzy model is fine-tuned with neural
networks.

• In practice locations and/or shapes of 
fuzzy membership functions are tuned.

• In Matlab ANFIS-algorithm is used.

http://www.cs.nthu.edu.tw/~jang/anfisfaq.htm
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Neural networks (NN, 1940's)

• Neural networks provide 
a powerful method to 
explore, classify, and 
identify patterns in data.

• Today: evolutionary 
computing replace NN?

• Website of Matlab
• Each neuron: y=Swixi

• Deep learning: many 
layers (Dr. Watson, 
Facebook)

Inputs Neurons
(1 layer) Outputs

http://www.mathworks.com/products/neuralnet/index.shtml
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Alternative Clustering with NN:
Self-Organized Maps (SOM, Kohonen)
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Local and Global Minima of Error



Finding the global optimum: evolutionary computing
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Evolutionary Computing: Genetic Algorithms 
(Matlab's definition)

• The genetic algorithm is a method for solving both constrained and 
unconstrained optimization problems that is based on natural 
selection, the process that drives biological evolution. 

• The genetic algorithm repeatedly modifies a population of individual 
solutions. At each step, the genetic algorithm selects individuals at 
random from the current population to be parents and uses them to 
produce the children for the next generation. Over successive 
generations, the population "evolves" toward an optimal solution. 

• You can apply the genetic algorithm to solve a variety of 
optimization problems that are not well suited for standard 
optimization algorithms, including problems in which the objective 
function is discontinuous, nondifferentiable, stochastic, or highly 
nonlinear.
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Genetic Algorithms 2 (Matlab's definition)
• The genetic algorithm uses three main types of rules at each step to create the 

next generation from the current population:
1. Selection rules select the individuals, called parents, that contribute to the 

population at the next generation. 
2. Crossover rules combine two parents to form children for the next 

generation. 
3. Mutation rules apply random changes to individual parents to form 

children.
• The genetic algorithm differs from a classical, derivative-based, 

optimization algorithm in two main ways: 
– Classical Algorithm generates a single point at each iteration. The sequence 

of points approaches an optimal solution. Selects the next point in the 
sequence by a deterministic computation. 

– Genetic Algorithm generates a population of points at each iteration. The 
best point in the population approaches an optimal solution. Selects the next 
population by computation which uses random number generators.
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Genetic Algorithms:
Selecting parameters (genes) to chromosomes for the 

next generation

Elite Crossover
(recombination)

Mutation

random



More Novel Optimization Methods

• Memetic optimization: evolutionary and 
traditional optimization in combination.

• Bacterial evolutionary optimization: 
clones of chromosomes and gene transfer 
are used.

• These may be faster and better than 
genetic methods alone.
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Bacterial evolutionary algorithms ( © Koczy)

• Generating the initial 
population randomly

• Bacterial mutation is 
applied for each bacterium

• Gene transfer is applied in 
the population

• If a stopping condition is 
fullfilled then the algorithm 
stops, otherwise it 
continues with the bacterial 
mutation step

nth generation

(n+1)th
generation



Bacterial mutation for each bacterium (© Koczy)

One part is randomly chosen
Part 1 Part i Part n

The ith part is mutated in the Nclones clones, but 
not in the original bacterium (bacterial mutation)

The best bacterium transfers its ith part to the 
other bacteria

Repeat until all the parts are mutated and 
tested



Gene transfer (© Koczy)

1. The population is divided into 
two halves

2. One bacterium is randomly 
chosen from the superior half 
(source bacterium) and 
another from the inferior half 
(destination bacterium)

3. A part from the source 
bacterium is chosen and this 
part can overwrite a  part of 
the destination bacterium

This cycle is repeated for Ninf
times (number of “infections”)

inferior 
half

superior 
half …

…
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Regression Analysis 
(Zimmermann & Zysno Data)

• The objects are tiles. 24 data vectors.
• The degrees of membership of 24 objects
with respect to three fuzzy sets.

• Two inputs and one output.
• Inputs:

– Good solidity, as assessed on the basis of the
tile’s color.

– Good dovetailing, which means that the tiles cling
to each other as tightly as possible.

• Output variable: Ideal tile, and this feature is
assessed on the basis of the input variables.

• Sixty persons performed each of the
preceding 24 assessments.
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ZZ Data & Linear Regression

Independent:
1. Solidity
2. Dovetailing

Dependent:
Ideal tile

Obs. 
nro.

Solidity Dovetail Ideal tile

1 0.426 0.241 0.215

2 0.352 0.662 0.427

3 0.109 0.352 0.221

4 0.630 0.052 0.212

5 0.484 0.496 0.486

6 0.000 0.000 0.000

7 0.270 0.403 0.274

8 0.156 0.130 0.119

Ideal tile = 0.370*Solidity+0.507*Dovetailing
Rsquare=0.909
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Interlude: Fuzzy Aggregation Operators,
e.g. Generalized Mean

Gmean=(Si=1,...,mwi·Xi
p)1/p, 0<Xi<1, Si=1,...,mwi=1, -¥<p<¥

• p: degree of compensation
• p→- ¥: min
• p=-1: harmonic mean
• p → 0: geometric mean
• p=1: arithmetic mean
• p=2: quadratic mean (root mean square)
• p → ¥: max

Parameter Estimates

.448 .026 .395 .502

.552 .025 .499 .604

.377 .097 .175 .578

Parameter
w1
w2
p

Estimate Std. Error Lower Bound Upper Bound
95% Confidence Interval

Ideal tile = (0.448·Solidity0.377+0.552·Dovetailing0.377)1/0.377
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Generalized mean (non-linear)

Zimmermann & Zysno:
ideal = (w1solidityp+w2dovetailp)1/p

(w1+w2=1; 0<variable<1, p≠0)
• w1=0.45, w2=0.55, p=0.38
• Hence: 

ideal = (0.45solidity0.38+0.55dovetail0.38)1/0.38

• Rmse=0.05
• Gen. means can be neurons in NN.
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ZZ Model with Generalized Mean

Ideal tile = (0.448·Solidity0.377+0.552·Dovetailing0.377)1/0.377
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Fuzzy ZZ Model, Subtractive Clustering
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Fuzzy ZZ Model, Interpretation

Initial rules:
1. If Solidity is about 0.484 and Dovetailing is about 0.496, then the 

degree of Ideal tile is about 0.486.
2. If Solidity is about 0.949 and Dovetailing is about 0.020, then the 

degree of Ideal tile is about 0.247.
3. If Solidity is about 0.000 and Dovetailing is about 0.000, then the 

degree of Ideal tile is about 0.000. 

Final rules:
1. If Solidity is about 0.484 and Dovetailing is about 0.496, then the 

degree of Ideal tile is 0.588*Solidity+0.467*Dovetailing-0.053.
2. If Solidity is about 0.949 and Dovetailing is about 0.020, then the 

degree of Ideal tile is 1.063*Solidity+0.631*Dovetailing-0.734.
3. If Solidity is about 0.000 and Dovetailing is about 0.000, then the 

degree of Ideal tile is 0.779*Solidity+0.315*Dovetailing+0.014. 
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Goodness Evaluation of ZZ Models

Table 6.2.6.1.6. Statistics of Residuals of Data. Tile Assessment.

Statistic LINREG0 Gmean ANFIS Tuned 
ANFIS

FMT

Mean -0.010 -0.019 0.001 0.000 0.001

Median 0.001 -0.009 -0.006 0.003 0.007

Standard Deviation 0.068 0.065 0.047 0.045 0.052

Sample Variance 0.005 0.004 0.002 0.002 0.003

Rmse 0.067 0.067 0.046 0.044 0.051

Kurtosis -0.159 -0.263 -0.346 -0.423 -0.927

Skewness -0.056 0.035 0.344 -0.501 -0.250

Range 0.282 0.262 0.183 0.165 0.177

Minimum -0.142 -0.135 -0.084 -0.097 -0.092

Maximum 0.140 0.127 0.099 0.068 0.085

Sum -0.245 -0.457 0.032 0.002 0.035

Count 24 24 24 24 24

t-test: mean=0 yes yes yes yes yes

Shapiro-Wilk test:
normally distributed

yes yes yes yes yes
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y=prod(x)(1-p) * (1-prod(1-x))p

0<p<1
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Goodness Evaluation

Goodness 
of model

Correspondence with 
human reasoning

Simplicity

Residual distribution
Content 
validity

Usability

Rmse

Correlation

Number of outliers

Residual independence

Variances of residuals

Other systematic error

Comprehen
sibility
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Goodness Evaluation: Residuals
Mean
Median
Standard Deviation
Sample Variance
Rmse
Kurtosis
Skewness
Range
Minimum
Maximum
t-test: mean=0?
Shapiro-Wilk or 
Kolmogorov-Smirnov 
test:
normally distributed?
t-test or Wilcoxon 
test: 2 related 
samples (samples are 
sets of residuals)
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If X1=A1, then Y1=B1
If X2=A2, then Y2=B2
...

Σx, ∂f, ∫g

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.2

0.4

0.6

0.8

varvar

va
r

Evolutionary Fuzzy Modeling 
Today vs. Traditional Modeling
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Goodness Evaluation of Model with Control Data
(cross-validation)

• We can divide data into two parts: training
and control (validation) data.

• We construct model with training data but
evaluate its goodness with control data.

• This method shows whether we can
generalize our model to any data set in the
same population.
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Model construction with 
Data and Expertise

Training 
data

Experts

• Fuzzy rules
(GA, SOM, c-
means etc.)

• Fuzzy 
reasoning

Control 
data

System 
evaluation
(errors)

Tuning
(NN, GA)

New system
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Example: Measuring Blood Alcohol Concentration among Males

Alcohol drinking (g)

Person’s weight (kg)

Blood alcohol (0/00)

Training data: 100 men
Control data: 50 men

One bottle of beer contains 16 g alcohol
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Training and Control Data for One-Input Alcohol Model

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
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exstrapolation

interpolation
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Training Data for Two-Input Alcohol Model
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Blood Alcohol: Input Space for Training Data in Two-Inputs Model 
(Control Data Points Must Locate in Same Area)

50

55

60

65

70
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80

0 10 20 30 40 50 60 70
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PA
IN
O

Interpolation Extrapolation
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Alcohol: Linear Regression Analysis

• Blood alcohol = 
-0.01*drinking + 0.02*weight + 0.82

• Rsquare (training) = 0.99
• Rmse (training) = 0.03
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Conventional Discriminant Analysis with Iris Data
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Iris Data: Fuzzy Model (in NN: Learning Vector
Quantization, LVQ)

Independent:
• Sepal length
• Sepal width
• Petal length
• Petal width

Dependent:
Species (setosa, versicolor, virginica)

Supervised learning
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Iris Data: Fuzzy Model with Three Rules (Subclust, 0.9)

Initial rules:
SL   SW   PL   PW → S
60    29    45    15       2
50    34    15     2        1
68    30    55    21       3
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Iris Data: Classification Results in Discriminant Analysis, 
SPSS (top), Fuzzy (bottom)

Classification Resultsa

50 0 0 50
0 48 2 50
0 1 49 50

100.0 .0 .0 100.0
.0 96.0 4.0 100.0
.0 2.0 98.0 100.0

species
setosa
versicolor
virginica
setosa
versicolor
virginica

Count

%

Original
setosa versicolor virginica

Predicted Group Membership
Total

98.0% of original grouped cases correctly classified.a. 

species * predicted Crosstabulation

Count

50 0 0 50
0 47 3 50
0 1 49 50
50 48 52 150

setosa
versicolor
virginica

species

Total

1.00 2.00 3.00
predicted

Total
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Time Series: Mackey-Glass Chaotic Time Series

0 200 400 600 800 1000 1200
0.2
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Time
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Mackey-Glass Chaotic Time Series

0 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

training
data

control
data

[x(t), x(t+6), x(t+12), x(t+18), x(t+24)]

data vector when d=6, n=4:
4 inputs, 1 output

x(t) x(t+1*d) x(t+2*d) ... x(t+n*d)

Assign
- starting point,
- step,
- nr. of inputs
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Mackey-Glass Chaotic Time Series: Desired and Predicted 
(o) Values in Control Data

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5
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Simple Time Series Analysis (Pedrycz)
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Original data vector: (x1,x2,x3,x4,x5,x6,x7,x8, ..., xn)

Data matrix for fuzzy system (today & today-yesterday => tomorrow):
x2, x2-x1, x3
x3, x3-x2, x4
x4, x4-x3, x5
...

Create matrix which contains in 3 columns (2 inputs, 1 output)
- original values (from x2),
- differences xk-xk-1,
- original values (from x3)

Time
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Future Trends: How to Construct Simple Models?

Reduce variables
(eg. when intercorrelated)

Reduce values
of variables

Use archetype
values

Factor analysis
Item analysis

Adjusted
rsquare

Fuzzy clustering
of cases

Fuzzy
rules

Fuzzy clustering
of variables

Reduce
clusters
(i.e. rules)



Simple dimension reduction for 
creating composite variables (Niskanen)

• Cluster analysis (CA), k-means, fcm or
subclust.

• Originally CA finds clusters of objects.
• If data matrix transposed, CA can find

clusters of variables. Cluster centers will
be the composite variables.

• Traditionally: principal component and 
factor analysis, or multidimensional scaling
(in SPSS: proxcal).
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"Everything Depends on Everything Else"
Modeling of Complicated Phenomena with

Concept and Cognitive Maps
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Computer Models of Complicated Phenomena

• Networks of variables and their
interrelationships.

• CI models can also cope with these
phenomena.

• We can use these CI models in both
qualitative and quantitative research.

• Typical conventional quantitative models
apply path analysis or structural equation
modeling (Lisrel, Amos, Mplus).

• We apply concept and cognitive maps in 
this context.



2/10/19 VAN 109

What Is a Concept Map? (Novak, Åhlberg)

• Concept mapping is a technique for representing 
knowledge in graphs.

• Knowledge graphs are networks of concepts. Networks 
consist of nodes (points/vertices) and links (arcs/edges). 

• Nodes represent concepts and links represent the 
relations between concepts. Concepts and links may be 
divided in categories such as causal or temporal 
relations. 

• Concept mapping can be done for for several purposes: 
– to generate ideas (brain storming, etc.); 
– to design a complex structure (long texts, hypermedia, large web 

sites, etc.); 
– to communicate complex ideas; 
– to aid learning by explicitly integrating new and old knowledge; 
– to assess understanding or diagnose misunderstanding. 
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Concept Map about Concept Maps (Cmap ToolsTM)
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Fuzzy Cognitive Maps (FCM, Kosko & al.)

• Originally Axelrod & al.

• FCMs are fuzzy directed graphs with possible 
feedback. 

• The nodes are causal concepts. 

• The nodes have numeric or linguistic 
interrelationships.

• They can model events, actions, values, goals, 
stories etc.

• More applicable than e.g. Bayesian networks
because feedback (loops) are also allowed.

• We can use these in both qualitative and quantitative
research.

• Internet applications can be financially very
profitable.
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Numerical FCM: Public City Health Model (Lee & al.): 
Variables (Nodes)

N1: Number 
of people in 
a city

N2: Migration 
into city

N3: Modernization

N4: Amount of 
garbage

N6: Number of 
diseases

N5: Sanitation
facilities

N7: Bacteria per
area

values of nodes usually between 0 and 1
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Numerical FCM: Public City Health Model (Lee & al.): 
drivers and targets

N1: Number 
of people in 
a city

N2: Migration 
into city

N3: Modernization

N4: Amount of 
garbage

N6: Number of 
diseases

N5: Sanitation
facilities

N7: Bacteria per
area

values of nodes between 0 and 1
intensity of (monotonic) relationship usually between -1 and 1
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Numerical FCM: Public City Health Model

targets ➝
drivers ↓

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Node 1 0 0 0.6 0.9 0 0 0

Node 2 0.5 0 0 0 0 0 0

Node 3 0 0.6 0 0 0.8 0 0

Node 4 0 0 0 0 0 0 1

Node 5 0 0 0 0 0 -0.8 -0.9

Node 6 -0.3 0 0 0 0 0 0

Node 7 0 0 0 0 0 0.8 0

N1: Number 
of people in 
a city

N2: 
Migration 
into city

N3: Modernization

N4: Amount of 
garbage

N6: Number of 
diseases

N5: Sanitation
facilities

N7: Bacteria per
area

Connection matrix: Intensities of relationship (between -1 and 1)
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Numerical FCM: Public City Health Model in Iteration:
matrix product of inputs and connection matrix

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Node 1 0 0 0.6 0.9 0 0 0

Node 2 0.5 0 0 0 0 0 0

Node 3 0 0.6 0 0 0.8 0 0

Node 4 0 0 0 0 0 0 1

Node 5 0 0 0 0 0 -0.8 -0.9

Node 6 -0.3 0 0 0 0 0 0

Node 7 0 0 0 0 0 0.8 0

Intensity of relationship (between -1 and 1)

input output

transformation (squashing)
into interval 0 to 1

Nodes at t Nodes at t+1



Transformation function
Y=1/(1+exp(-lambda*X))

1 < lambda < 5
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X = matrix product
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FCM: Public City Health History Data after Iterations

Time
Number of 
people

Migr
ation

Moderniz
ation

Amount of 
Garbage

Sanitation 
facilities

Number of 
diseases

Bacteria 
per area

0 0.90 0.20 0.20 0.10 0.20 0.20 0.20

1 0.55 0.65 0.94 0.98 0.69 0.50 0.39

2 0.70 0.94 0.84 0.92 0.98 0.23 0.79

3 0.88 0.93 0.89 0.96 0.97 0.32 0.44

4 0.86 0.94 0.93 0.98 0.97 0.11 0.49

5 0.90 0.94 0.93 0.98 0.98 0.13 0.51

6 0.90 0.94 0.94 0.98 0.98 0.13 0.50

7 0.90 0.94 0.94 0.98 0.98 0.13 0.51

8 0.90 0.94 0.94 0.98 0.98 0.13 0.51

9 0.90 0.94 0.94 0.98 0.98 0.13 0.51

10 0.90 0.94 0.94 0.98 0.98 0.13 0.51

0 1 2 3 4 5 6 7 8 9
10

Number of people
Migration

Modernization
Amount of Garbage

Sanitation facilities
Number of diseases

Bacteria per area

0
20
40
60
80

100
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FCM construction with history data

Node 1 Node 2 Node 3 Node3
2 3.5 2.1 1
5.1 10 4.7 9.5
8.2 8.1 2.1 3.8
1.4 6.9 9.3 7.7
5.2 6.3 0.4 0

Human expertise

NN, Evolutionary computing & History
data

TIM
E

FCM model

Real world
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From history data to connection matrix with evolutionary computing

Time
Number of 
people

Migr
ation

Moderniz
ation

Amount of 
Garbage

Sanitation 
facilities

Number of 
diseases

Bacteria 
per area

0 0.90 0.20 0.20 0.10 0.20 0.20 0.20

1 0.55 0.65 0.94 0.98 0.69 0.50 0.39

2 0.70 0.94 0.84 0.92 0.98 0.23 0.79

3 0.88 0.93 0.89 0.96 0.97 0.32 0.44

4 0.86 0.94 0.93 0.98 0.97 0.11 0.49

5 0.90 0.94 0.93 0.98 0.98 0.13 0.51

6 0.90 0.94 0.94 0.98 0.98 0.13 0.50

7 0.90 0.94 0.94 0.98 0.98 0.13 0.51

8 0.90 0.94 0.94 0.98 0.98 0.13 0.51

9 0.90 0.94 0.94 0.98 0.98 0.13 0.51

10 0.90 0.94 0.94 0.98 0.98 0.13 0.51

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Node 1 0 0 0.6 0.9 0 0 0

Node 2 0.5 0 0 0 0 0 0

Node 3 0 0.6 0 0 0.8 0 0

Node 4 0 0 0 0 0 0 1

Node 5 0 0 0 0 0 -0.8 -0.9

Node 6 -0.3 0 0 0 0 0 0

Node 7 0 0 0 0 0 0.8 0

intensities are
parameters in 
optimization
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Linguistic FCM

• We can use linguistic inputs and outputs.
• The relationships between nodes are assigned with 

linguistic rules.

Node

NodeLinguistic rules

Node

Node
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Linguistic Public City-Health Model 

Fuzzy rules:
1. If the migration into city is low and the number of 

diseases is small, then the increase in the number of 
people in the city is medium.

2. If the migration into city is low and the number of 
diseases is large, then the increase in the number of 
people in the city is fairly small.

3. If the migration into city is average and the number of 
diseases is small, then the increase in the number of 
people in the city is fairly large.

4. If the migration into city is average and the number of 
diseases is large, then the increase in the number of 
people in the city is medium.

5. If the migration into city is high and the number of 
diseases is small, then the increase in the number of 
people in the city is  large.

6. If the migration into city is high and the number of 
diseases is large, then the increase in the number of 
people in the city is fairly large.
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From Fuzzy Rules to an FCM Model

Node 2       Node 6        Node 1



Simple FCM control model (Papageorgiou, Stach, Kurgan, Pedrycz)
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Goals:
0.68 < Tank (C1) < 0.70
0.74 < Gauge (C5) < 0.80
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Introducing Fuzzy Cognitive Maps for decision making in 
precision agriculture.

The FCM model developed consists of nodes which describe soil properties 
and cotton yield and of the weighted relationships between these nodes. 
The nodes of the FCM model represent the main factors influencing cotton 
crop production i.e. essential soil properties such as texture, pH, OM, K, 
and P. 
The proposed FCM model addresses the problem of crop development and 
spatial variability of cotton yield, taking into consideration the spatial 
distribution of all the important factors affecting yield. 

Available from: 
https://www.researchgate.net/publication/237007624_Introducing_F
uzzy_Cognitive_Maps_for_decision_making_in_precision_agricultur
e

https://www.researchgate.net/publication/237007624_Introducing_Fuzzy_Cognitive_Maps_for_decision_making_in_precision_agriculture
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Na
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Mannerhei
mintie

Mäkelänkat
u2 Kallio2 Vartiokylä

Leppävaara
4 Tikkurila3 Luukki Lohja Kerava(M5)

Lentoasem
a(M4)

Mechelinink
atu(M1) Olari(M2) Rekola(M3)

84 72 108 79 111 164 39 51 74 65 35 81 118
86 74 77 62 82 83 52 32 64 60 32 54 71
64 50 53 42 57 51 47 29 51 50 35 46 53
59 40 48 43 50 53 32 31 39 44 56 42 38
53 35 43 39 56 52 25 31 30 41 49 45 44
42 31 40 36 51 47 24 30 26 43 43 36 33
41 30 41 38 46 50 18 28 19 46 51 38 44
33 33 40 37 38 46 25 26 30 44 30 35 43
20 30 35 33 44 35 25 22 32 34 19 38 26
36 39 36 31 37 44 26 21 30 42 31 37 37
36 45 38 31 48 50 22 29 32 40 37 38 38
36 34 41 31 38 52 16 29 35 43 43 33 47
28 40 33 33 40 45 17 25 24 45 50 33 51
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Fig. 6. The initial Fuzzy Cognitive Maps 

The factors in the matrix are represented as follows:  
� C1: technical factor (collection, transport, treatment methods, etc.) 
� C2: environmental factor (emission of pollution, depletion of resources, 

human toxicity, etc.) 
� C3: economic factor (subsidies, efficiency at system/subsystem level, 

economic sound and continuous operation, coverage of all aftercase 
expenses, etc.) 

� C4: social factor (involving local need and requirements, minimizing public 
health risk, providing employment, etc.) 

� C5: legal factor (EU packaging directive, EU landfill directive, waste 
hierarchy, national, regional and local regulations) 

� C6: institutional factor (involvement of stakeholders, existence of feedback 
mechanisms of citizens, organisational structure, etc.) 

The other input data set was the range of historical data consisting of sequences of the 
state vectors. According to (Demirbas, 2011; den Boer and Lager, 2007; Graymore et 
al., 2008; Langa et al., 2006; Morrissey and Browne, 2004; Wilson et al., 2001; van de 
Klunert and Anschutz, 1999; Thorneloe et al., 1999), the trend of the studied factors 
was assessed by values between 0 and 1 from the 1980s to the 2010s. The sequences 
of the state vector were designed on the basis of the literature and therefore it may be 
assumed that they specify soundly the role of the factors according to changes in the 
legislation, the available techniques, the social attitude, the state of the environment 
and the economic and institutional context as a time series (see Table 3, columns t0-t4). 

Koczy & al.
Waste management



FCM (Carlsson & Fuller)
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Woodstrat
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Woodstrat
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Woodstrat history data
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Kotim. Kysyntä ja tuotannon
ulkomainen kilp. kyky
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6: production

4: working

motivation

7: tax base

5: tax rate

3: public expenditure

1: social

safety net

9: need for

support

8: disposable

income

2: domestic demand & 

international

competitiveness

- positive, - negative

Constituents of the Finnish

wellfare state



Supervisory FCM

• An FCM which supervises or controls the
operation of another FCM

• In a sense, a meta-level FCM
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Numerical
1. Good for modeling complicated 

phenomena. 

2. Quite simple systems from the 
mathematical standpoint. 

3. A great number of nodes/variables can 
be used. 

4. Can only establish monotonic causal 
interrelationships between the nodes.

5. Only numerical values and models can 
be used, thus less user-friendly. 

6. Allow us to use feedback or loops 
effortlessly.

7. The structure can be changed 
effortlessly.

8. Most are still a priori maps. 

9. Time delays are problematic.

10. Interpretation of nodes and relationships 
can be problematic.

Linguistic
1. Good for modeling complicated 

phenomena. 

2. Quite simple systems from the 
mathematical standpoint. 

3. Only a limited number of 
nodes/variables.

4. Various relationships can be used.

5. Linguistic values and relationships are 
more user-friendly and human-like.

6. Feedback or loops require more work.

7. The change of the structure can be 
laborious.

8. Most are still a priori maps. 

9. Time delays are problematic.

10. Interpretation of nodes and relationships 
can be problematic.

Pros and Cons of Cognitive Maps
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Example: Carvalho & Tomè
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Virtual Undersea World (Kosko)

shark

dolphin

herd

fish

school
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Figures 1006 
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Fig 1. 1008 
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In Matlab Simulink also usable for FCM 
construction
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Examples of Urban Research

• http://www.tkk.fi/Yksikot/YTK/koulutus/metodikortti/Kognkart.html

• http://www.spacesyntax.com/

http://www.tkk.fi/Yksikot/YTK/koulutus/metodikortti/Kognkart.html
http://www.spacesyntax.com/


2/10/19 VAN 146

London Pedestrian Routemap http://www.spacesyntax.com/

http://www.spacesyntax.com/

