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Chapter 2
Spatial and Spatiotemporal Big Data Science

Abstract This chapter provides an overview of spatial and spatiotemporal big data
science. This chapter starts with the unique characteristics of spatial and spatiotem-
poral data, and their statistical properties. Then, this chapter reviews recent com-
putational techniques and tools in spatial and spatiotemporal data science, focusing
on several major pattern families, including spatial and spatiotemporal outliers, spa-
tial and spatiotemporal association and tele-connection, spatial and spatiotemporal
prediction, partitioning and summarization, as well as hotspot and change detection.

This chapter overviews the state-of-the-art data mining and data science meth-
ods [1] for spatial and spatiotemporal big data. Existing overview tutorials and sur-
veys in spatial and spatiotemporal big data science can be categorized into two groups:
early papers in the 1990s without a focus on spatial and spatiotemopral statistical
foundations, and recent papers with a focus on statistical foundation. Two early sur-
vey papers [2, 3] review spatial data mining from a database approach. Recent papers
include brief tutorials on current spatial [4] and spatiotemporal data mining [1] tech-
niques. There are also other relevant book chapters [5-7], as well as survey papers on
specific spatial or spatiotemporal data mining tasks such as spatiotemporal cluster-
ing [8], spatial outlier detection [9], and spatial and spatiotemporal change footprint
detection [10, 11].

This chapter makes the following contributions: (1) We provide a categorization
of input spatial and spatiotemporal data types; (2) we provide a summary of spatial
and spatiotemporal statistical foundations categorized by different data types: (3)
we create a taxonomy of six major output pattern families, including spatial and
spatiotemporal outliers, associations and tele-connections, predictive models, parti-
tioning (clustering) and summarization, hotspots, and changes. Within each pattern
family, common computational approaches are categorized by the input data types;
and (4) we analyze the research trends and future research needs.

Organization of the chapter: This chapter starts with a summary of input spa-
tial and spatiotemporal data (Sect.2.1) and an overview of statistical foundation
(Sect.2.2). It then describes in detail six main output pattern families including spa-
tial and spatiotemporal outliers, associations and tele-connections, predictive models,
partitioning (clustering) and summarization, hotspots, and changes (Sect.2.3). An
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examination of research trend and future research needs is in Sect.2.4. Section2.5
summarizes the chapter.

2.1 Input: Spatial and Spatiotemporal Data

2.1.1 Types of Spatial and Spatiotemporal Data

The data inputs of spatial and spatiotemporal big data science tasks are more com-
plex than the inputs of classical big data science tasks because they include discrete
representations of continuous space and time. Table 2.1 gives a taxonomy of different
spatial and spatiotemporal data types (or models). Spatial data can be categorized
into three models, i.e., the object model, the field model, and the spatial network
model [12, 13]. Spatiotemporal data, based on how temporal information is addi-
tionally modeled, can be categorized into three types, i.e., temporal snapshot model,
temporal change model, and event or process model [14-16]. In the temporal snap-
shot model, spatial layers of the same theme are time-stamped. For instance, if the
spatial layers are points or multi-points, their temporal snapshots are trajectories of
points or spatial time series (i.e., variables observed at different times on fixed loca-
tions). Similarly, snapshots can represent trajectories of lines and polygons, raster
time series, and spatiotemporal networks such as time-expanded graphs (TEGs) and
time-aggregated graphs (TEGs)[17, 18]. The temporal change model represents spa-
tiotemporal data with a spatial layer at a given start time together with incremental
changes occurring afterward. For instance, it can represent motion (e.g., Brownian
motion, random walk [19]) as well as speed and acceleration on spatial points, as
well as rotation and deformation on lines and polygons. Event and process models
represent temporal information in terms of events Or processes. One way to distin-
guish events from processes is that events are entities whose properties are possessed
timelessly and therefore are not subject to change over time, whereas processes are

Table 2.1 Taxonomy of spatial and spatiotemporal data models

Spatial data "_ Temporal snapshots | Temporal change Events/processes E
| (Time series) | (Delta/Derivative)
Object model | Trajectories, Spatial | Motion, speed, | Spatial or
| time series acceleration, split or | spatiotemporal point
| | merge process
Field model | Raster time series | Change across raster Cellular automation
snapshots |

——

WWN&& | Spatiotemporal network | Addition or removal of
network _ | nodes, edges

T

| S .

2.1 Input: Spatial and Spatiotemporal Data
17

entities that are subject to ch i
) ange over time (e.g. .
erating or slowing down) [20]. (e.g., a process may be said to be accel-

2.1.2  Data Attributes and Relationships

There are three distinct types of data attributes for spati
. ) ; 3 patiotemporal i il
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sty e, Fopilalt Mm are %mma to characterize non-contextual features of objects,
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I B u_n_wﬁm .om classical g.m data science [21]. Spatial attributes
sies, Dol (2 W.& mm:oom:on (e.g., longitude and latitude), spatial extent (e.g.,
frame. Temporal mnmmgnm . umﬁ_ as sﬁ: as elevation defined in a spatial reference
or a spatial network sna m:Eo ude the time stamp of  spatial object, a raster layer
M ps mor as é_.u:. as the n_.s_‘m:on of a process. Relationships om
S mzmw 0 ﬁﬂ Qﬁ:&r including arithmetic, ordering, and subclass.
in topological %mn_w (e  artiibutes, tn contrast, ar often implict, including those
tion), metric space (e.g., di meet, within, overlap), set space (e.g., union, intersec-
st & Mm_..mnnmv. and aﬁnn.nonm. Relationships on spatiotemporal
ety qu _wow:_m.mnmsaq as summarized in Table2.2. :
E_mmonmrmwm N:%m ﬁmnnw _M__uwn: spatiotemporal relationships is to materialize the
science techiniues (37 LMz ata input columns and then apply classical big data
mation [7). The spatial m.nw”_. M.moimﬁ_.. the materialization can result in loss omuﬁo_..
relationships usually create M“Mcqm_ vagueness which naturally exists in data and
spatiotemporal big Mmmm mnmwn er modeling and processing difficulty in spatial and
snd mﬁmﬁmoﬂnauow%_ o .om..> more Eﬁ.ﬁm.zm way to capture implicit spatial
ationships is to develop statistics and techniques to incorporate

spatial and temporal information i
: rmation into the data science isti
techniques are the main focus of the survey S

Table 2.2 Relationships on spatiotemporal data

Spatial data | Temporal snapshots | Change

i . | Event/P
| (Time series) (Delta/Derivative) _ ent/Process

= - -
bject model mn%oﬁ.ﬁvom& | Motion, speed. _ Spatiotemporal
. ? “ N .
MMMEMMWWWNMH%,@@QHVQ acceleration, attraction or | [19] mvmmMHMB@MM_mhmzoo
. , 26], spatial repulsion, spli i i
e e e p splitmerge _ coupling for point events,
= [27], tele-connection [28] | _ Mw.mmﬁﬁaumwa wmgw_
: : | jects [29-
ield model Cubic map algebra {35], | Local, focal, zonal change :

temporal correlation, across snapshots [10]
tele-connection

Cellular automation [36)]
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2.2 Statistical Foundations

2.2.1 Spatial Statistics for Different Types of Spatial Data
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atial statistics and classical
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¢ statistics for areal data, and spatial point process for spatia

modeling
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point patterns.

i i ral statistics
nomy of spatial and spatiotempo -
e | Spatiotemporal statistics

Spatial | Spatial statistics

model |

| Statistics for spatial time
series:

| o Spatiotemporal stationarity,

| variograms, covariance,
Kriging;

| ¢ Temporal autocorrelation,
tele-coupling.

Object model | Geostatistics:

| » Stationarity, isotropy,
| variograms, Kriging

| Spatial point processes:

o Poisson point process, spatial Spatiotemporal point
scan statistics, Ripley’s processes:
K-function o
» Spatiotemporal Poission
| point process: Spatiotemporal
scan statistics; Spatiotemporal
K-function.
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Field model | Lattice statistics (areal data Statistics for raster time Ser
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| iererchical mode | Bayesian hierarchical model,
dynamic spatiotemporal model
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Geostatistics: Geostatistics [44] deal with the analysis of the properties of point
reference data, including spatial continuity (i.e., dependence across locations), weak
stationarity (i.e., first and second moments do not vary with respect to locations),
and isotropy (i.e., uniformity in all directions). For example, under the assumption
of weak stationarity (or more specifically intrinsic stationarity), variance of the dif-
ference of non-spatial attribute values at two point locations is a function of point
location difference regardless of specific point locations. This function is called a
variogram [45]. If the variogram only depends on distance between two locations (not
varying with respect to directions), it is further called isotropic. Under the assump-
tions of these properties, Geostatistics also provides a set of statistical tools such as
Kriging [45], which can be used to interpolate non-spatial attribute values at unsam-
pled locations. Finally, real-world spatial data may not always satisfy the stationarity
assumption. For example, different jurisdictions tend to produce different laws (e.g.,
speed limit differences between Minnesota and Wisconsin). This effect is called spa-
tial heterogeneity or non-stationarity. Special models (e.g., geographically weighted
regression, or GWR [46]) can be further used to model the varying coefficients at
different locations.

Lattice statistics: Lattice statistics studies statistics for spatial data in the field (or
areal) model. Here a lattice refers to a countable collection of regular or irregular cells
in a spatial framework. The range of spatial dependency among cells is reflected by
a neighborhood relationship, which can be represented by a contiguity matrix called
a W-matrix. A spatial neighborhood relationship can be defined based on spatial adja-
cency (e.g., rook or queen neighborhoods) or Euclidean distance or, in more general
models, cliques and hypergraphs [47]. Based on a W-matrix, spatial autocorrelation
statistics can be defined to measure the correlation of a non-spatial atiribute across
neighboring locations. Common spatial autocorrelation statistics include Moran’s I ;
Getis-Ord Gi+, Geary’s C, Gamma index I" [48], as well as their local versions called
local indicators of spatial association (LISA) [49]. Several spatial statistical models,
including the spatial autoregressive model (SAR), conditional autoregressive model
(CAR), Markov random field (MRF), as well as other Bayesian hierarchical mod-
els [42], can be used to model lattice data. Another important issue is the modifiable
areal unit problem (MAUP) (also called the multi-scale effect) [50], an effect in
spatial analysis that results for the same analysis method will change on different
aggregation scales. For example, analysis using data aggregated by states will differ
from analysis using data at individual family level.

Spatial point processes: A spatial point process is a model for the spatial distrib-
ution of the points in a point pattern. It differs from point reference data in that the
random variables are locations. Examples include positions of trees in a forest and
locations of bird habitats in a wetland. One basic type of point process is a homo-
geneous spatial Poisson point process (also called complete spatial randomness, or
CSR) [19], where point locations are mutually independent with the same intensity
over space. However, real-world spatial point processes often show either spatial
aggregation (clustering) or spatial inhibition instead of complete spatial indepen-
dence as in CSR. Spatial statistics such as Ripley’s K-function [51, 52, i.e.. the
average number of points within a certain distance of a given point normalized by
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the average intensity, can be used to test spatial aggregation of a point pattern against
CSR. Moreover, real-world spatial point processes such as crime events often con-
tain hotspot areas instead of following homogeneous intensity across space. A spatial
scan statistic [53] can be used to detect these hotspot patterns. It tests whether the
intensity of points inside a scanning window is significantly higher (or lower) than
outside. Though both the K-function and spatial scan statistics have the same null
hypothesis of CSR, their alternative hypotheses are quite different: The K-function
tests whether points exhibit spatial aggregation or inhibition instead of independence,
while spatial scan statistics assume that points are independent and test whether a
local hotspot with much higher intensity than outside exists. Finally, there are other
spatial point processes such as the Cox process, in which the intensity function itself
is a random function over space, as well as a cluster process, which extends a basic
point process with a small cluster centered on each original point [19]. For extended
spatial objects such as lines and polygons, spatial point processes can be generalized
to line processes and flat processes in stochastic geometry [54].

Spatial network statistics: Most spatial statistics research focuses on the Euclidean
space. Spatial statistics on the network space are much less studied. Spatial network
space, e.g., river networks and street networks, is important in applications of envi-
ronmental science and public safety analysis. However, it poses unique challenges
including directionality and anisotropy of spatial dependency, connectivity, as well
as high computational cost. Statistical properties of random fields on a network are
summarized in [55]. Recently, several spatial statistics, such as spatial autocorrela-
tion, K-function, and Kriging, have been generalized to spatial networks [56-58].
Little research has been done on spatiotemporal statistics on the network space.

2.2.2 Spatiotemporal Statistics

Spatiotemporal statistics [19, 59] combine spatial statistics with temporal statistics
(time series analysis [60], dynamic models [59]). Table 2.3 summarizes common
statistics for different spatiotemporal data types, including spatial time series, spa-
tiotemporal point process, and time series of lattice (areal) data.

Spatial time series: Spatial statistics for point reference data have been general-
ized for spatiotemporal data [61]. Examples include spatiotemporal stationarity, spa-
tiotemporal covariance, spatiotemporal variograms, and spatiotemporal Kriging [19,
59]. There is also temporal autocorrelation and tele-coupling (high correlation across
spatial time series at a long distance). Methods to model spatiotemporal process
include physics inspired models (e.g., stochastically differential equations) [19] and
hierarchical dynamic spatiotemporal models (e.g., Kalman filtering) for data assim-
ilation [19].

Spatiotemporal point process: A spatiotemporal point process generalizes the spa-
tial point process by incorporating the factor of time. As with spatial point processes,
there are spatioternporal Poisson process, Cox process, and cluster process. There
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are also correspondin isti i i 1
m@mumoﬁmacoﬁ&mg: mﬂmm%mﬁmwmﬂmw__.ﬂmma including a spatiotemporal K-function and
i HM MMM.MMMM OW%R% «.mwmat &n.ﬁ.. Similar to lattice statistics, there are spatial
e Mm@ mam.n. mnmﬂoﬂaauoﬁ_ Autoregressive Regression (STAR)
e mE.E:,om_ onwvo_w: E_mnhd_d_nm_ models [42]. Other spatiotemporal statistics
i, e ...M_E m:nﬂ._o: mmcmymzm_%&m (principle component analysis
- ANm_Sm._S m:oEo ooﬂd_mﬁwz .E._m.;%ma (CCA), and dynamic spatiotemporal
1) for data assimilation [59]. .

2.3 Output Pattern Families

2.3.1 Spatial and Spatiotemporal Outlier Detection

This secti i i i
Thins U_MMH MM<HM¢:“,.. Momwmﬁ.nwm for mﬁmmm: and spatiotemporal outlier detection. The
N ey Mm__mwwmmm mﬁm:.& or mvmaoﬁmﬂz.voﬂm_ outliers by compari-
mcﬁﬁmh.hmuna it wnvzﬁmuﬂm“wwwﬁ%oﬁ_ outlier detection techniques are
roblem ition.
o it meﬂhﬂh%mﬂ H.Ho :nn._m_.m"m_un_ the B.mmi:m of spatial and spatiotemporal
foemally e oco oosm.aﬁ. m_o_um_ outliers. Global outliers [63, 64] have been
e b ol mmm,\m:o:m ina amﬁmm.oﬁ which appear to be inconsistent with
o T e e Emﬁww ata, or which deviate so much from other observations as
i MM_ we.nqn generated @.v\ adifferent mechanism. In contrast. a
difer Sigmitoscn ,mao nmvm m“ y awmm_.mnoma o_u..qmoﬁ whose non-spatial attribute <m_:MWm
i iy o ose o cEmw mm_m:m:w referenced objects in its spatial
e L msw, a wwmmm_ .oca_mm 1s a local instability or discontinuity. For
Al et an old nm_mrwow_._ooa of a growing metropolitan area is a
On the non-spatial attribute house age. Similarly, a spatiotemporal

1ers

M«a:w:.m& Joundation: The spatial statistics for
applicable to spatiotemporal outliers as long as s
im:-n.momzoa. The literature provides two kinds omw
mamg.am_ tests, including variogram clouds [66] an
Quantitative tests, including scatterplot [67] and n

mc.mam_ outlier detection are also
m.EoSE@oH& neighborhoods are
bipartite multi-dimensional tests:
ﬂ?_oﬂma scatterplots [44, 49], and
eighborhood spatial statistics [65].

23.1.1 Spatial Outlier Detection

The visualization approach
liers. The common methods
earlier.

%Moa m.mmn& locations on a graph to identify spatial out-
varlogram clouds and Moran scatterplot as introduced
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The neighborhood approach defines a spatial neighborhood, and a spatial statistic
is computed as the difference between the non-spatial attribute of the current location
and that of the neighborhood aggregate [65]. Spatial neighborhoods can be identified
by distance on spatial attributes (e.g., K-nearest neighbors), or by graph connectivity
(e.g., locations on road networks). This work has been extended in a number of
ways to allow for multiple non-spatial attributes [68], average and median attribute
value [69], weighted spatial outliers [70], categorical spatial outlier [7 1], local spatial
outliers [72], and fast detection algorithms [73], and parallel algorithms on GPU for

big spatial event data [74].

2.3.1.2 Spatiotemporal Outlier Detection

The intuition behind spatiotemporal outlier detection is that they reflect “discon-
tinuity” on non-spatiotemporal attributes within a spatiotemporal neighborhood.
Approaches can be summarized according to the input data types.

Outliers in spatial time series: For spatial time series (on point reference data,
raster data, as well as graph data), basic spatial outlier detection methods, such as
visualization-based approaches and neighborhood-based approaches, can be gener-
alized with a definition of spatiotemporal neighborhoods.

Flow Anomalies: Given a set of observations across multiple spatial locations on
a spatial network flow, flow anomaly discovery aims to identify dominant time inter-
vals where the fraction of time instants of significantly mismatched sensor readings
exceeds the given percentage-threshold. Flow anomaly discovery can be consid-
ered as detecting discontinuities or inconsistencies of a non-spatiotemporal attribute
within a neighborhood defined by the flow between nodes, and such discontinuities
are persistent over a period of time. A time-scalable technique called SWEET (Smart
Window Enumeration and Evaluation of persistent-Thresholds) was proposed [75]
that utilizes several algebraic properties in the flow anomaly problem to discover

these patterns efficiently.

2.3.2 Spatial and Spatiotemporal Associations,
Tele-Connections

This section reviews techniques for identifying spatial and spatiotemporal associa-
tion as well as tele-connections. The section starts with the basic spatial association
(or colocation) pattern and moves on to spatiotemporal association (i.e., spatiotem-
poral co-occurrence, cascade, and sequential patterns) as well as spatiotemporal
tele-connection.

Pattern definition: Spatial association, also known as spatial colocation pat-
terns [76], represents subsets of spatial event types whose instances are often located
in close geographic proximity. Real-world examples include symbiotic species,
e.g., the Nile Crocodile and Egyptian Plover in ecology. Similarly, spatiotemporal
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association patterns represent spatiotemporal object types whose instances often
occur in close .m.womﬁmv_.mn and temporal proximity. Spatiotemporal coupling patterns
can be nma.mo:smn according to whether there exists temporal ordering of object
types: mummomoauoﬁ_ (mixed drove) co-occurrences [77] are used for unordered
patterns, mumswﬁﬂuo&_ cascades [31] for partially ordered patterns, and spatiotem-
poral mﬂcgcm_ patterns [33] for totally ordered patterns. mumc..ca_dwoam_ tele-
connection [27] represents patterns of significantly positive or negative temporal
correlation between a pair of spatial time series. "
ﬂ&n:m:%mh.. Mining patterns of spatial and spatiotemporal association are chal-
E:m_um due to the following reasons: First, there is no explicit transaction in con-
tinuous space and time; second, there is potential for over-counting; and third, the
number of candidate patterns is exponential, and a trade-off between W”mmmmnm_ n or
of output patterns and computational efficiency has to be made. :
.m@&:n& foundation: The underlying statistic for spatiotemporal coupling pat-
terns is the cross-K-function, which generalizes the basic Ripley’s K-function Qnﬂ.
duced in Sect.2.2) for multiple event types. >
o M%Sﬂoz. n@u&mn}m.h. The following subsections categorize common computa-
:ﬁ:& %%w«“ﬂ“ﬂ..u‘u for discovering spatial and spatiotemporal couplings by different
Spatial colocation: Mining colocation patterns can be i isti
mvunomﬁ:mm Eﬂ:&ﬁm cross-K-function with y%oaa Carlo mE.E_mmM”MAMmEmMMM HNMM
est zn_mrwﬁ distance, and spatial regression model [78], but these EmEo_% are often
computationally very expensive due to the exponential number of candidate patterns
F. contrast, nm.ﬂm mining approaches aim to identify colocation patterns Enw m.mmoﬁ..
ation rule mining. Within this category, there are transaction-based approaches and
distance-based approaches. A transaction-based approach defines transactions over
space (e.g., around instances of a reference feature) and then uses an Apriori-like
m_modn:: M.qE. A distance-based approach defines a distance-based pattern called
w.‘um_mscod.:m class sets [80] or using an event centric model [76] based on a defini-
tion of nndaﬁaaaa index, which is an upper bound of cross-K-function statistic and
has an ant-monotone property. Recently, approaches have been proposed to identif
o.o_onmzo:m for extended spatial objects [81] or rare events [82], regional nc_onh
tion patterns [83-85] (i.e., pattern is significant only in a mcwﬁwmoa statisticall
m_mm&nw:n colocation [86], as well as design fast algorithms [87] . ’
hﬁﬁ&ﬂnﬁ& event associations represent subsets of :
¢.§8m Instances are often located in nwomn spatial and ﬁﬁwoww_nwwwﬂﬂmw Muwm
:oHnGQE eventassociations can be categorized into spatiotemporal no.onnxs.ﬁnwh
spatiotemporal cascades, and spatiotemporal sequential patterns for tem B:.
::o&mnma events, partially ordered events, and totally ordered events nnmﬁawmcn_ .
To discover mnmncﬁﬁuoau co-occurrences, a monotonic composite mnmmnamﬂ Bmmmzww
and novel mining algorithms are presented in [77). A filter-and-refine approach has
m_m.o been proposed to identify spatiotemporal co-occurrences on extended s atial
oEmnB [30]. A spatiotemporal sequential pattern represents a “chain Rmomo::_w.oa
a_mﬂmn.ﬂ event types. A measure of sequence index, which can be interpreted b
K-function statistic, was proposed in [33], together with computationally nmmnmnuw\
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algorithms. For spatiotemporal cascade patterns, a mﬁmamaom:.% Bomnsm?_omwwqmm
was proposed to quantify Eﬁoawmamﬂo% and pruning strategies were prop
i omputational efficiency " . . .
_BW_.MMMMNEWQS__. association from moving ebjects h...pw.mmnazmm.. Mining .mva#MH._
poral association from trajectory data is more nvm:m:.m_:m than m.m.n., spatiotemp i
event data due to the existence of temporal duration, different moving a_non:cum. i
imprecise locations. There are a variety of ways E.momnm %mcwaavoaw m,,....ﬂm.wn_w -
patterns from moving object trajectories. One way 1s to manmnm_wmm the aow_z_ __o_.m i
spatiotemporal event data. For example, a pattern called mﬁm..:oﬁ_.:na %MM .
episodes is defined to identify frequent sequences of ooﬁoom:@ ww:n_‘am_ -
common event (object) type [88]. As another mxmﬂ&m. a %m.nommanoﬁ mmawww
pattern is defined based on decomposition of trajectories into line segments and ic mﬂn
tification of frequent region sequences around EW segments [89]. Another ,quw %ow
define spatiotemporal association as group of _oEmoa that frequently move omno:_,“
either focusing on the footprints of subpaths (region sequences) that are M%nma iy
traversed [90] or subsets of objects that frequently move together (also called ¢
noamwwmww “M_Mml& oscillation and Rhm-naa.amnumoa.. O?mu. a oo:.m.“oso_”_mow, mmm:mm
time series at different locations, _&m-ao::mnpoa discovery aims to identify pairs ,.”-
spatial time series whose correlation is m_uoe.n.m given &Rm:oa.. ,_,&m-no_.ﬁmnsom nM&
terns are important in understanding oscillations in n_:._._m.ﬁ science. n_uo_wnﬂ:ﬁm ME !
challenges arise from the large number of candidate pairs and the leng M =
series. An efficient index structure, called a nwma-nm«..mm well as a ERTEM. -re “
approach [27], has been proposed which :.::wmm spatial mcno.no_._.a_msnn o>ﬂwmm~ mﬂ
spatial time series to filter out redundant pairwise ooqw_mwon computation. *
challenge is the existence of spurious “high correlation™ patterns .m._mﬂ mmﬁﬁma. w
chance. Recently, statistical significant tests rm&m,wmn: vﬂonomm..u to am_..c@wmmSMw._ﬁ.__-
cally significant tele-connection patterns called nﬁowm.m from climate amwm [ Mm m:m
approach uses a “wild bootstrap” to capture the wm_mcommavonm_ depen mum_ﬂ and
takes account of the spatial autocorrelation, the seasonality, and the trend in the tim
series over a period of time.

2.3.3 Spatial and Spatiotemporal Prediction

Problem definition: Given training samples with features and a target éﬂ»!w as Mw\j

as a spatial neighborhood relationship among samples, ﬁ._._w problem of ,..._a.a:n pre Mn
tion aims to learn a model that can predict the target a.w,.:mgo based on .mm&cﬂmm. <<< at
distinguishes spatial prediction from traditional Ema,_ocos problem in data mining
is that data items are embedded in space and often violate the common assumption
of an identical and independent distribution (i.i.d.). w@mﬁﬁ E.@&oﬁo: vno.EoEm can
be further categorized into spatial classification for :oH.E:m_ (i.e., categorical) target
variables and spatial regression for numeric target variables.
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Challenges: The unique challenges of spatial and spatiotemporal prediction
come from the special characteristics of spatial and spatiotemporal data, which
include spatial and temporal autocorrelation, spatial heterogeneity. and temporal
non-stationarity, as well as the multi-scale effect. These unique characteristics vio-
late the common assumption in many traditional prediction techniques that samples
follow an identical and independent distribution (i.i.d.). Simply applying traditional
prediction techniques without incorporating these unique characteristics may pro-
duce hypotheses or models that are inaccurate or inconsistent with the dataset.

Statistical foundations: Spatial and spatiotemporal prediction techniques are
developed based on spatial and spatiotemporal statistics, including spatial and tem-
poral autocorrelation, spatial heterogeneity, temporal non-stationarity, and multiple
areal unit problem (MAUP) (see Sect. 2.2).

Computational approaches: The following subsections summarize common spa-
tial and spatiotemporal prediction approaches for different data types. We further
categorize these approaches according to the challenges that they address, including
spatial and spatiotemporal autocorrelation, spatial heterogeneity, spatial multi-scale
effect, and temporal non-stationarity, and introduce each category separately below.

2.3.3.1 Spatial Autocorrelation or Dependency

According to Tobler’s first law of geography [92], “everything is related to everything
else, but near things are more related than distant things.” The spatial autocorrelation
effect tells us that spatial samples are not statistically independent, and nearby sam-
ples tend to resemble each other. There are different ways to incorporate the effect
of spatial autocorrelation or dependency into predictive models, including spatial
feature creation, explicit model structure modification, and spatial regularization in
objective functions.

Spatial feature creation: The main idea is to create new features that incorporate
spatial contextual (neighborhood) information., Spatial features can be generated
directly from spatial aggregation [93] and indirectly from multi-relationship (or spa-
tial association) rules between spatial entities [94-96] or from spatial transformation
of raw features [97]. After spatial features are generated, they can be fed into a gen-
eral prediction model. One advantage of this approach is that it could utilize many
existing predictive models without significant modification. However, spatial feature
creation in preprocessing phase is often application specific and time-consuming.

Spatial interpolation: Given observations of a variable at a set of locations (point
reference data), spatial interpolation aims to measure the variable value at an unsam-
pled location [98]. These techniques are broadly classified into three categories:
geostatistical, non-geostatistical, and some combined approaches. Among the non-
geostatistical approaches, the nearest neighbors, inverse distance weighting, etc., are
the mostly used techniques in the literature. Kri ging is the most widely used geostatis-
tical interpolation technique, which represents a family of generalized least-squares
regression-based interpolation techniques [99]. K. riging can be broadly classified into
two categories: univariate (only variable to be predicted) and multivariate (there are
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some covariates, also called explanatory variables). Unlike the non-geostatistical or
traditional interpolation techniques, this estimator considers both the distance and
the degree of variation between the sampled and unsampled locations for the random
variable estimation. Among the univariate kriging methods, the simple kriging and
ordinary kriging, and in multivariate scenario, the ordinary cokriging, universal krig-
ing and kriging with external drift are the most popular and widely used technique in
the study of spatial interpolation [98, 100]. However, the kriging suffers from some
acute shortcomings of assuming the isotopic nature of the random variables.

Markov random field (MRF): MRF [45] is a widely used model in image classifi-
cation problems. It assumes that the class label of one pixel only depends on the class
labels of its predefined neighbors (also called Markov property). In spatial classifi-
cation problem, MRF is often integrated with other non-spatial classifiers to incor-
porate the spatial autocorrelation effect. For example, MRF has been integrated with
maximum likelihood classifiers (MLC) to create Markov random field (MRF)-based
Bayesian classifiers [101], in order to avoid salt-and-pepper noise in prediction [102].
Another example is the model of Support Vector Random Fields [103].

Spatial Autoregressive Model (SAR): In the spatial autoregression model, the
spatial dependencies of the error term, or the dependent variable, are directly modeled
in the regression equation [104]. If the dependent values y; are related to each other,
then the regression equation can be modified as y = pWy + XB + €, where W is
the neighborhood relationship contiguity matrix and p is a parameter that reflects the
strength of the spatial dependencies between the elements of the dependent variable.
For spatial classification problems, logistic transformation can be applied to SAR
model for binary classes.

Conditional autoregressive model (CAR): In the conditional autoregressive
model [45], the spatial autocorrelation effect is explicitly modeled by the conditional
probability of the observation of a location given observations of neighbors. CAR
is essentially a Markov random field. It is often used as a spatial term in Bayesian
hierarchical models.

Spatial accuracy objective function: In traditional classification problems, the
objective function (or loss function) often measures the zero-one loss on each sample,
no matter how far the predicted class is from the location of the actuals. For example,
in bird nest location prediction problem on a rasterized spatial field, a cell’s predicted
class (e.g., bird nest) is either correct or incorrect. However, if a cell mistakenly
predicted as the bird nest class is very close to an actual bird nest cell, the prediction
accuracy should not be considered as zero. Thus, spatial accuracy [105, 106] has
been proposed to measure not only how accurate each cell is predicted itself but also
how far it is from an actual class locations. A case study has shown that learning

models based on proposed objective function produce better accuracy in bird nest
location prediction problem. Spatial objective function has also been proposed in
active learning [107], in which the cost of additional label not only considers accuracy
but also travel cost between locations to be labeled.
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2.3.3.2 Spatial Heterogeneity

m.ﬁmmm_ heterogeneity describes the fact that samples often do not follow an identical
distribution in the entire space due to varying geographic features. Thus, a global
model for the entire space fails to capture the varying relationships wﬂs_mmw features
and the target variable in different subregion. The problem is essentially the multi-
Hmm_m learning problem, but a key challenge is how to identify different tasks (or
_.nmwoaﬁ or local models). Several approaches have been proposed to learn local or
regional models. Some approaches first partition the space into homogeneous regions
and learn a local model in each region. Others learn local models at each location
but add spatial constraint that nearby models have similar parameters.

Qwomwmhﬁ.n&@. Weighted Regression (GWR): One limitation of the spatial autore-
gressive model (SAR) is that it does not account for the underlying spatial hetero-
geneity Emp is natural in the geographic space. Thus, in a SAR model, coefficients
B of covariates and the error term ¢ are assumed to be uniform throughout the entire
geographic space. One proposed method to account for spatial variation in model
parameters and errors is Geographically Weighted Regression [46]. The regression
equation of GWR is y = XB(s) + €(s), where B(s) and €(s) represent the spatially
parameters and the errors, respectively. GWR has the same structure as standard
linear regression, with the exception that the parameters are spatially varying. It also
assumes that samples at nearby locations have higher influence on the parameter
estimation of a current location. Recently, a multi-model regression approach is pro-
vomnn_ to learn a regression model at each location but regularize the parameters to
maintain spatial smoothness of parameters at neighboring locations [108].

2.3.3.3 Multi-scale Effect

OE.« main challenge in spatial prediction is the Multiple Area Unit Problem (MAUP)
which means that analysis results will vary with different choices of spatial mnm._mmw
For example, a predictive model that is effective at the county level may nm_.».oum
noozw. at states level. Recently, a computation technique has been proposed to learn
a predict models from different candidate spatial scales or granularity [94],

2.3.34 Spatiotemporal Autocorrelation

bwuqom.nwmm that address the spatiotemporal autocorrelation are often extensions
of n_.mSo.wmQ.Ennoa:nma models that address spatial autocorrelation effect by fur-
z.ﬁ,. nommam._.Em the time dimension. For example, SpatioTemporal Autoregres-
mEm.Wm%.mmm_o: (STAR) model [44] extends SAR by further modeling EBno«M._ or
spatiotemporal dependency across variables at different locations. manoﬁoEuoHa
Mn:m_nm. [59] generalizes spatial kriging with a spatiotemporal covariance matrix
and variograms. It can be used to make predictions from incomplete and noisy
spatiotemporal data. Spatioternporal relational probability trees and Jorests [109]
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. . . ects
extend decision tree classifiers with tree node tests on m@mzm@ properties on MEMM:
and random field as well as temporal changes. To model mnmcwﬁauwm.m_%« en M M:.q&
i y ierar
i in dif t a sequence of times, Bayesian (
as disease counts in different states a . !
models are often used, which incorporate the spatial and temporal autocorrelatio

effects in explicit terms.

2.3.3.5 Temporal Non-stationarity

Hierarchical dynamic spatiotemporal models eu.md&& .Gﬁ, as the ,mmmwmow“w%%mww
aim to model spatiotemporal processes &mmﬂﬁmzw ‘E_.m_._ a Bayesian o“a g
framework. There are three levels of models in the hierarchy: a awnw HHM e .
top, a process model in the middle, and a parameter model at .E_o Mﬂ owwaonm u
model represents the conditional dependency o.w (actual or potential) % _maa tions on
the underlying hidden process with latent variables. A process mo oamww:mamoﬁw.
spatiotemporal dependency within the process model. A nEmEmman E“ NN
izes the prior distributions of model parameters. Um..ﬂsm :.B_o wau_ videly g
climate science and environment science, €.g., .mOn simulating ﬂ_ov:mmco_._ Maco e
atmospheric and oceanic processes. For model inference, Kalman filter can

under the assumption of linear and Gaussian models.

2.3.3.6 Prediction for Moving Objects

Mining moving object data such as GPS qammmo..nmm m:a. oroow.._: EmSDMm mew
become increasingly important. Due to space :_.:z,.s.m briefly &mocm..m mo”: ) Mc
resentative techniques for three main problems: trajectory classification, locati
iction, and location recommendation. . . .
v_‘a%_u,wwwoﬁmq classification: This problem E.n.a to _.Hma_ﬁ ,.xw Qmmm.cm R&nﬁmﬂmmh
Unlike spatial classification problems for m.m_m:mp point .Enmcﬂ.vnm. trajectory vyl
cation can utilize the order of locations visited by Eoﬁ‘am.oEnmmm. ?.u mﬁ%mom__mmm.ﬂml
been proposed that uses frequent sequential patterns within trajectories for ¢
ion [110]. . .

ommhanwaoh prediction: Given historical _Oomao_ﬂ_m ofa moving object (e.g., Oﬁwwa”._
jectories, check-in histories), the location prediction problem aims to moaomm : o_ &
place that the object will visit. Various approaches have uqu._ Eono%a.ﬁ W ;
The main idea is to identify the frequent location sequences visited by Boﬁ:m%_.__.mnﬁ
and then, next location can be predicted by EmﬁnEzm the mcqauﬁ sequence wi _mﬂmm
ical sequences. Social, temporal, and semantic information can u_mn&um _Mnno_._u%m“_ <
to improve prediction accuracy. Some other mmﬁ_.cmnrmm use hidden mnw c<7~M§ o
capture the transition between different locations. Supervised approaches
.oamwoﬂm%wom recommendation: Location RSBEmnamﬁ.E.n f1 r.T‘:Z aims HM sug-

gest potentially interesting locations to visitors. m.o.amc_.naw tis .oocm.aoa as a

enecial Incation prediction problem which also utilizes location histories of other
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moving objects. Several factors are often considered for ranking candidate locations,
such as local popularity and user interests. Different factors can be simultaneously

incorporated via generative models such as latent Dirichlet allocation (LDA) and
probabilistic matrix factorization techniques.

2.3.4 Spatial and Spatiotemporal Partitioning (Clustering)
and Summarization

Problem definition: Spatial partitioning aims to divide spatial items (e.g., vector
objects, lattice cells) into groups such that items within the same group have high
proximity. Spatial partitioning is often called spatial clustering. We use the name
“spatial partitioning” due to the unique nature of spatial data, i.e., grouping spatial
items also mean partitioning the underlying space. Similarly, spatiotemporal par-
titioning, or spatiotemporal clustering, aims to group similar spatiotemporal data
items and thus partition the underlying space and time. After spatial or spatiotem-
poral partitioning, one often needs to find a compact representation of items in each
partition, e.g., aggregated statistics or representative objects. This process is further
called spatial or spatiotemporal summarization.

Challenges: The challenges of spatial and spatiotemporal partitioning come from
three aspects. First, patterns of spatial partitions in real-world datasets can be of var-
ious shapes and sizes and are often mixed with noise and outliers. Second, relation-
ships between spatial and spatiotemporal data items (e.g., polygons, trajectories) are
more complicated than traditional non-spatial data. Third, there is a trade-off between
quality of partitions and computational efficiency, especially for large datasets.

Computational approaches: Common spatial and spatiotemporal partitioning
approaches are summarized in below according to the input data types.

2.3.4.1 Spatial Partitioning (Clustering)

Spatial and spatiotemporal partitioning approaches can be categorized by input data
types, including spatial points, spatial time series, trajectories, spatial polygons, raster
images, raster time series, spatial networks, and spatiotemporal points.

Spatial point partitioning (clustering): The goal is to partition two-dimensional
points into clusters in Euclidean space. Approaches can be categorized into global
methods, hierarchical methods, and density-based methods according to the under-
lying assumptions on the characteristics of clusters [119]. Global methods assume
clusters to have “compact” or globular shapes and thus minimize the total distance
from points to their cluster centers. These methods include K-means, K-medoids,
EM algorithm, CLIQUE, BIRCH, and CLARANS [21]. Hierarchical methods [21]
form clusters hierarchically in a top-down or bottom-up manner and are robust to out-
liers since outliers are often easily separated out. Chameleon [120] is a graph-based
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hierarchical clustering method that first creates a sparse k-nearest neighbor graph,
then partitions the graph into small clusters, and hierarchically merges small clus-
ters whose properties stay mostly unchanged after merging. Density-based methods
such as DB-Scan [121] assume clusters to contain dense points and can have arbi-
trary shapes. When the density of points varies across space, the similarity measure of
shared nearest neighbors [122] can be used. Voronoi diagram [123] is another space
partitioning technique that is widely used in applications of location-based service.
Given a set of spatial points in Euclidean space, a Voronoi diagram partitions the
space into cells according to the nearest spatial points.

Spatial polygon clustering: Spatial polygon clustering is more challenging than
point clustering due to the complexity of distance measures between polygons. Dis-
tance measures on polygons can be defined based on dissimilarities on spatial attribute
(e.g., Hausdorff distance, ratio of overlap, extent, direction, and topology) as well as
non-spatial attributes {124, 125]. Based on these distance measures, traditional point
clustering algorithms such as K-means, CLARANS, and shared nearest neighbor
algorithm can be applied.

Spatial areal data partitioning: Spatial areal data partitioning has been extensively
studied for image segmentation tasks. The goal is to partition areal data (e.g., images)
into regions that are homogeneous in non-spatial attributes (e.g., color or gray tone
and texture) while maintaining spatial continuity (without small holes). Similar to
spatial point clustering, there is no uniform solution. Common approaches can be
categorized into non-spatial attribute-guided spatial clustering, single, centroid, or
hybrid linkage region growing schemes, and split-and-merge scheme. More details
can be found in a survey on image segmentation [126].

Spatial network partitioning: Spatial network partitioning (clustering) is impor-
tant in many applications such as transportation and VLSI design. Network Voronoi
diagram is a simple method to partition spatial network based on common closest
interesting nodes (e.g., service centers). Recently, a connectivity constraint network
Voronoi diagram (CCNVD) has been proposed to add capacity constraint to each
partition while maintaining spatial continuity [127]. METIS [128] provides a set of
scalable graph partitioning algorithms, which have shown high partition quality and
computational efficiency.

2.34.2 Spatiotemporal Partitioning (clustering)

Spatiotemporal event partitioning (clustering): Most methods for 2-D spatial point
clustering [119] can be easily generalized to 3-D spatiotemporal event data [129].
For example, ST-DBSCAN [130] is a spatiotemporal extension of the density-based
spatial clustering method DBSCAN. ST-GRID [131] is another example that extends
grid-based spatial clustering methods into 3-D grids.

Spatial time series partitioning (clustering): Spatial time series clustering aims to
divide the space into regions such that the similarity between time series within
the same region is maximized. Global partitioning methods such as K-means,
K-medoids, and EM, as well as the hierarchical methods, can be applied.
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Common ?.:&.m“.a_mmaq measures include Euclidean distance, Pearson’s correlation
and dynamic time warping (DTW) distance. More details can be found in a Bomuw
survey [132]. However, due to the high dimensionality of spatial time series, density-
MH«MWW@EM%Q and wﬂm%_:-vmm& approaches are often not used. When omEﬁ:mMm
llarities between spatial time seri -and-
— now_ -~y series, a filter-and-refine approach [27] can be used
ﬂw&mn«cq partitioning: Trajectory partitioning approaches can be categorized by
their o_u._mmcér namely trajectory grouping, flock pattern detection, muanqa.mnaq
mmmﬂmnﬁro_,_. Trajectory grouping aims to partition trajectories into groups accord-
ing to their similarity. There are mainly two types of approaches, ie., distance-based
Ex.”_ mwacmanw-_ummaa. The density-based approaches [133-135] first break trajec-
tories into small segments and apply distance-based clustering algorithms similar
to K-means or DBSCAN to connect dense areas of segments, The Ww@a%&-wﬁm&
nv.uﬁa% _.GE uses association rule mining [40] algorithms to identify subsections
of trajectories which have high frequencies (also called high “support™).

2.3.4.3 Spatial and Spatiotemporal Summarization

.UmS summarization aims to find compact representation of a dataset [137]. It is
important for amﬁ.m Q.E%Rmmwo: as well as for making pattern analysis Boa. con-
MMMHMO WM:AHHMWN&E: can be done on classical data, spatial data, as well as spa-
Q&h&n& data summarization: Classical data can be summarized with aggregation
statistics such as count, mean, and median. Many modern database systems woSam
query support for this operation, e.g., “Group by” operator in SQL. ?
.w.m.n:& data summarization: Spatial data summarization is more difficult th
classical data summarization due to its non-numeric nature. For Euclidean s mommn
the task can be done by first conducting spatial partitioning and then Ewnmm\mum
8?.8@:8.:3 spatial objects. For example, spatial data can be summarized é:m
the centroids or medoids computed from K-means or K-medoids algorithms. F
_._Q.anw.wumnm. especially for spatial network activities. summarization can be mo i
by awzn.@m:m several primary routes that cover those activities as much as vom.mmw_ﬁw
A K-Main Routes (KMR) algorithm [138] has been proposed to efficiently com Em
Mwmw Mcﬁﬂﬂm m:EBmumo spatial network activities. To reduce the ncE@:Smwnm_
wEmEmoﬂoongWwEwB uses network Voronoi diagrams, divide and conquer, and
Spatiotemporal data summarization: For spatial time series data, summarization
can be mo:m by removing spatial and temporal redundancy due to E,o effect of aut
correlation. A family of such algorithms has been used to summarize traffic d M-
m.n.omEm Cwo._. Similarly, the centroids from K-means can also be used to m:EHMH
rize mmmam_ .:Eo. series. For trajectory data, especially spatial network trajectories
Summarization is more challenging due to the huge cost of similarity com Em.u
tion. A recent approach summarizes network trajectories into k-primary oo_dﬂoa



32 2 Spatial and Spatiotemporal Big Data Science

(140, 141]. The work proposes efficient algorithms to reduce the huge cost for net-
work trajectory distance computation.

2.3.5 Spatial and Spatiotemporal Hotspot Detection

Problem definition: Given a set of spatial objects m.m.m.. points) in a study area, the
problem of spatial hotspot detection aims to find regions where n._n jcavﬁ, of objects
is unexpectedly or anomalously high. Spatial hotspot aoaono:. is m&.n_.w:ﬂ from
spatial partitioning or clustering, since spatial :om_uoa.mna a %mm.m_ kind of clusters
whose intensity is “significantly” higher than the outside. %mna%qﬁoﬂmw hotspots
can be seen as a generalization of spatial hotspots with a m.@mn,mna time E_nm_oé.

Challenges: Spatial and spatiotemporal hotspot detection is a o_._m__mummnm. ﬁ.mmw
since the location, size, and shape of a hotspot are unknown ,.ummcnmambn_. In mnmm_aomw
the number of hotspots in a study area is often not known either. Koﬁoﬁwﬂ false
hotspots that aggregate events only by chance should often Um. m<oam.a“ since these
false hotspots impede proper response by authorities (e.g., wasting wornw _.nmoE.‘nmmu_.
Thus, it is often important to test the statistical significance of candidate spatial or

iotemporal hotspots.

m@mwiaawi &cx:&%:.o:.. Spatial (or spatiotemporal) scan statistics [53, 142] (also
discussed in Sect.3.1) are used to detect statistically significant hotspots from spa-
tial (or spatiotemporal) datasets. It uses a window (or nm::amn.u to scan the space
(or space—time) for candidate hotspots and performs Euo&mm_m testing. The .o::
hypothesis states that the spatial (or spatiotemporal) points mam‘noBanE m.vmcm:%
random (a homogeneous Poisson point process). The m:mEmEn E@o&wm.a states
that the points inside of the window (or cylinder) have higher intensity of @o::m.ﬁrmn
outside. A test statistic called log likelihood ratio is computed for each candidate
hotspot, and the candidate with the highest likelihcod ratio can be further evaluated
by its significance value (i.e., p-value). . .

Computational approaches: The following mccmmoso:m.mcaaﬂ..ﬁm common spa-
tial and spatiotemporal hotspot detection approaches by different input data types.

2.3.5.1 Spatial Hotspot from Spatial Point Pattern

Spatial partitioning approaches: Spatial point partitioning or o_cmﬁma..nm Em.%.oam
(Sect.4.4.1) can be used to identify candidate hotspot patterns. .>w8~ this, statistical
tools may be used to evaluate the statistical significance of candidate patterns. Z.Ed\
of these methods have been implemented in CrimeStat, a software package for crime
hotspot analysis [143]. . .
Spatial scan statistics based approaches: These mw?omovom use a é:_aoﬁ with
varying sizes to scan the 2-D plane and identifies the oga_amﬂo window 2.:: the
highest likelihood ratio. Statistical significance (p-value) is ooﬂ%ﬁwa for this can-
didate hased on Monte Carlo simulation. Scanning windows with different shapes,
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including circular, elliptical, as well as ring-shaped, have been proposed together
with efficient computational pruning strategies [142, 144—146]. SaTScan [142] is a
popular spatial scan statistics tool in epidemiology to analyze circular or elliptical
hotspots.

Kernel Density Estimation: Kernel density estimation (KDE) [147] identifies spa-
tial hotspots via a density map of point events. It first creates a grid over the study
area and uses a kernel function with a user-defined radius (bandwidth) on each point

to estimate the density of points on centers of grid cells. A subset of grid cells with
high density are returned as spatial hotspots.

2.3.5.2 Spatial Hotspot from Areal Model

Local Indicators of Spatial Association: Local indicators of spatial association
(LISA) [148, 149] is a set of local spatial autocorrelation statistics, including local
Moran’s I, Geary’s C, or Ord Gi and Gi* functions. It differs from global spatial
autocorrelation in that the statistics are computed within the neighborhood of a loca-
tion. For example, a high local Moran’s I indicates that values of the current location
as well as its neighbors are both extremely high (or low) compared to values at other
locations, and thus, the neighborhood is a spatial hotspot (or “cold spot™).

2.3.5.3 Spatiotemporal Hotspot Detection

Hot routes from spatial network trajectories: Hot routes detection from spatial net-
work trajectories aims to detect network paths with high density [133] or frequency
of trajectories [136]. Other approaches include organizing police patrol routes [150],
main streets [151], and clumping [152].

Spatiotemporal Scan Statistics based approaches: Two types of spatiotemporal
hotspots can be detected by spatiotemporal scan statistics: “persistent” spatiotempo-
ral hotspots and “emerging” spatiotemporal hotspots. A “persistent” spatiotemporal
hotspot is a region where the rate of increase in observations is a high and almost
constant value over time. Thus, approaches to detect a persistent spatiotemporal
hotspot involves counting observations in each time interval [142]. An “emerging”
spatiotemporal hotspot is a region where the rate of observations monotonically
increases over time [145, 153). This kind of spatiotemporal hotspot occurs when
an outbreak emerges causing a sudden increase in the number observations. Tools
for the detection of emerging spatiotemporal hotspots use spatial scan statistics to
identify changes in expectation over time [154].
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2.3.6 Spatiotemporal Change

2.3.6.1 What Are Spatiotemporal Changes and Change Footprints

Although the single term “change” is used to name the spatiotemporal change foot-
print patterns in different applications, the underlying phenomena may differ signif-
icantly. This section briefly summarizes the main ways a change may be defined and
detected in spatiotemporal data [10].

Change in Statistical Parameter: In this case, the data is assumed to follow a cer-
tain distribution and the change is defined as a shift in this statistical distribution. For
example, in statistical quality control, a change in the mean or variance of the sensor
readings is used to detect a fault.

Change in Actual Value: Here, change is modeled as the difference between a data
value and its spatial or temporal neighborhood. For example, in a one-dimensional
continuous function, the magnitude of change can be characterized by the derivative
function, while on a two-dimensional surface, it can be characterized by the gradient
magnitude.

Change in Models Fitted to Data: This type of change is identified when a number
of models are fitted to the data and one or more of the models exhibits a change (e.g.,
a discontinuity between consecutive linear functions) [155].

2.3.6.2 Common Approaches

This section follows the taxonomy of spatiotemporal change footprint patterns as
proposed in [10]. In this taxonomy, spatiotemporal change footprints are classified
along two dimensions: temporal and spatial. Temporal footprints are classified into
four categories: single snapshot, set of snapshots, point in a long series, and interval
in a long series. Single snapshot refers to a purely spatial change that does not
have a temporal context. A set of snapshots indicate a change between two or more
snapshots of the same spatial field, e.g., satellite images of the same region.

Spatial footprints can be classified as raster footprints or vector footprints. Vector
footprints are further classified into four categories: point(s), line(s), polygon(s), and
network footprint patterns. Raster footprints are classified based on the scale of the
pattern, namely local, focal, or zonal patterns. This classification describes the scale
of the change operation of a given phenomenon in the spatial raster field [156]. Local
patterns are patterns in which change at a given location depends only on attributes
at this location. Focal patterns are patterns in which change in a location depends
on attributes in that location and its assumed neighborhood. Zonal patterns define
change using an aggregation of location values in a region.

Spatiotemporal Change Patterns with Raster-based Spatial Footprint: This
includes patterns of spatial changes between snapshots. In remote sensing, detecting

changes between satellite images can help identify land cover change due to human
activity, natural disasters, or climate change [157-159]. Given two geographically
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E._muoa raster images, this problem aims to find a collection of pixels that have sig-
nificant changes between the two images [160]. This pattern is classified as a _onw_
change between snapshots since the change ata given pixel is assumed to be indepen-
dent &. changes at other pixels. Alternative definitions have assumed that a change
ata pixel also depends on its neighborhoods [161]. For example, the pixel values
E.mmn: block may be assumed to follow a Gaussian distribution [162]. We refer to
this type of mrwmmm footprint pattern as a focal spatial change between snapshots.
Researchers in remote sensing and image processing have also tried to apply image
change detection to objects instead of pixels [163-165], yielding zonal spatial nrmbwm
patterns between snapshots.

. A well-known technique for detecting a local change footprint is simple differenc-
ing. ﬂ.a technique starts by calculating the differences between the corresponding
?xﬂ_.m intensities in the two images. A change at a pixel is flagged if the difference at
the n._:ﬁ exceeds a certain threshold. Alternative approaches have also been proposed
to amnoﬁn. focal change footprints between images. For example, the block-based
density ratio test detects change based on a group of pixels, known as a block [166
167]. OE.mﬂ-wmmma approaches in remote sensing [165, 168, 169] employ image mmm..
mentation techniques to partition temporal snapshots of images into homogeneous
wEmn_.m [170] and then classify object pairs in the two temporal snapshots of images
into no change or change classes.

. Spatiotemporal Change Patterns with Vector-based Spatial Footprini: This
includes the Spatiotemporal Volume Change Footprint pattern. This pattern rep-
resents a change process occurring in a spatial region (a polygon) during a time
wnnmwcm_. For example, an outbreak event of a disease can be defined as an increase
in disease reports in a certain region during a certain time window up to the current
time. Change patterns known to have an spatiotemporal volume footprint include the
m_umconmanom; scan statistics [171, 172], a generalization of the spatial scan statistic
and emerging spatiotemporal clusters defined by [154]. ”

2.4 Research Trend and Future Research Needs

Most current research in spatial and spatiotemporal data science uses Euclidean
space, which often assumes isotropic property and symmetric neighborhoods. How-
ever, in many real-world applications, the underlying space is network space, such
as river networks and road networks [138, 173, 174]. One of the main n:mhwnmnm
in mumnm_. and spatiotemporal network data science is to account for the network
mndo.EHa in the dataset. For example, in anomaly detection, spatial techniques do not
consider the spatial network structure of the dataset; that is, they may not be able
to model graph properties such as one ways, connectivity, and left-turns. The net-
s,o_._m structure often violates the isotropic property and symmetry of neighborhoods
and mnm,mmn_ requires asymmetric neighborhood and directionality of neighborhood
relationship (e.g., network flow direction).
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Recently, some cutting edge research has been conducted in the spatial network
statistics and data science [57]. For example, several spatial network statistical meth-
ods have been developed, e.g., network K-function and network spatial autocorre-
lation. Several spatial analysis methods have also been generalized to the network
space, such as network point cluster analysis and clumping method, network point
density estimation, network spatial interpolation (Kriging), as well as network Huff
model. Due to the nature of spatial network space as distinct from Euclidean space,
these statistics and analysis often rely on advanced spatial network computational
techniques [57].

We believe more spatial and spatiotemporal big data science research is still
needed in the network space. First, though several spatial statistics and big data
science techniques have been generalized to the network space, few spatiotemporal
network statistics and big data science have been developed, and the vast majority of
research is still in the Euclidean space. Future research is needed to develop more spa-
tial network statistics, such as spatial network scan statistics, spatial network random
field model, as well as spatiotemporal autoregressive models for networks. Further-
more, phenomena observed on spatiotemporal networks need to be interpreted in
an appropriate frame of reference to prevent a mismatch between the nature of the
observed phenomena and the mining algorithm. For instance, moving objects on
a spatiotemporal network need to be studied from a traveler’s perspective, i.e., the
Lagrangian frame of reference [175-178] instead of a snapshot view. This is because
a traveler moving along a chosen path in a spatiotemporal network would experience
a road segment (and its properties such as fuel efficiency and travel time) for the
time at which he/she arrives at that segment, which may be distinct from the original
departure time at the start of the journey. These unique requirements (non-isotropy
and Lagrangian reference frame) call for novel spatiotemporal statistical founda-
tions [173] as well as new computational approaches for spatiotemporal network big
data science.

Another future research need is to develop spatiotemporal graph big data plat-
forms, motivated by the upcoming rich spatiotemporal network data collected
from vehicles. Modern vehicles have rich instrumentation to measure hundreds of
attributes at high frequency and are generating big data (Exabyte [179]). This vehi-
cle measurement big data consists of a collection of trips on a transportation graph
such as a road map annotated with several measurements of engine subsystems.
Collecting and analyzing such big data during real-world driving conditions can
aid in understanding the underlying factors which govern real-world fuel ineffi-
ciencies or high greenhouse gas emissions [180]. Current relevant big data plat-
forms for spatial and spatiotemporal big data science include ESRI GIS Tools for
Hadoop [181, 182] and Hadoop GIS [183]. These provide distributed systems for
geometric data (e.g., lines, points, and polygons) including geometric indexing and

partitioning methods such as R-tree, R+-tree, or Quad tree. Recently, SpatialHadoop
has been developed [184]. SpatialHadoop embeds geometric notions in language,
visualization, storage, MapReduce, and operations layers. However, spatiotempo-
ral graphs violate the core assumptions of current spatial big data platforms that
the geometric concepts are adequate for conveniently representing spatiotemporal

2.4 Research Trend and Future Research Needs 37

graph analytics operations and for partition data for load-balancing. Spatiotempo-
ral graphs also violate core assumptions underlying graph analytics software (e.g.,
Giraph [185], GraphLab [186], and Pregel [187]) that traditional _oomnoz-:nmémwm
graphs are adequate for conveniently representing STG analytics operations and for
partition data for load-balancing. Therefore, novel spatiotemporal graph big data
platforms is needed. Several challenges should be addressed: e.g., spatiotemporal
graph big data requires novel distributed file system (DFS) to vm._..mmou the graph,
and a novel programming model is still needed to support abstract data types and
fundamental spatiotemporal graphs operations, etc.

2.5 Summary

,::m, chapter provides an overview of current research in the field of spatial and
spatiotemporal (SST) big data science from a computational perspective. SST big
data science has broad application domains including ecology and environmental
management, public safety, transportation, earth science, epidemiology, and clima-
tology. However, the complexity of SST data and intrinsic SST relationships limits
Em._._mm?_ummm of conventional big data science techniques. We provide a taxonomy of
&mnﬂmﬁ SST data types and underlying statistics. We also review common SST big
nmm.s sclence techniques organized by major output pattern families: SST outlier, oamﬂw
pling and tele-coupling, prediction, partitioning and summarization, hotspots, and

change patterns. Finally, we discuss the recent research trends and future research
needs.
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