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Agenda

Soft computing and fuzzy systems?
Fuzzy sets.

Model construction with fuzzy language.
Typical fuzzy reasoning models.
Neuro-fuzzy and genetic-fuzzy systems.
Tuning of models with control data.
Complex models and cognitive maps.
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Matlab’s Fuzzy Logic Toolbox
iIs mainly used in our model constructions.

Cl publications in my Box cloud:
https://app.box.com/s/fnromabw3nb3edesr16dor73tr1vb48u
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http://www.mathworks.com/products/fuzzylogic/?BB=1
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adaptive and imprecision
intelligent systems learning
or uncertainty
soft computing optimization
(belongs to Al)
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imprecise objects
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interpretation

\ manual work
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Traditional Approaches to Computer Modeling

 Mathematical models:
Complicated, black boxes,
number crunching.

* Rule-based systems
(crisp & bivalent):
Large rule bases.
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[ Such a simple
calculatiuon -
are you crazy ? |u

No, fuzzy ! J

Michael Mlynski © 2010



According to the theories of the engineering sciences,
a bumble bee is unable to fly
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In the beginning, there was imprecision
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Then came fuzziness

— Fuzziness for imprecision, thus fuzziness =
imprecision in practice (semantics).
— Probability for uncertainty (epistemology).

* Fuzziness vs. probability:

« John is young (fuzziness)
* Probability(John is 20) = 0.8 (crisp probability)

* Probability(John is 20) = about 0.8 / fairly high
(fuzzy probability)

Probability(John is young) = high (fuzzy
probability)
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Fuzzy Systems

* Fuzzy systems can cope with linguistic
and imprecise entities of a model in a
computer environment.

* Invented by Prof. Lotfi Zadeh (1921-2017)
at UC Berkeley in the 1960’s.

« Stem from novel theories on fuzzy sets
and fuzzy logic.

2/10/19 VAN
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Fuzzy systems

* Fuzzy set theory: Also partial
memberships to sets are used.

* Fuzzy logic: A version of multivalued
logic. The truth values may be numeric or
linguistic.

 Bivalent logic: either true or false.

* Fuzzy logic: degrees of truth from false to
true.
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Advantages of Fuzzy Models

e Models aim to mimic real human
reasoning.

* Models can be
- linguistic
- simple (no number crunching),
- comprehensible (no black boxes),
- fast in computing,
- good in practice.

2/10/19 VAN
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Fuzzy Applications: Control

Heavy industry
(Matsushita, Siemens,
Stora-Enso, Metso)

Home appliances

(Canon, Sony, Goldstar,

Siemens, Whirlpool)

Automobiles (Nissan,
Mitsubishi, Daimler-
Benz, Chrysler, BMW,

Volkswagen)
Space crafts (NASA)
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Fuzzy Applications: Decision Making

» Fuzzy scoring for mortgage applicants,

« creditworthiness assessment,

« fuzzy-enhanced score card for lease risk assessment,
 risk profile analysis,

* insurance fraud detection,

e cash supply optimization,

« foreign exchange trading,

« trading surveillance,

 investor classification etc.

« Source: FuzzyTech

2/10/19 VAN
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Crisp and Fuzzy Sets
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Gradual Change — the Sorites Paradox

Sorites: How many grains of sand
will constitute a heap?

Stewing the frog in the pot
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”Quantitative meanings” of\\ E.g. A

linguistic values are fuzzy meaning of "young” is a fuzzy
sets. set YOUNG
/
Fuzzy sets are denoted
as functions,
membership functions, n
Crisp set
YOUNG
2/10/19 VAN 18



4 .
Objects can also belong /E.g., given fuzzy set YOUNG\

membership functions, 0 < p(x) <1

N )

partially to a given fuzzy and ages of persons,
set. person aged 10: full
N membership
4 person aged 27: almost full

Degrees of membership are

denoted as functions, person aged 35: small

person aged 70: no
membership /

1 1

MEMBERSHIP
MEMBERSHIP

T T T | T T T |

0 25 50 75 100 0 25 50 75 100

AGE \ AGE

horizontal axis: values of ages, 0 to 100 (reference set, universe of discourse)
vertical axis: degrees of membeship, 0 to 1
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MEMBERSHIP

o
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Crisp and Fuzzy Membership Functions
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Fuzzy: About five
{(x,u(x)) | xeE, n(x)<[0,1]},
In which E is universe of
dicourse (reference set). )
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Typical Fuzzy Sets

« Triangular, -
» Bell-shaped,
- Trapezoidal. \

* Normalized: max
membership = 1

» Convexity:

Fig. 1.3, A convex (a) and a nonconvex (b) fuzzy set
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Basic Fuzzy Set Operations

~ o
dIHSYH3IgG3aN
t,,
mn
@)
E =
R
g o
€ o
QO
O £
e e

2 3 456 7 8 910

1

0

 Union.

dIHSY3anW3an

2 3 45 6 7 8 910

1

0

~ o
dIHSH3aN3IN

2 3 4 5 6 7 8 9 10

1

0

22

VAN

2/10/19



2/10/19

Linguistic
variables

Vocabu-
lary

Construction of Fuzzy
Language

Linguistic
values

Artificial

language in SC

Universe of
discourse

VAN

Syntactic
rules

Semantic
rules
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Possible Values for Variables in Fuzzy Language

Type of Value

Examples

Precise numerical values and intervals

5,0.5, [4.5,6]

Approximate numerical values and
intervals

about 5, about 0.5, about [4.5,6], about
from4.5t06

Precise numerical functions and relations

X2+2y3+1, x=y

Approximate numerical functions and
relations

Approximately x?+2y3+1, approximately
X=y

Precise and approximate linguistic values
and relations

male, negative, small negative, very high,
fairly old, not good, young or fairly young,
slightly greater than, approximately equal
with

2/10/19
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e.g. variable Age and set of ages.

A
Term: Antonym:
young old

Select other expressions which are modified according to the

primitive terms. The modifiers are adverbs. Use one of these terms as
a neutral value or central value, and the rest of the values should
usually be symmetrical with respect to the ne utral value: modifiers are
e.g. very, fairly, more or less, slightly and almost.

25



Primitive terms
young, old

Modifiers
< fairly, very etc.
Negation
not >
Connectives
< and, or etc.
Quantifiers >
all, most, some etc.
QNL expressions

some persons are very young

Formation of Fuzzy Language Expressions.

2/10/19
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Tentative Fuzzy Sets Denoting Linguistic Values of "Age”

0 25 50 75 100

young, fairly young, middle-aged, fairly old, old

VAN 27



Correspondence between Linguistic Expressions and Set-theoretical Operations.

Expression Fuzzy set-theoretical counterpart ("quantitative
meaning")

Primitive terms: young, old Fuzzy sets: YOUNG, OLD

Modifiers: very, fairly, etc. Fuzzy sets modified by translation: VERY YOUNG
etc.

Negation: not Modified fuzzy sets: complement, etc.

Compound experessions: and, or, if-then etc. 1.Set-theoretical operations of fuzzy sets:
intersection, union, etc.
2.Fuzzy relations: order relation, etc.

Quantifiers: all, most some, etc. Fuzzy sets: extension principle, etc.
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Model Construction with Fuzzy
Reasoning

2/10/19 VAN 29



Defuzzification methods (Matlab)

centroid
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Fuzzy Rule-Based Models

« Types of fuzzy rules:
1. If height is tall, then weight is fairly heavy.
If height is tall, then weight is 80 kg. (zero-order)
If height is tall, then weight is f(x). (first-order)
If height is tall and body is fat, then weight is .

If height is tall or body is fat, then weight is _ and risk
of heart disease is .

* Rules have two parts: antecedent (if _) and
consequent (then ).

o ~wb
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Example of Fuzzy Modeling when Data Unavailable
(Mamdani Reasoning)

* Problem: How much should | give tip in the
restaurant in the USA according to given criteria?
(multicriteria decision-making)

 No data, based on expertise.
« Two criteria (inputs):
— quality of service (0-10)
— quality of food (0-10)
e Qutput:
— Tip (%).

2/10/19 VAN
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Decision Model (Variables)

Quality of service \
Quality of food /

Tipping

2/10/19 VAN
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Linguistic Values of Variables

» Service: poor, good, excellent.
 Food: rancid, delicious.
* Tip: cheap, average, generous.

2/10/19 VAN
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Examples of Fuzzy Rules

If service is poor and food is rancid, then tip is
cheap.

If service is good and food is delicious, then tip is
average.

If service is excellent or food is delicious, then tip is
generous.

VAN
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Example of a Fuzzy Decision Table

Service Food

Rancid Delicious
Poor Tip="?
Good Tip="?

Excellent | Tip=?

E.g. If service is poor and food is rancid, then tip is cheap.
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Fuzzy Values and Model

good excel

1 1 1 1 1
1 2 3 4 5 B 7 8 9 1C
input variable "service"

cheap average generous

‘ "3"
/ T UTEE 0o service

/N A

10 15 20
output variable "tip"
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Fuzzy Control, Inverted Pendulum (Omron), Classical Model

md?2/dt2(s(t)+L-sing(t) = H(t)

md?2/dt?(L-cosg(t)) = V(t)-m-g

Jd?/dt2 = (L-V(t)-sina(t)-L-H(t)-cosa(t)) = V(t)-m-g
Md?/dt2-s(t) = u(t)-H(t)-Fd/dt-s(t)
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Fuzzy Control, Inverted Pendulum (Omron), Fuzzy Model

Z

If error is big negative and angular velocity is zero, then velocity is big negative

If error is small negative and angular velocity is small positive, then velocity is zero
If error is small positive and angular velocity is small positive, then velocity is big
positive

etc.
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Two Main Types of Fuzzy Reasoning

 Mamdani (Mamdani-Assilian); no data
required

« Takagi-Sugeno (-Kang); data required
» Matlab fuzzy logic toolbox

2/10/19 VAN
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http://www.mathworks.com/products/fuzzylogic/

Comparison of fuzzy reasoning methods

Advantages of the Sugeno Method

* |tis computationally efficient.

« It works well with linear techniques (e.g., PID control).
It works well with optimization and adaptive techniques.
« It has guaranteed continuity of the output surface.

« ltis well suited to mathematical analysis.

Advantages of the Mamdani Method
* ltis intuitive.

« It has widespread acceptance.
» ltis well suited to human input.
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Data Compression when Data: Clusters and Cluster Centers
(2-D Data)

[ cluster cente{

[ borderline case J

Cluster center examples:
typical points in data
typical persons in data
typical customers
best local centers in area
best central nodes

VAN



Clustering methods

« K-means clustering (traditional)

* Fuzzy C-means clustering (fcm, Bezdek)
» Subtractive clustering (Yager, Chiu)

» Best for spherical clusters

* Appropriate number of clusters: methods
with Calinski-Harabasz, Davies-Bouldin,
Gap, etc. (in Matlab: evalclusters)
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Fuzzy c-means

* Nr. of clusters fixed first

« Starts with random centers

 Aims to minimize variance
within clusters and
maximize the variance between
them, step by step.

 The memberships to clusters
are used as weights

* "Theoretical” cluster centers

VAN
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Fuzzy subtractive clustering (mountain clustering)

Nr. of clusters is based on given radius (range of influence, 0<r<1)

The smaller radius, the more clusters

Subtractive clustering assumes that each data point is a potential cluster
center.

. Calculate the likelihood that each data point would define a cluster center,

based on the density of surrounding data points.

Choose the data point with the highest potential to be the first cluster center.
Remove all data points near the first cluster center. The vicinity is determined
using r.

Choose the remaining point with the highest potential as the next cluster

center.
Repeat steps 3 and 4 until all the data is within the influence range of a

cluster center.
The subtractive clustering method is an extension of the mountain clustering

method.
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Reasoning Based on Data: From Clusters to
Fuzzy Sets and Rules

If X is about , thenY is about _

A
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Fuzzy Rules Provide a Basis
for Interpolation

‘Q.
‘-lllllIIIIIIIO.......--.““’ /\
o) //\\ /A\ //
data points\T cluster fuzzy rule:
center If Xis _,thenYis _

”Fuzzy models are

universal approximators”

2/10/19
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Earthquakes
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CO, emission
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Lishteet: Tilastokeskas 2016,
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Example with Data:
Population in the Globe

Year Population (millions)
1950 2515
1960 3019
1970 3698
1980 4448
1990 5292
2000 6045

Model: Year = Population

2/10/19
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6500

6000 /’

5500 /
5000 /

4500 /

4000 /

3500 /

3000
2500

2000

I I T T T T

1940 1950 1960 1970 1980 1990 2000 2010

« Basic problem in modelling:
find a relationship between inputs and outputs.

 Example of mathematical model:
a curve based on function
population = 1043,06-1,01803(year-1300)

S RV RV



Generally: If Three Clusters, Fuzzy Model with Three Rules

1. If year is about , then population is about _ million.
2. If yearis about _, then population is about _ million.

3. Ifyear is about , then population is about _ million.

S 7

Cluster centers
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Takagi-Sugeno Model Example (Zero-Order)

1. If year is about 1950, then population is 2472 million.
2. If year is about 1975, then population is 4014 million.
3. If year is about 2000, then population is 6075 million.

4 These valuesb{é( / These (preci%

on equal intervals numerical values are

(grid technique) or based on optimization
cluster centers when goal is good
/ model (minimum

\ errors) /
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1.
2.
3.

Takagi-Sugeno Model (First-Order)

If year is about 1950, then population is a1*year+b1 million.

If year is about 1975, then population is a2*year+b2 million.

If year is about 2000, then population is a3*year+b3 million.

-

These values base

on equal intervals

(grid technique) or
cluster centers

J

2/10/19

\

These (precise) numerical values are
based on optimization of linear
functions when goal is good model
(minimum errors)

)
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Takagi-Sugeno: Consequent Calculation Is Always Based on
Optimization

Zero-order: Find
consequent points
that can minimize

model errors.

- )
)

[ Antecedent

e

First-order: Find
linear functions that
can minimize model

S errors. Ve
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Takagi-Sugeno Reasoning with Scatter (clustering)
Technique

* Antecedents base on fuzzy clustering,
consequents with zero- or first-order methods.

« Grid technique: equal intervals for fuzzy sets
In iInputs.

N

Antecedent
Consequent Equalintervals  Clusters
Singleton Zero-order, grid | Zero-order, scatter
Function First-order, grid | First-order, scatter
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From Data to Fuzzy Model (Mt. Washington)

X Y Z (altitude) 2000
16 1 2157
16 16 1904
31 16 1815
46 16 1808
61 16 2026 Data
76 16 2184
91 16 1984
106 16 1877
121 16 1779
136 16 1733
151 16 1656

2/10/19 in2
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Age of buildings in center of Helsinki

VAN
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Modeling Traffic Patterns (autotrips.mat)

» This example shows traffic patterns in an area based on the area's
demographics.

 The Problem: Understanding Traffic Patterns

* In this example we attempt to understand the relationship between
the number of automobile trips generated from an area and the
area's demographics. Demographic and trip data were collected
from traffic analysis zones in New Castle County, Delaware.

* Five demographic factors are considered: population, number of
dwelling units, vehicle ownership, median household income
and total employment.

* Hereon, the demographic factors will be addressed as inputs and
the trips generated will be addressed as output

« Two variables are loaded in the
workspace, datin and datout., datout has 1 column representing the
1 output variable.
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Goodness of Model

* Graphical presentations.

» Various goodness measures, e.g.

— root mean square of errors (RMSE), or
— RMSE/mean of response * 100%

RMSE:
\/Z(Oi'pi)2 /n

« Statistical analysis of errors: mean=0,
error distribution, outliers.

2/10/19 VAN
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Population in the Globe: Model Errors

Year Error Error Error Error Error Error
math square 2 rules square 3rules | square
(di-p;) (di-pi)?
1950 -33,81 1143,37 | 146,70 21520,89 0,00 0,00
1960 -28,50 812,31 -69,60 4844,16 -0,10 0,01
1970 54,24 294210 | -111,10 12343,21 0,00 0,00
1980 91,32 8339,84 -81,70 6674,89 0,00 0,00
1990 82,92 6875,47 41,60 1730,56 0,00 0,00
2000 -183,26 33585,20 7410 5490,81 0,00 0,00
Sum 53698,29 52604,52 0,01
o ——
Rmse 94,60 93,63 0,04
\ /

2/10/19
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Neuro-Fuzzy Models

* Fuzzy model is fine-tuned with neural
networks.

* In practice locations and/or shapes of

fuzzy membership functions are tuned.

* In Matlab ANFIS-algorithm is used.

2/10/19 VAN
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http://www.cs.nthu.edu.tw/~jang/anfisfaq.htm

Neural networks (NN, 1940's)

Inputs

2/10/19

Neurons
(1 layer)

Outputs

VAN

Neural networks provide
a powerful method to
explore, classify, and
identify patterns in data.

Today: evolutionary
computing replace NN?

Website of Matlab

Each neuron: y=Xw;x;

Deep learning: many
layers (Dr. Watson,
Facebook)

65


http://www.mathworks.com/products/neuralnet/index.shtml
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Self-Organized Maps (SOM, Kohonen)

Alternative Clustering with NN:
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Local and Global Minima of Error
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Finding the global optimum: evolutionary computing

Ghabal minimum of [00]

ho B 5 88

2/10/19 VAN
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Evolutionary Computing: Genetic Algorithms
(Matlab's definition)

The genetic algorithm is a method for solving both constrained and
unconstrained optimization problems that is based on natural
selection, the process that drives biological evolution.

The genetic algorithm repeatedly modifies a population of individual
solutions. At each step, the genetic algorithm selects individuals at
random from the current population to be parents and uses them to
produce the children for the next generation. Over successive
generations, the population "evolves" toward an optimal solution.

You can apply the genetic algorithm to solve a variety of
optimization problems that are not well suited for standard
optimization algorithms, includin? problems in which the objective
function is discontinuous, nondifferentiable, stochastic, or highly
nonlinear.
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Genetic Algorithms 2 (Matlab's definition)

The genetic algorithm uses three main types of rules at each step to create the
next generation from the current population:

1. Selection rules select the individuals, called parents, that contribute to the
population at the next generation.

2. Crossover rules combine two parents to form children for the next
generation.

3. Mutation rules apply random changes to individual parents to form
children.

The genetic algorithm differs from a classical, derivative-based,
optimization algorithm in two main ways:

— Classical Algorithm generates a single point at each iteration. The sequence
of points approaches an optimal solution. Selects the next point in the
sequence by a deterministic computation.

— Genetic Algorithm generates a population of points at each iteration. The
best point in the population approaches an optimal solution. Selects the next
population by computation which uses random number generators.
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Genetic Algorithms:
Selecting parameters (genes) to chromosomes for the

next generation

Elite Crossover Mutation
(recombination)

random
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More Novel Optimization Methods

 Memetic optimization: evolutionary and
traditional optimization in combination.

» Bacterial evolutionary optimization:
clones of chromosomes and gene transfer
are used.

* These may be faster and better than
genetic methods alone.
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Bacterial evolutionary algorithms ( © Koczy)

Generating the initial
population randomly

Bacterial mutation is
applied for each bacterium

Gene transfer is applied in
the population

If a stopping condition is
fullfilled then the algorithm
stops, otherwise it
continues with the bacterial
mutation step

nt" generation

o O

olo| ¢

Ol O
O O

O

Wi

(n+1)th
generation



Bacterial mutation for each bacterium (© Koczy)

Part 1 Part i Part n
One part is randomly chosen

v

The ith part is mutated in the Ng,es ClOnes, but
not in the original bacterium (bacterial mutation)

v

The best bacterium transfers its ith part to the
other bacteria

v

Repeat until all the parts are mutated and
tested

A




Gene transfer (© Koczy)

The population is divided into
two halves

One bacterium is randomly
chosen from the superior half
(source bacterium) and
another from the inferior half
(destination bacterium)

A part from the source
bacterium is chosen and this
part can overwrite a part of
the destination bacterium

This cycle is repeated for N,
times (number of “infections™)

superior
half <

inferior
half

N 7




Regression Analysis
(Zimmermann & Zysno Data)

The objects are tiles. 24 data vectors.

The degrees of membership of 24 objects
with respect to three fuzzy sets.

Two inputs and one output.

Inputs:
— Good solidity, as assessed on the basis of the

tile’s color. /

— Good dovetailing, which means that the tiles cling
to each other as tightly as possible.

Output variable: Ideal tile, and this feature is
assessed on the basis of the input variables.
Sixty persons performed each of the
preceding 24 assessments.

2/10/19 VAN



ZZ Data & Linear Regression

Independent:
1. Solidity , Dependent:
- Ideal tile
2. Dovetailing
Obs. Solidity | Dovetail | Ideal tile
nro.
" 1| 0426| 0241| 0215
1 2| 0352 0662| 0427
2 3| 0109| 0352| 0221
S - 4| 0630| 0052] 0212
5| 0484 | 049 |  0.486
] { 1 6| 0.000| 0.000| 0000
0g < L—""ng
4\\’ e L 0s
RSl 70 0270 0403 | 0274
I 8| 0156| 0130 0.119
Ideal tile = 0.370*Solidity+0.507*Dovetailing 77

Rsquare=0.909
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Interlude: Fuzzy Aggregation Operators,
e.g. Generalized Mean

mWir X;P)'P, 0<X;<1, Ziy o W;=1, -00<p<co

Gmean=(Zi,
p: degree of compensation

P—= c0: min

p=-1: harmonic mean

p — 0: geometric mean

p=1: arithmetic mean

p=2: quadratic mean (root mean square)
p — c0: max

Parameter Estimates

VAN

95% Confidence Interval
Parameter | Estimate | Std. Error | Lower Bound | Upper Bound
w1 448 .026 .395 .502
w2 .552 .025 499 .604
p 377 .097 A75 .578
Ideal tile = (0.448-Solidity?-377+0.552-Dovetailing?-377)1/0.377

78



Generalized mean (non-linear)

Zimmermann & Zysno:

ideal = (w4solidityP+w,dovetailr)1/r
(w,+w,=1; O<variable<1, p#0)

« w.=0.45, w,=0.55, p=0.38

* Hence:
ideal = (0.45so0lidity%-38+0.55dovetail0-38)1/0.38

« Rmse=0.05
« (Gen. means can be neurons in NN.

2/10/19 VAN
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ZZ Model with Generalized Mean

DOVETAIL u

SOLIDITY

Ideal tile = (0.448-Solidity?377+0.552-Dovetailing?-377)1/0.377

VAN
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Fuzzy ZZ Model, Subtractive Clustering

. —
08~
07

w 06+ KX

Fog... .7~

u 0.4
0.3

02
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Fuzzy ZZ Model, Interpretation

Initial rules:

1.

If Solidity is about 0.484 and Dovetailing is about 0.496, then the
degree of Ideal tile is about 0.486.

2. If Solidity is about 0.949 and Dovetailing is about 0.020, then the
degree of Ideal tile is about 0.247.

3. If Solidity is about 0.000 and Dovetailing is about 0.000, then the
degree of Ideal tile is about 0.000.

Final rules:

1. If Solidity is about 0.484 and Dovetailing is about 0.496, then the
degree of Ideal tile is 0.588*Solidity+0.467*Dovetailing-0.053.

2. If Solidity is about 0.949 and Dovetailing is about 0.020, then the
degree of Ideal tile is 1.063*Solidity+0.631*Dovetailing-0.734.

3. If Solidity is about 0.000 and Dovetailing is about 0.000, then the

2/10/19

degree of Ideal tile is 0.779*Solidity+0.315*Dovetailing+0.014.
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Goodness Evaluation of ZZ Models

Table 6.2.6.1.6. Statistics of Residuals of Data. Tile Assessment.

Statistic LINREGO Gmean ANFIS Tuned FMT

ANFIS
Mean -0.010 -0.019 0.001 0.000 0.001
Median 0.001 -0.009 -0.006 0.003 0.007
Standard Deviation 0.068 0.065 0.047 0.045 0.052
Sample Variance 0.005 0.004 0.002 0.002 0.003
Rmse 0.067 0.067 0.046 0.044 0.051
Kurtosis -0.159 -0.263 -0.346 -0.423 -0.927
Skewness -0.056 0.035 0.344 -0.501 -0.250
Range 0.282 0.262 0.183 0.165 0.177
Minimum -0.142 -0.135 -0.084 -0.097 -0.092
Maximum 0.140 0.127 0.099 0.068 0.085
Sum -0.245 -0.457 0.032 0.002 0.035
Count 24 24 24 24 24
t-test: mean=0 yes yes yes yes yes
Shapiro-Wilk test: yes yes yes yes yes
normally distributed
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Drefimition 7-20 | Zimmermann and Zysno 19650

The "compeneatory and” operator is defined as follows

A TIE T — 3
ll.r.,c....,l'-'] - {nll.h]':l I l - I-]'!l = pir} Ir. 1€ X, ll=y=]

fd‘ 'U ’-l ..

y=prod(x)-?)* (1-prod(1-x))P
O<p=<1
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worthiness
¥ =.595
Financia
‘ Bais Personaiity
d=1.052, O= 548
V=.553 ¥ =776 7= 603
oL Potential Busness
Security Liquidity Behov
8 =.710 o=1.395 0 =.928 0 = 967
v=998 |  7=.89% ' = 575 y= 820 ¥=.551 ¥ =702 | ¥ = 548
P A
] (ool [ ] o] [ [ ][] [oemm
m"‘.“m minus Meneal Motivation o “:amm
Property Expenses ofMargin Potential Trirking Samters
| & =614 0 = 806 __0=1531 =1 0 =1088 | 0 =789 =1 0 =.927

Figure 14-16. Concept hierarchy of creditworthiness together with individual weights & and y-values for each level of
aggregation.
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Goodness Evaluation

VAN
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Goodness Evaluation: Residuals

VAN

Mean

Median

Standard Deviation

Sample Variance

Rmse

Kurtosis

Skewness

Range

Minimum

Maximum

t-test: mean=0?

Shapiro-Wilk or
Kolmogorov-Smirnov
test:

normally distributed?

t-test or Wilcoxon
test: 2 related

samples (samples are

sets of residuals)
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Evolutionary Fuzzy Modeling
Today vs. Traditional Modeling

[Inquiry into phenomenon ]

y
updates and measurements represent
malnltalns our observations in

1
|
|
1
Data matrix

is used in mo:jel construction
and tuning by applying

[ Evolutionary computing]
|

interpretation of the model
is based on

If X1=A1, then Y1=B1

If X2=A2, then Y2=B2
\ / amm

we obtain the

2/10/19 88




Goodness Evaluation of Model with Control Data
(cross-validation)

* We can divide data into two parts: training
and control (validation) data.

* We construct model with training data but
evaluate its goodness with control data.

* This method shows whether we can
generalize our model to any data set in the
same population.
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Training
data

Control
data

2/10/19

Model construction with
Data and Expertise

* Fuzzy rules
(GA, SOM, c-
means etc.)

* Fuzzy
reasoning

|

evaluation
(errors)

l

New system

VAN

— | Experts

AN

— System — | Tuning

(NN, GA)
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*** ... ...
*. LE R L
*m*““'

The plot shows the checking error as ¢ ¢ on the top . The training error appears as *
* on the bottom. The checking error decreases up to a certain point in the training,
and then it increases. This increase represents the point of model overfitting. anfis
chooses the model parameters associated with the minimum checking error (just

prior to this jump point). This example shows why the checking data option of anfis
is useful.
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Example: Measuring Blood Alcohol Concentration among Males

Alcohol drinking (g)

Blood alcohol (o/00)

Person’s weight (kg)

Training data: 100 men
Control data: 50 men

One bottle of beer contains 16 g alcohol
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Training and Control Data for One-Input Alcohol Model

1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40

Nn 2N

[ interpolation
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00
ALCOHOL DRINKING (G)

PER MILLE
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Training Data for Two-Input Alcohol Model

PROMILLE

0.5 .

PAINO

VAN

@polo O(.)
o O

:

ALKOMAARA
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Blood Alcohol: Input Space for Training Data in Two-Inputs Model

PAINO

80

75

70

65

60

55

50

(Control Data Points Must Locate in Same Area)

ALKOMAARA

Interpolation T Extrapolation }
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Alcohol: Linear Regression Analysis

» Blood alcohol =
-0.01*drinking + 0.02*weight + 0.82

* Rsquare (training) = 0.99
 Rmse (training) = 0.03

2/10/19 VAN
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Function 2

Conventional Discriminant Analysis with Iris Data

Canonical Discriminant Functions

104

Function 1

Q. O virginica
0- | O j»l { P'%gomr
g @ &
0
-5
10
1 T T ]
-10 = T p

species
O setosa
() versicolor
virginica
B Group Centroid
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Iris Data: Fuzzy Model (in NN: Learning Vector
Quantization, LVQ)

Supervised learning

Independent:

: 2:22: ::Ir:ﬁ:'h _, Dependent:

. Petal length Species (setosa, versicolor, virginica)
« Petal width
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Iris Data: Fuzzy Model with Three Rules (Subclust, 0.9)

petalwidth =13

ViR

sepallength = 61 sepalwidth = 32 petallength = 39.5
QTN /“\ TN
Initial rules: — /\ —
SL SW PL PW—-S 2 f—
60 29 45 15 2 —> \_\ —
50 34 15 2 1 1V /RN
68 30 55 21 3 43 79 20 44 10 69

2/10/19

—

Training data: o FIS output : *

0 50 100 150

25

species =1.65

-4.925 11.28
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Iris Data: Classification Results in Discriminant Analysis,
SPSS (top), Fuzzy (bottom)

2/10/19

Classification Result$

Predicted Group Membership

species setosa versicolor | virginica Total
Original Count setosa 50 0 0 50
versicolor 0 48 2 50
virginica 0 1 49 50
% setosa 100.0 .0 .0 100.0
versicolor .0 96.0 4.0 100.0
virginica .0 2.0 98.0 100.0
a. 98.0% of original grouped cases correctly classified.
species * predicted Crosstabulation
Count
predicted
1.00 2.00 3.00 Total
species setosa 50 0 0 50
versicolor 0 47 3 50
virginica 0 1 49 50
Total 50 48 52 150
VAN
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Time Series: Mackey-Glass Chaotic Time Series

2/10/19

1.6

1.4

1.2
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0.8

0.6
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Mackey-Glass Chaotic Time Series

Assign
- starting point,
- step,
- nr. of inputs x(t) Dy x(t+1*d) Dy | x(t+2*d) |_*,>| DY x(t+n*d)
Wl
MO v
M Ay data vector when d=6, n=4:
| 4 inputs, 1 output
L | [x(t), x(t+6), x(t+12), x(t+18), x(t+24)]
training Y control
data data
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Mackey-Glass Chaotic Time Series: Desired and Predicted
(0) Values in Control Data

A

|
!

ﬁ
oA
|

s_e_e—-—e——v
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Simple Time Series Analysis (Pedrycz)

Original data vector: (x1,x2,x3,x4,x5,x6,x7,x8, ..., Xn)

Time >

Create matrix which contains in 3 columns (2 inputs, 1 output)
- original values (from x,),

- differences Xg-Xy.1,

- original values (from x3)

Data matrix for fuzzy system (today & today-yesterday => tomorrow):
x2, x2-x1, x3
X3, X3-x2, x4
x4, x4-x3, x5
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Future Trends: How to Construct Simple Models?

Reduce variables Fuzzy clustering
(eg. when intercorrelated) of cases
4//’\»
Factor analysis Fuzzy clustering F L
: : uzzy
Item analysis of variables
= rules
Adjusted _ T
rsquare e o ... Reduce Reduce values
'~ [ 1 Clusters of variables
2 1 [ 1 [ Z~_ (i.e.rules) '
s ] %% %% Use archetype
s[A] 1 [LA] Bl ] values
2/10/19 sl | [ 1Al [ ] 105
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Simple dimension reduction for
creating composite variables (Niskanen)

* Cluster analysis (CA), k-means, fcm or
subclust.

 Originally CA finds clusters of objects.

* |f data matrix transposed, CA can find
clusters of variables. Cluster centers will
be the composite variables.

* Traditionally: principal component and
factor analysis, or multidimensional scaling
(in SPSS: proxcal).
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"Everything Depends on Everything Else™

Modeling of Complicated Phenomena with

Concept and Cognitive Maps

N~
o
-
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Computer Models of Complicated Phenomena

Networks of variables and their
interrelationships.

Cl models can also cope with these
phenomena.

We can use these Cl models in both
gualitative and quantitative research.
Typical conventional quantitative models
apply path analysis or structural equation
modeling (Lisrel, Amos, Mplus).

* We apply concept and cognitive maps in
this context.
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What Is a Concept Map? (Novak, Ahlberg)

Concept mapping is a technique for representing
knowledge in graphs.

Knowledge graphs are networks of concepts. Networks

consist of nodes (points/vertices) and links (arcs/edges).

Nodes represent concepts and links represent the
relations between concepts. Concepts and links may be
divided in categories such as causal or temporal
relations.

Concept mapping can be done for for several purposes:

to generate ideas (brain storming, etc.);

to design a complex structure (long texts, hypermedia, large web
sites, etc.);

to communicate complex ideas;
to aid learning by explicitly integrating new and old knowledge;
to assess understanding or diagnose misunderstanding.

VAN
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Concept Map about Concept Maps (Cmap Tools™)

developed “help to

= answer\‘
represent Question(s)”
\4 _—

needed to \
T answer are

Click on the icons underneath
% the concepts to browse
- Tools were Concept Maps linked resources

includes Organized

Associated

Feelings e \
or Affect is i
sed of T ——————p| Context
comprise Dependent
\ necessary
‘ Linkin for
are Concepts by / ‘ Y A
i \ a,.e -

Perceived *

Regularities & Units of
or Patterns Hierarchically m Crosslinks
I Labeled l Structured

) / ) \ ~ constructed show
in begin with aids especnally in \

K\ with

’ C t ( Interrelationships )
Events Objects [ Symbols Words m @ Sggur::lu]‘r/:
(Happenings) (Things) \

between
with needed Different

to see Map Segments
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Fuzzy Cognitive Maps (FCM, Kosko & al.)

Originally Axelrod & al.

FCMs are fuzzy directed graphs with possible
feedback.

The nodes are causal concepts.

The nodes have numeric or linguistic
interrelationships.

They can model events, actions, values, goals,
stories etc.

More applicable than e.g. Bayesian networks
because feedback (loops) are also allowed.

We can use these in both qualitative and quantitative
research.

Internet applications can be financially very
profitable.

VAN
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Numerical FCM: Public City Health Model (Lee & al.):
Variables (Nodes)

N1: Number N2: Migration
of people in into city
a city

N3: Modernization

N5: Sanitation
facilities

N4: Amount of N6: Number of
garbage diseases

N7: Bacteria per
area

values of nodes usually between 0 and 1
2/10/19 VAN 112



Numerical FCM: Public City Health Model (Lee & al.):

N1: Number
of people in
a city

drivers and targets

N2: Migration

N3: Modernization

N4: Amount of
garbage

= =

N6: Number of
diseases

values of nodes between 0 and 1

intensity of (monotonic) relationship usually between -1 and 1

2/10/19

VAN

into city

N5: Sanitation
facilities

N7: Bacteria per
area
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N1: Number

Numerical FCM: Public City Health Model

N2:

of people in

a city :

N4: Amount of
garbage

N3: Modernization

N6: Number of
diseases

Migration

N5: Sanitation
facilities

x N7: Bacteria per

area

[Number of people J( + Migration

,

g

(Modernization]

T

(Number of dlseasps 4+—-

?Bacterla per area

\"'\)

Sanitation facilities]

[Amount of garbage

Q

—.

targets — Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

drivers |
Node 1 0 0 0.6 0.9 0 0 0
Node 2 0.5 0 0 0 0 0 0
Node 3 0 0.6 0 0 0.8 0 0
Node 4 0 0 0 0 0 0 1
Node 5 0 0 0 0 0 -0.8 -0.9
Node 6 -0.3 0 0 0 0 0 0
Node 7 0 0 0 0 0 0.8 0

Connection matrix: Intensities of relationship (between -1 and 1)
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Nodes at t

/

Numerical FCM: Public City Health Model in Iteration:

matrix product of inputs and connection matrix

Nodes at t+1

N

input)

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Node 1 0 0 0.6 0.9 0 0 0

Node 2 0.5 0 0 0 0 0 0

Node 3 0 0.6 0 0 0.8 0 0

Node 4 0 0 0 0 0 0 1 ‘@
Node 5 0 0 0 0 0 -0.8 -0.9

Node 6 -0.3 0 0 0 0 0 0

Node 7 0 0 0 0 0 0.8 0

2/10/19

Intensity of relationship (between -1 and 1)

VAN

t transformation (squashing) I

into interval 0 to 1
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Transformation function
Y=1/(1+exp(-lambda*X))
1 <lambda <5

| | fal | 1 |
6 -4 -2 0 2 4 ¢

X = matrix product
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FCM: Public City Health History Data after Iterations

Number of Migr Moderniz Amount of Sanitation
Time people ation ation Garbage facilities
0 0.90 0.20 0.20 0.10 0.20
1 0.55 0.65 0.94 0.98 0.69
2 0.70 0.94 0.84 0.92 0.98
3 0.88 0.93 0.89 0.96 0.97
4 0.86 0.94 0.93 0.98 0.97
5 0.90 0.94 0.93 0.98 0.98
6 0.90 0.94 0.94 0.98 0.98
7 0.90 0.94 0.94 0.98 0.98
8 0.90 0.94 0.94 0.98 0.98
9 0.90 0.94 0.94 0.98 0.98
10 0.90 0.94 0.94 0.98 0.98

100w

80

60 -
40 -
20

Migration
Number of people

Bacteria per area
Number of diseases

Sanitation facilities
Amount of Garbage
Modernization

Number of

diseases

0.20
0.50
0.23
0.32
0.11
0.13
0.13
0.13
0.13
0.13
0.13

Bacteria
per area

0.20
0.39
0.79
0.44
0.49
0.51
0.50
0.51
0.51
0.51
0.51
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FCM construction with history data

—_—
NN, Evolutionary computing & History
/ data
—1 |Node 1| Node 2| Node 3 | Node3
2 3.5 2.1 1
4 |51 10 4.7 9.5
5 (82 |81 |21 [38
1.4 6.9 9.3 7.7
\/ 52 |63 |04 |0




From history data to connection matrix with evolutionary computing

Number of

Time people

O © 0O N o o b~ DN

—

0.90
0.55
0.70
0.88
0.86
0.90
0.90
0.90
0.90
0.90
0.90

intensities are
parameters in
optimization

2/10/19

Migr Moderniz Amount of Sanitation Number of Bacteria
ation ation Garbage facilities diseases per area
0.20 0.20 0.10 0.20 0.20 0.20
0.65 0.94 0.98 0.69 0.50 0.39
0.94 0.84 0.92 0.98 0.23 0.79
0.93 0.89 0.96 0.97 0.32 0.44
0.94 0.93 0.98 0.97 0.11 0.49
0.94 0.93 0.98 0.98 0.13 0.51
0.94 0.94 0.98 0.98 0.13 0.50
0.94 0.94 0.98 0.98 0.13 0.51
0.94 0.94 0.98 0.98 0.13 0.51
0.94 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
0.94 Node 1 0 0 0.6 0.9 0 0 0
Node 2 0.5 0 0 0 0 0 0
Node 3 0 0.6 0 0 0.8 0 0
Node 4 0 0 0 0 0 0 1
| Node 5 0 0 0 0 0 -0.8 -0.9
Node6 [~ -0.3 0 0 0 0 0 0
Node 7 0 0 0 0 0 0.8 0
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Linguistic FCM

‘Node ‘ \

‘Node ‘_,‘Linguistic rules ‘ —_— ‘Node ‘
‘Node ‘/

« We can use linguistic inputs and outputs.

* The relationships between nodes are assigned with
linguistic rules.
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Linguistic Public City-Health Model

‘ Number of people ib

+\
|

Amount of garbagp

Sanltatlon facmtms
(| Number of diseases ?7

/

BactPua pel area
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Fuzzy rules:

If the migration into city is low and the number of
diseases is small, then the increase in the number of
people in the city is medium.

If the migration into city is low and the number of
diseases is large, then the increase in the number of
people in the city is fairly small.

If the migration into city is average and the number of
diseases is small, then the increase in the number of
people in the city is fairly large.

If the migration into city is average and the number of
diseases is large, then the increase in the number of
people in the city is medium.

If the migration into city is high and the number of
diseases is small, then the increase in the number of
people in the city is large.

If the migration into city is high and the number of
diseases is large, then the increase in the number of
people in the city is fairly large.
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From Fuzzy Rules to an FCM Model

Node 2 Node 6 Node 1
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Simple FCM control model (Papageorgiou, Stach, Kurgan, Pedrycz)

v S v2
> ] B >k
v3

>

Fig. 1 Process control problem

Figure 1 shows an example process control problem which was discussed by
Papageorgiou et al. (Papageorgiou et al. 2003). Two valves, valve 1 (V1) and valve
2 (V2), supply two different liquids into the tank. The liquids are mixed and a
chemical reaction takes place. The control objective is (0o maintain the desired
level of liquid and its specific gravity. Valve 3 (V3) is used to drain liquid from the
tank.

2/10/19 VAN
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0238 L A 5% Cl Cz C3 C4 Cs
v b C1 0 0207 | -0.112 | 0.064 | 0.264
f ol C2| 0298 0 0.061 | 0.069 | 0.067
| o2 gme [ cs goe-[ oa ) oms |C3] 0356 | 0.062 0 | 0.063 | 0.061
LY . VR ca| 0516 | 0070 | 0063 0 0.068
) C5] 0064 | 0468 | 0060 | 0.268 0
24008 0008
0050
0388 " 0248
¢S
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(s

Fig. 2 FCM graph along with its connection matrix for the process control problem

Goals:
0.68 < Tank (C1) <0.70
0.74 < Gauge (C5) <0.80
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Introducing Fuzzy Cognitive Maps for decision making in
precision agriculture.

The FCM model developed consists of nodes which describe soil properties
and cotton yield and of the weighted relationships between these nodes.
The nodes of the FCM model represent the main factors influencing cotton
crop production 1.e. essential soil properties such as texture, pH, OM, K,
and P.

The proposed FCM model addresses the problem of crop development and
spatial variability of cotton yield, taking into consideration the spatial
distribution of all the important factors affecting yield.

Available from:
https://www.researchgate.net/publication/237007624 Introducing F

uzzy Cognitive Maps for decision making in precision agricultur
e
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Table 1. Soil parameters that affect cotton yield.

Concept Description
C1: EC Soil shallow electrical conductivity Veris (mS/m)
C2: Mg Magnesium (ppm)
GG The measured caldum in the soil in depth 0-30 am (ppm)
C4: Na The measured Na (Sodium) in the soil in depth 0-30 cm (ppm)
G5 K The measured Potassium in the soil in depth 0-30 cm (ppm)
C&: P The measured Phosphorus in the soil in depth 0-30 cm (ppm)
C7:N The measured NO; in the soil profile of 0-30 cm (ppm)
Cs: OM The percent organic matter content in soil profile in depth 0-30 cm
C9: Ph The pH of the soil in depth 0-30 an
Cl1o: S The percent of the sand in the soil samples in depth 0-30 cm
C11: The percent of the clay in samples in depth 0-30 cm
iy Seed cotton yield from 1% picking measured by yield monitor (t ha™')

2/10/19
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Table |. Concepts of the FCM: Type of values.

Cl: ShallowEC (mS/m) C2: Mg (ppm) C3: Ca (ppm) C4: Na (ppm)
Five Fuzzy Five Fuzzy Five Fuzzy Five Fuzzy
0- 10 Very Low < 60 Very Low < 400 Very Low < 25 Very Low
10 —20 Low 60 — 180 Low 400 — 1000 Low 25-70 Low
20 — 30 Medium 181 — 360 Medium 1001 — 2000 Medium 71 - 160 Medium
30 — 40 High 361 - 950 High 2001 — 4000 High 6] — 460 High
> 40 Very High > 950 Very High > 4000 Very High > 460 Very High
C5: K (ppm) Cé: P (ppm) C7: N (ppm) C8: OM (ppm)
Five Fuzzy Five Fuzzy Five Fuzzy Three Fuzzy
< 40 Very Low <5 Very Low < 3 Very Low < 1.0 Low
40 — 120 Low 5- 15 Low 3 - 10 Low 1.0 — 2.0 Medium
121 — 240 Medium |6 — 25 Medium Il =20 Medium > 2.0 High
24| — 470 High 26 — 45 High 2] — 40 High
> 470 Very High > 45 Very High > 40 Very High
C9: Ph CI0: Sand % Cll: Clay % Cl2: Yield (tons/ha)
Seven Fuzzy Four Fuzzy Three Fuzzy Three Fuzzy
<4.5 Very Low <20 Low < |5 Low < 2.5 Low
4.6 -5.5 Low 20 — 70 Medium |5 = 37 Medium 2.5 - 3.5 Medium
5.6 — 6.5 Slightly Low 71 — 80 High Texture >3.5 High
6.6 — 7.5 Neutral > 80 Very High > 37 High
7.6 — 8.5 Slightly High
8.6 - 9.5 High

> 9.5 Very High
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Figure 4. The FCM model for describing the final cotton yield.
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Figure 5. Two of the yield (years 200] and 2003) and some of the soil properties maps.
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Lentoasem Mechelinink

a(M4)
65
60
50
44
41
43
46
44
34
42
40
43
45

atu(M1)
35
32
35
56
49
43
51
30
19
31
37
43
50

Olari(M2)
81
54
46
42
45
36
38
35
38
37
38
33
33

Rekola(M3)
118

71
53
38
44
33
44
43
26
37
38
47
51
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Koczy & al.
0. Yo Waste management

U
Y2
(&

“E’}

Fig. 6. The initial Fuzzy Cognitive Maps

0.6 0.8

>

0.6

The factors in the matrix are represented as follows:

e Cl: technical factor (collection, transport, treatment methods, etc.)

e (C2: environmental factor (emission of pollution, depletion of resources,
human toxicity, etc.)

e (3: economic factor (subsidies, efficiency at system/subsystem level,
economic sound and continuous operation, coverage of all aftercase
expenses, etc.)

e (4: social factor (involving local need and requirements, minimizing public
health risk, providing employment, etc.)

e C(5: legal factor (EU packaging directive, EU landfill directive, waste
hierarchy, national, regional and local regulations)

e Co6: institutional factor (involvement of stakeholders, existence of feedback
mechanisms of citizens, organisational structure, etc.)
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FCM (Carlsson & Fuller)

Strategic Management is defined as a system of action programs which form sustain-
able competitive advantages for a corporation, its divisions and its business units in a
strategic planning period. A research team of the IAMSR institute developed a support
system for strategic management, called the Woodstrat, in two major Finnish forest in-
dustry corporations in 1992-96. The system is modular and is built around the actual
business logic of strategic management in the two corporations, i.e. the main modules
cover the

market position (MP),
competitive position (CP),
productivity position (PROD),
profitability (PROF),
wnvestrnents (INV)

financing of investments (FIN).
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Woodstrat

Each arrow in Fig. 7.1 defines a fuzzy rule. We weight these rules or arrows with a
number from the interval [—1, 1], or alternatively we could use word weights like little,
or somewhat, or more or less. The states or nodes are fuzzy too. Each state can fire to
some degree from 0% to 100%. In the crisp case the nodes of the network are on or off.
In a real FCM the nodes are fuzzy and fire more as more causal juice flows into them.

Adaptive fuzzy cognitive maps can learn the weights from historical data. Once the
FCM is trained it lets us play what-if games (e.g. What if demand goes up and prices
remain stable? - i.e. we improve our MP) and can predict the future.
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Woodstrat

MP 44— CP
{ 0 Uh? 0 0 0 0 \
wyy O 0 0 0 0
wy 0 0  wsq Wiy Wse
PROF «— 0 we 0 0 0 0
0 0 wsz ws 0
\ 0 0 0 wgy 0O 0 }
FIN PROD

Figure 7.1: Essential elements of the strategy building process.
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Woodstrat history data

MP CP PROF INV FIN PROD

1 3 3 3 3 3 3
2 4 3.5 3.5 3 4 3
3 4 4 3.5 l ! 3.5
4 3 4 3.5 il A 3.9
0 3 3.9 . 4 3 4
6 2 3 ! = 2 4
7 3 25 G 3 1 4
8 3 3 2! 0 2 3.9
9 4 3 4 D 3 3.5
10. 3 3.5 4 6! -+ 3

Table 5. A training set.
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Kotim. Kysynta ja tuotannon
/Jlkomainen Kilp. kyky

/ sosiaalinen suojaverkko ¥,
L
*
*
l g
*
*

.
avustusriippuvuus =gy ylkiset menot ‘:
A J s
:. “..--n veroaste III.IIIOIU’ ty&noﬁvdnﬁ
FRR S A
-4 -
’ .
kaytettavissa olevat tulot

Kuva 13.9. Sumea kognitiivinen kartta Suomen hyvinvoin-
tivaltion osatekijoista (kiintea viiva = lisaa, katkoviiva = va-
hentaa).
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Constituents of the Finnish

wellfare state

support

9: need for

N

income

8: disposable /%‘/
7: tax base

2/10/19

VAN

2: domestic demand &

1- social |——1 international
safety net competitiveness
y
/J{ 3: public expenditure
A\ 4
N 4: working
> | motivation
v / /
5: tax rate” v

6: production

- positive, - negative
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Supervisory FCM

 An FCM which supervises or controls the
operation of another FCM

* |n a sense, a meta-level FCM
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Pros and Cons of Cognitive Maps

Numerical Linguistic
1. Good for modeling complicated 1. Good for modeling complicated
phenomena. phenomena.
2. Quite simple systems from the 2. Quite simple systems from the
mathematical standpoint. mathematical standpoint.
3.  Agreat number of nodes/variables can 3. Only a limited number of
be used. nodes/variables.
4. Can only establish monotonic causal 4.  Various relationships can be used.
interrelationships between the nodes. 5.  Linguistic values and relationships are
S, Only numerical values and models can more user-friendly and human-like
be used, thus less user-friendly. 6. Feedback or loops require more work.
6.  Allow us to use feedback or loops 7.  The change of the structure can be
effortlessly. laborious.
7. The structure can be changed 8. Most are still a priori maps.
effortlessly. 9. Time delays are problematic.
8. Most are still a prion maps. 10. Interpretation of nodes and relationships
9.  Time delays are problematic. can be problematic.
10. Interpretation of nodes and relationships
can be problematic.
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Example: Carvalho & Tomé
16 LUnemployment

15 FCR?+.
Unemployrment

10 Social

Insecurity
FCR-.

14 LGil Price

17
InflECERates

FIR 1.
Ee

T Linterest
Rates

Fig. 3. EB-FCM: A gualitative model of economy. Concept 17, representing a sumple FISS was added later
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+ Firm Reputation

Good compliance is
Success breeds T RI B3 T good business Loop
success Loop

Rule

*+_ Violations
+ -
/\ | /; \&

Revenue O
Transactions Detected Rule
. :_i @ @ " Violations
ir
Re?/: n?Je Growth Meet the goal Loop B4
pﬁsos;l;”e ) Enforcement Rule Enf
Loop 3 ule Entorcement
Standard

+  Pressure Rule

~_ e to Comply
@ Cutting corners Loop
@ Compliance slows
production Loop
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Cl1.2
Clients
C6.1
Client Dev. /\ -
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C6.2 Invest C2.5 B1
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New -
Services Quallty C4.1
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In Matlab Simulink also usable for FCM
construction

Comparison in approximate sine wave accuracy between
direct look-up, linear interpolation and CORDIC approximation
vs. reference signal

’ reference_signs
—P»—bp'ﬂ 28 sin ‘-
Y

U/

index
to
angle
lim LT
L »| 14 > (- >
double_direct
Counter quarter steps direct sine table
Limited

1-D T{u)

) 4
> /\/ O s —D

double_linear

linear sine table

Y
Lp{pitzs 2 - )——C)
double_approximation

index
to CORDIC sppraximation

anglel

Copyright 1920-2013 The MathWorks, Inc.
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Examples of Urban Research

http://www.tkk.fi/Yksikot/Y TK/koulutus/metodikortti/Kognkart.html
 http://www.spacesyntax.com/
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http://www.tkk.fi/Yksikot/YTK/koulutus/metodikortti/Kognkart.html
http://www.spacesyntax.com/

London Pedestrian Routemap http://www.spacesyntax.com/

Bl vaterfront routes
- Moauments routes

e
- Park routes

B T
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(©) Space Syntax 2006

- Shopping route
- Northern route
- Central route
|
B scrpentine Route

- Nash Ramblas

@ st
Distanc:

O Qumcee

() visitor attraction |

~ Pedestrian decision-

~ making point

111l Future route


http://www.spacesyntax.com/

