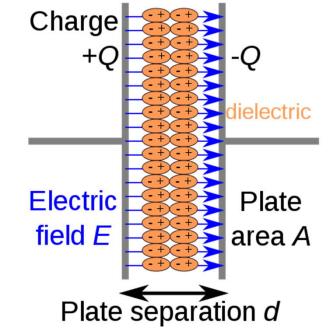
Insulation and Dielectric Materials Learning outcome

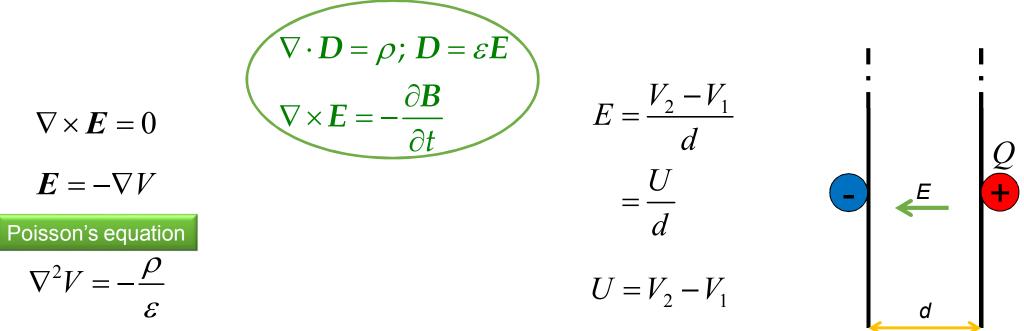
At the end of this lecture you will be able to:

- Understand how dielectric materials react with an electric field
- List the typical failure modes of insulation materials
- List and explain the main polarization process of dielectric materials
- Analyze the requirements on the insulation materials in electrical machines


Electric fields and materials

• Electric charges produce electric flux, or electric flux density *D*; this reacts with the material to produce an electric field *E*, which depends on how the material structure is able to polarize.

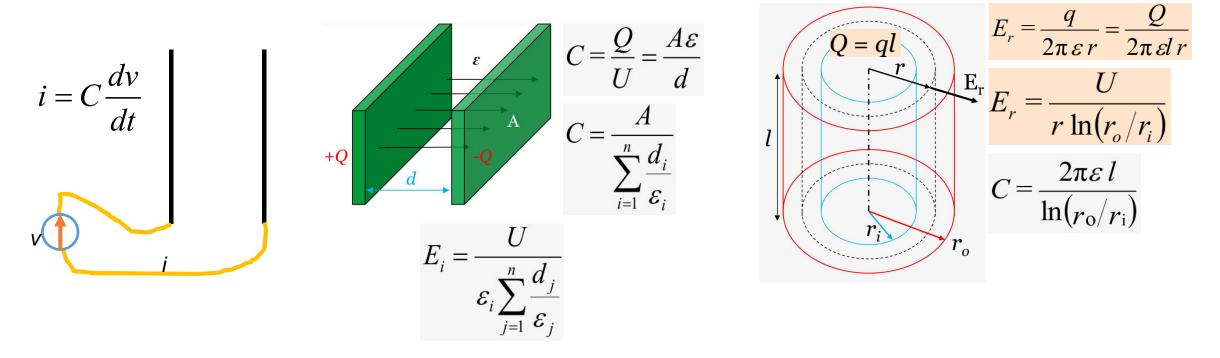
• An electrically charged particle in an electric field is subject to an electric force.


$$\mathrm{d}F = E\mathrm{d}Q$$

- If the charge is free to move a current will follow.
- If the charge is not free, a polarization will take place
 - This ability to polarize is described by the permittivity

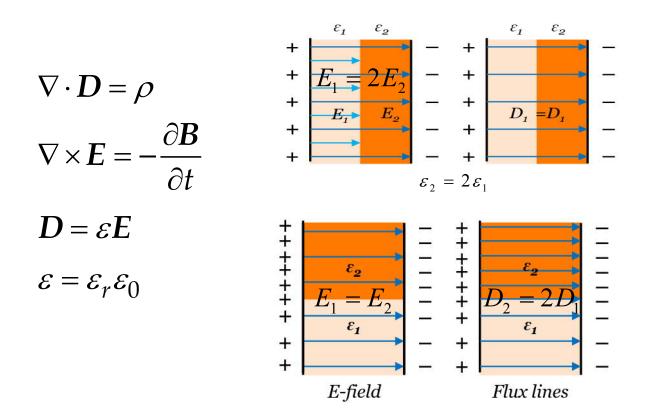
Electric field between two charged plates

• When the system is static, the electric field *E* produced by a charge is *curl*-free and the field can be expressed as the gradient of an electric potential *V*


V=V₁

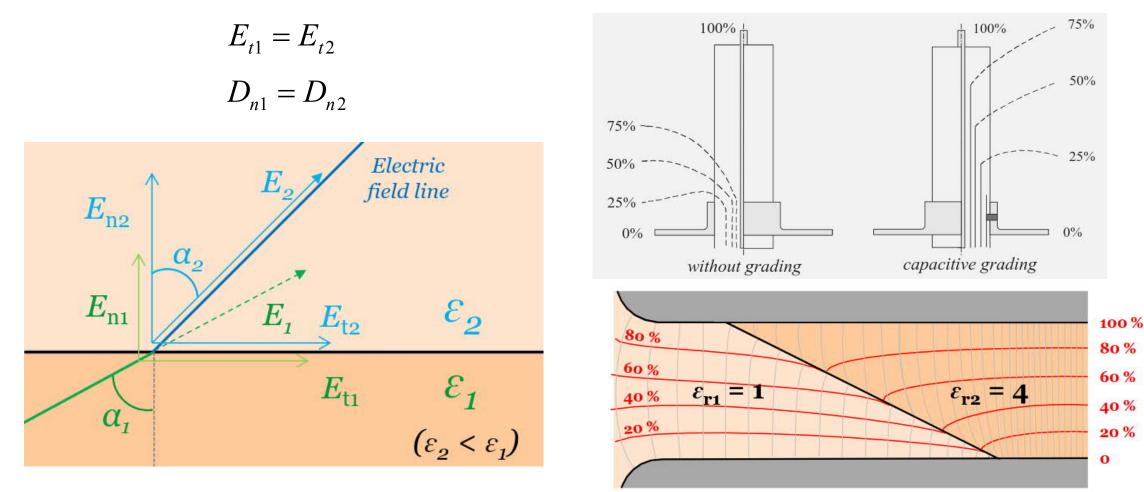
 $V=V_2 \ge V_1$

- *U* is the voltage or potential difference
- Capacitance is the ability to store electric energy

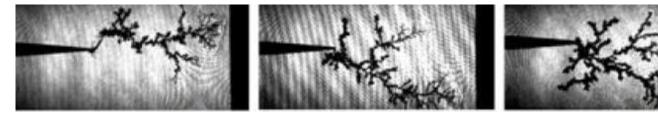

Capacitance

- Capacitance is an important parameter in electric circuits. It defines the relationship between current and voltage
- Although under DC voltage material is insulating, under alternating voltage the material becomes conducting due to charging and discharging, i.e., polarization.

Electric fields and dielectric materials

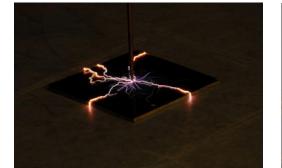

- The origin of an electric field is either a charge density or a time varying magnetic field
- Dielectric materials are insulators used in electrical devices
 - Their atoms have tightly bonded valence electrons (outermost electrons of an atom)
 - Their role is to prohibit the flow of charges, i.e., electric currents

Insulating Material	Relative Permittivity
Air	1.0006
Transformer Oil	2.2 - 2.5
Polypropylene	2.2
Paper (dry)	2-3
Oil-Impregnated Paper	2 - 4
Epoxy	3 - 6
Porcelain	5 - 6.5
Mica	5 - 7


Electric fields and dielectric materials

- Material boundraies are important and they define how the fields behave
 - The tangential component of the electric field is continous
 - The normal component of the elctric flux density is continous

Electric fields and dielectric materials

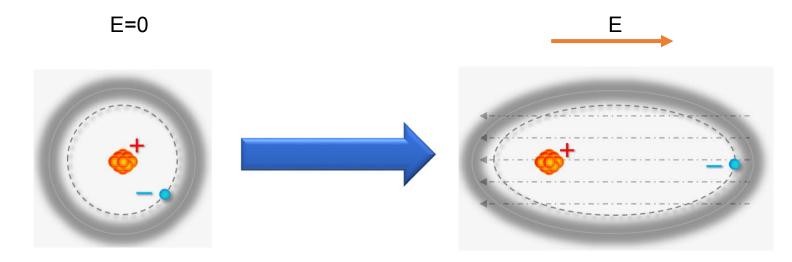

- Insulators might fail if the electric field is too high (> E_b).
- In air $E_b = 3kV/mm$
 - Field energy releases an electron from its orbit
 - Electric field accelerates the electron
 - More electrons are ejected due to collision
 - Flow of charged electrons = electric current

Cranic Cranic Cranic	Insulation	Breakdown Field Strength [kV/mm]
	Paper (dry)	6
	Paper (oil impregnated)	40 - 75
• • •	Rubber	20
Organic	Wood (dry)	
	Wood (oil impregnated)	
	Press wood (dry)	6
Inorganic	Porcelain	30
	Glass	16
	Mica	80
Synthetic	Polythene	20
	Polystyrene	100
	Phenolic plastic (bakelite)	5 - 16
Polymer	Epoxy plastic	20 - 40
	Melamine	13 - 14

Some definitions and terminology

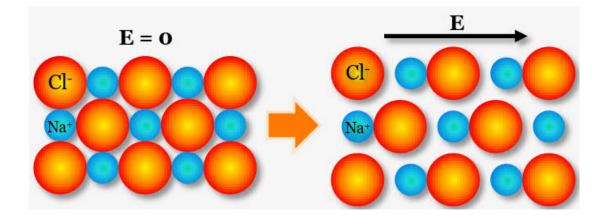
- Breakdown insulation failure leading to the formation of a highly conducting channel bridging the electrodes (momentary event)
 - Typically refers to non-restoring insulation.
- Flashover breakdown in gas or along solid insulation surface where the conducting channel "jumps" from one electrode to the other rather than traveling through the solid insulation.
 - Typically refers to self-restoring insulation.
- Partial Discharge localized incomplete breakdown (conducting channel does not reach the opposite electrode)
- Corona partial discharge in gas around the electrode surface.
- Arcing long duration flashover (continuous discharge of current).
 Typically used in connection to power systems.
- Discharge any form of electrical breakdown (including partial discharge).

Break down field comparison example

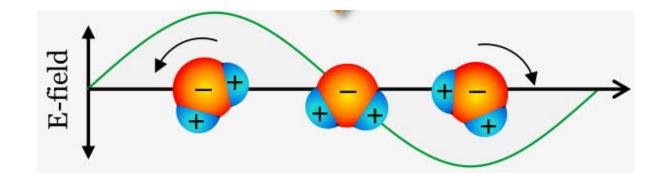

Courtesy of Joni Klüss • Insulation = Air ($\varepsilon_r = 1, E_b = 3.0 \text{ kV/mm}$) • Distance between electrodes = 100 mm ($r_i = 50 \text{ mm}, r_o = 150 \text{ mm}$) • Voltage = 100 kV **MAINDER** E_{max} - $E_{\rm max}$ $E_{\rm max}$ **PLANE SPHERE 1.8 kV/mm** 3 kV/mm $1 \, \text{kV/mm}$

Investigation work 20 min

- Look in internet what are the different types of electric polarization of materials at atomic scale(10 min)
 - Try to explain these types
- List of polarization types:


Polarization mechanisms at molecular scale

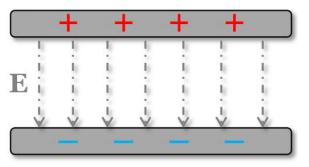
- Electron or atomic polarization
 - Happens in all atoms regardless of the material structure
 - The electric field produces small asymmetry in the electron clouds around the nucleus
 - 1 V/m electric field produce displacement of about 10 nm
 - Small contribution to atomic scale relative permittivity (1,8..4)

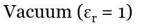

Polarization mechanisms

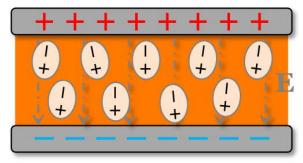
- Ionic/atomic polarization
 - Happens in crystals with ionic structure lattice, usually solid phase materials
 - The electric field produces disturbance of the equilibrium state of the lattice
 - Large effect in regular structures, atomic scale relative permittivity (10)
 - Effect can be quantified by measurements under different frequencies

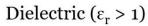
Polarization mechanisms

- Dipole polarization
 - Molecules with atoms having different affinity form electric dipoles, which tend to rotate and align with the external electric field
 - Typically in gases and liquids but also some solid; water (H2O), nitric oxide (NO), and polyvinyl chloride (PVC (C2H3CI)n)
 - Medium effect on atomic scale relative permittivity (78 for H2O, e.g.)
 - Depends strongly on the frequency and is subject to saturation


Polarization mechanisms


- Nomadic polarization
 - Discovered in 1970's
 - Occurs at high longer scal than atomic or molecular scale (10² 10⁵ Å vs. 10⁻⁸ in atomic polarization)
 - Explained by the fact that the electrons are free to move at the molecular scale but not from one molecule to the other
 - The molecular scale is large and the resulting polarization too (realtive permittivity 10⁵)

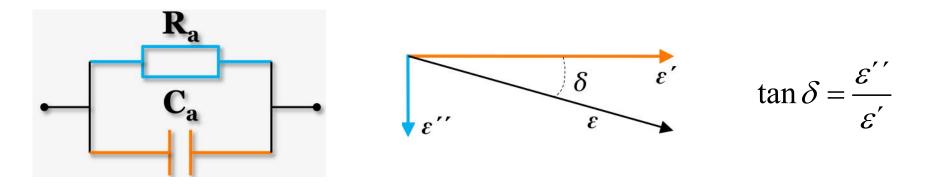

l	long dipole		>	
			$\rightarrow e^{+}$	
			n Dali a se	
		. 5 000 0 000 0		
(e				


Advantages and disadvantages of Polarization

- Polarization increases the capacitance and thus the stored energy:
 - Charges are shifted with the electric field
 - To cancel this shift, the electrodes accumulate additional charges

Stored energy

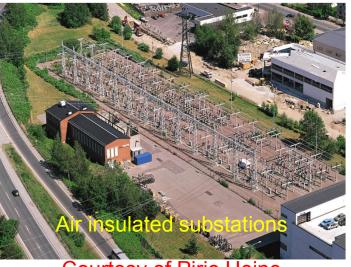
$$W_c = \frac{1}{2}CU^2$$


- Under Ac fields, the "motion" of charges is accompanied with a net current
- The dielectric can be considered as a capacitor in parallel with a resistor
 Dielectric losses

RC-representation of dielectric materials

- The material permittivity depends on the frequency
- In time harmonic analysis, the permittivity takes a complex form

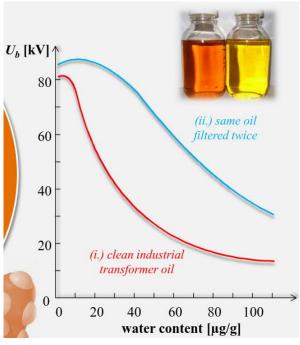
$$\varepsilon = \varepsilon' + j\varepsilon''$$
$$= \|\varepsilon\| \angle \delta$$


- The loss angle δ defines how non ideal the insulator is
- It can be defined for materials as well as for insulation systems

Gas insulators

- Air and Nitrogen are the most used natural insulators
- Self-restoring insulation properties restored after discharge is extinguished
- SF6 is the most used industrial insulator gas
 - Significantly reduces the size of electric components
 - Maximum pressure 20 Mpa

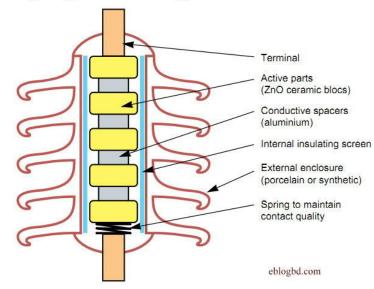
Gas	Density [g/dm³]	Ionization Voltage <i>U_i</i> [V]	Breakdown Field Strength E _b [kV/mm]
H_2	0.08	15.40	1.90
He	0.17	24.60	1.00
Ne	0.84	21.60	0.29
N_2	1.17	15.80	3.30
Air	1.21	-	3.20
02	1.33	12.80	2.90
Ar	1.66	15.80	0.65
CO_2	1.84	13.70	2.90
Kr	3.48	14.00	0.80
Xe	5.50	12.00	-
SF_6	6.15	15.90	8.90



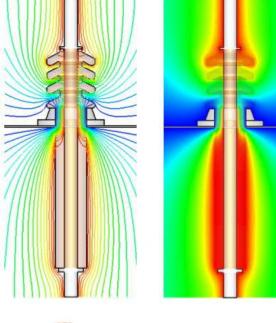
Liquid insulators

- Typical mineral oil is transformer oil
 - Easy availability and economical
 - Properties defined in IEC 60296
 - Good dielectric properties for insulation and low viscosity for cooling
 - Prone to oxidization and flammability (flash point over 130 °C)
 - Moisture and impurities affect insulating properties
 - Discharge leaves by-products, which deteriorates insulation properties

	Relative Permittivity ε_r [50 Hz, 25 °C]	Kinematic Viscosity [mm²/s, 20 °C]	Solidification Point [°C]	Flashpoint [°C]	Comments
Mineral Oil	2.2	16	-50	150-175	
Mono/dibenzyl toluene	2.7	6.5	-50	144	Very toxic for aquatic environment
Silicone Oil	2.9	50	-53	>335	Most environmentally friendly Non-flammable Poor heat transfer. Poor discharge tolerance (flammable gas by-products from arcing)
Ester	3.3	63	-50	310	Non-toxic, Environmentally friendly

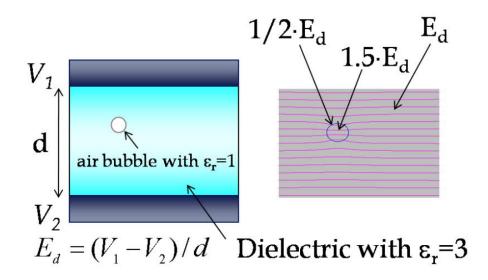

Solid insulators

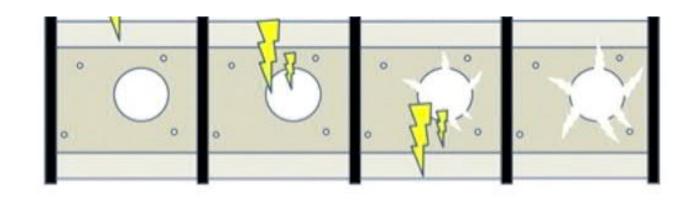
- Provide mechanical support for conducting elements
- Act as heat conductor to help cooling
- Provide insulation properties (dielectric)
 - Non-self-restoring discharge leaves permanent channel, insulation properties seriously deteriorated


Organ Jose	Insulation	Breakdown Field Strength [kV/mm]	Temperature Index TI (20 000 h) [°C]	Comments	
	Paper (dry)	6	90		
	Paper (oil impregnated)	40 - 75	105	 easy to handle and machine typically good dielectric properties 	
· · ·	Rubber	20	75	 insulating properties change during service life 	
Organic	Wood (dry)		90	• temperatures above 100 °C deteriorate insulator	
	Wood (oil impregnated)		105	• typically porous – absorb liquids, impregnation	
	Press wood (dry)	6	90 – 120	 transformers, cables, capacitors 	
	Porcelain	30	1000	• withstand high temperatures	
Inorganic	Glass	16	400 - 1000	 excellent dielectric and mechanical properties poor machinability, cannot absorb liquids 	
	Mica	80	500 - 700	• overhead lines, bushings, rotating machines	
	Polythene	20	105	• all industrially produced solid insulation	
Synthetic Polymer	Polystyrene	100	80 - 90	• excellent electric properties, easy to machine	
	Phenolic plastic (bakelite)	5 - 16	120 - 155	 thermoplastic / thermoset plastic wide range of applications depending on manufacturing process - moisture sealing, tensile 	
	Epoxy plastic	20 - 40	105 - 155		
	Melamine	13 - 14	120	strength, flexibility	

Different high voltage applications of insulation

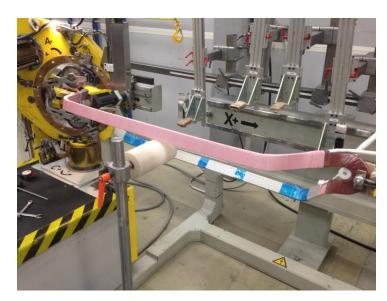
Lightning arrester technology

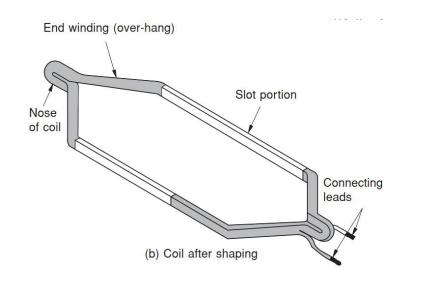




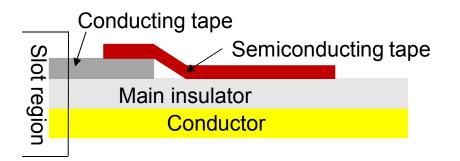
Partial discharge

- Solid insolators usually have void, liquid or gas bubbles inside them
- Their permittivity is lower than in the solid permittivity
 - Voltage stress is higher inside the bubble
 - Partial discharge occur in bubble at high field but not in solide
 - Bubble wall subjected to corrosion due to ion and electron release
 - Irregular wall favorise high field




Investigation work 20 min


- Look in internet and find out what are the insulations/insulation systems used in and electrical machine (10 min)
- List of insulations and insulation systems:


Insulation system of electrical machines

- Insulation is needed at different locations:
 - between conductor /coils and earth (phase-to-earth)
 - between conductor /coils of different phases (phase-to-phase)
 - between turns in a coil (inter-turn)
 - between the coils of the same phase (inter-coil)

Insulation system of electrical machines

- Insulation is needed at different locations:
 - between conductor /coils and earth (phase-to-earth)
 - between conductor /coils of different phases (phase-to-phase)
 - between turns in a coil (inter-turn)
 - between the coils of the same phase (inter-coil)

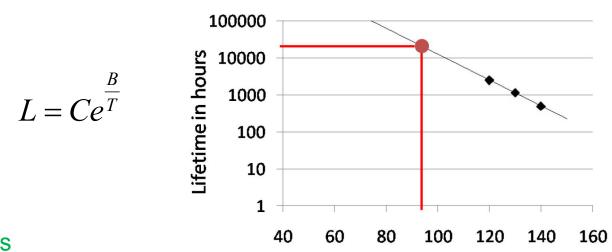
Insulation classes according to IEC

- Class A 105 °C:
 - Impregnated paper, cotton, silk, natural rubber, polyvinyl chloride, plus nylon.
- Class B 130 °C:
 - Mica, fiberglass (alkali free alumino borosilicate), bituminized asbestos, Bakelite, polyester enamel.
- Class F 155 °C:
 - As class B but with alkyd and epoxy based resins, polyurethane.
- Class H 180 °C:
 - As class B with silicone resin binder, silicone rubber, aromatic polyamide (nomex paper and fiber), polyamide film (enamel, varnish and film) and estermide enamel.
- Insulation available in different forms too:
 - Tapes, rolls, sleeves, paper, cloth, and different kinds of varnishes

Electric requirements on insulation

- Insulation should withstand electrical stress
 - high breakdown voltage
 - long time performance

- very small leakage currents (both inside and on the surface)
- Electric stress might be the result of overvoltage due to
 - On-off switching of voltage sources
 - Lightening
 - Voltage pulses, e.g., due to PWM frequency converter
- Most of insulation systems are designed for nominal voltage, but they survive short time overvoltage


Insulation design for high voltage	electrical machines U_{pick}	$u = 4U_n + 5 \mathrm{kV}$
Nominal voltage (rms)	Overvoltage pick value	Waveform
6 kV	29 kV	1.2/50 µs (front time/ decay time to half value)
10 kV	45 kV	$1.2/50 \ \mu s$

$$L = C \left(E - E_0 \right)^{-m}$$

Thermal requirements on insulation

- Insulation systems should withstand different kind of thermal stresses
 - long time performance
 - 20 000 hours tests or equivalent
 - aging of insulations and degradation of material
 - thermal index for a single material and thermal class for insulation system

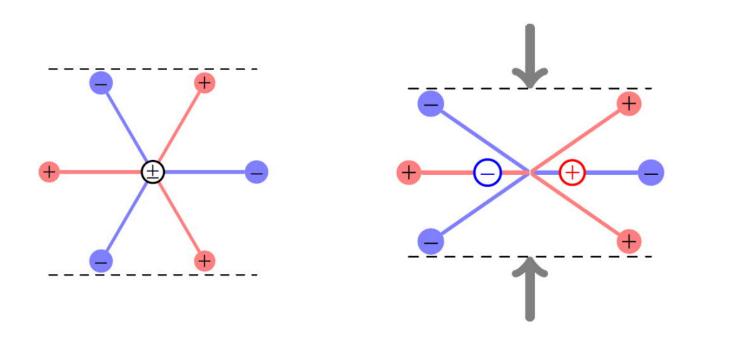
- Short term temperature rise
 - few hours withstand
 - risk of melting
 - Risk of formation of gas and bubbles
 - Strong shrink or contraction results into cracks and large deformations
 - Carbonization or inflammation, risk of fire
- Freezing
 - Material became brittle

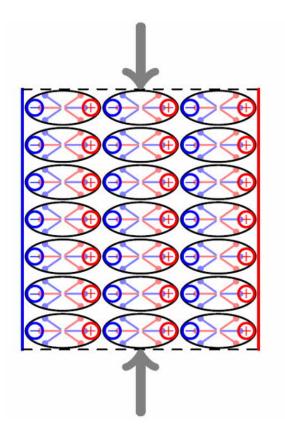
Mechanical requirements on insulation

- Insulation systems should withstand mechanical stresses
 - High mechanical strength to sustain forces
 - Mechanical forces and handling
 - Magnetic forces on conductors

– Vibrations

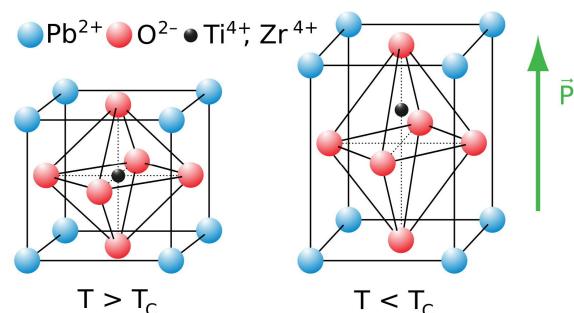
$$N = C \left(\sigma - \sigma_0 \right)^{-m}$$


- Low reduction of mechanical strength with operating temperature
- High flexibility to accommodate deformation of conducting parts
- Continuous heating and cooling results in condensation of water
- Hygroscopic materials absorb water and become vulnerable to leakage currents
 - Can be avoided by using plastic and resin-based insulation materials
 - In some cases, heating systems are built inside the machine to keep it warm when not operated

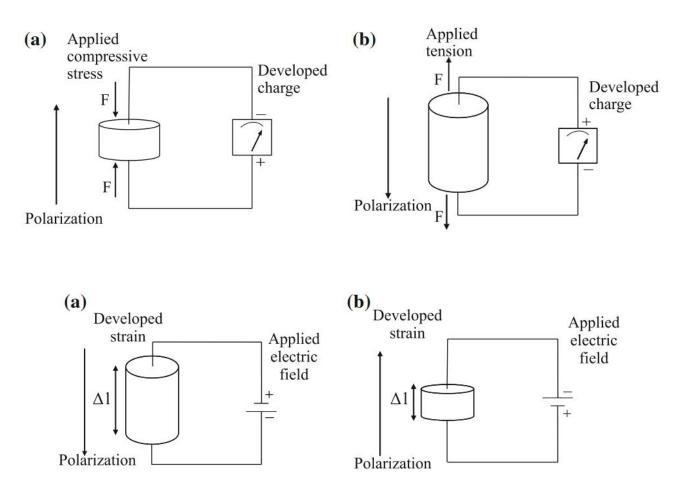

Investigation work 20 min

- Look in internet and find out what does piezoelectricity means and what kind of piezoelectric materials exists (10 min)
- List of piezoelectric materials:

Piezoelectricity


- Piezoelectricity is the ability of some materials to generate electric charges in response to a mechanical stress
 - Electromechanical reversible effect
- Direct effect: charge generation due to mechanical stress
- Inverse effect: deformation under external electric field

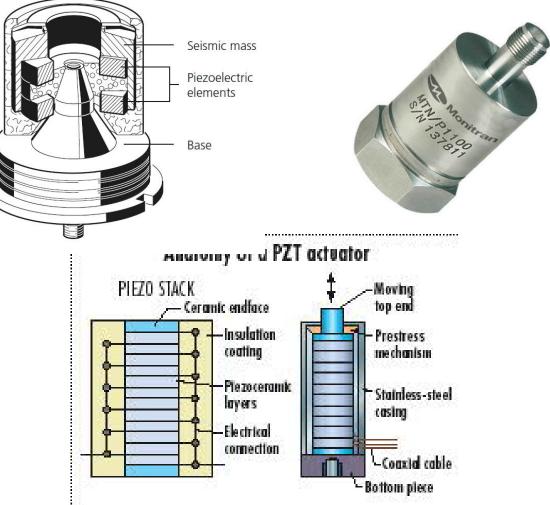
Piezoelectricity


- Natural piezoelectric materials
 - Crystals without symmetry center, 20 groups
 - Insulating materials
 - Ferroelectric and materials with permanent dipoles
 - Quarz, Topaz, Cane sugar
- Artificial piezoelectric materials
 - Several crystals
 - Gallium orthophosphate (GaPO4)
 - Langasite (La3Ga5SiO14)
 - Several ceramics
 - Barium titanate(BaTiO3)

- Lead zirconate titanate (Pb[ZrxTi1-x]O3 0<x<1); PZT is most used today
- Lithium niobate (LiNbO3)

Illustration of piezoelectric behavior

- The sign of stress and charges are respected
- The charges are measured as voltages (integrated charges)


Applications of piezoelectric materials

Sensor

- Microphones, Pick-ups
- Pressure sensor
- Force sensor
- Strain gauge

• Actuators

- Loudspeaker
- Piezoelectric motors
- Nano positioning in AFM*, STM*
- Acousto-optic modulators
- Valves
- High voltage and power source
 - Lighters ignition
 - Energy harvesting

http://images.machinedesign.com/images/archive/anatomyjpg_00000035120.jpg

*STM: scanning tunneling microscope *AFM: atomic force microscope

Short theory

- Piezoelectricity is a combination of elastic and electric behavior
- Hooks low of elasticity:

$$S = sT \qquad S = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} s = \begin{bmatrix} s_{\alpha\beta\lambda\chi} \end{bmatrix} \alpha, \beta, \lambda, \chi = 1..3$$

• Material electric behavior

Piezoelectric behavior

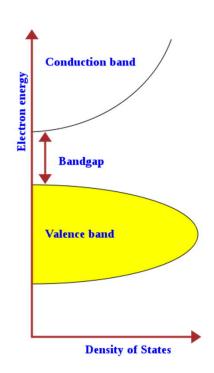
$$D = \varepsilon E$$

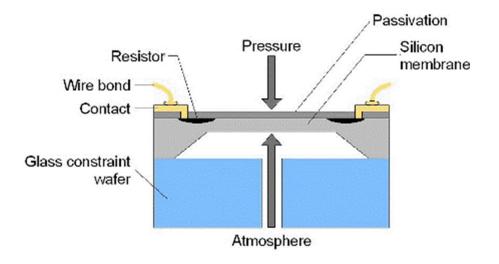
$$S = s^{\text{elas}}T + d^t E$$

$$D = \varepsilon E + dT$$

T has the same structure as *S D* the same structure as *E*

> $d_{33} = 250..280 \text{ [pm/V]}$ $d_{31} = 120..150 \text{ [pm/V]}$

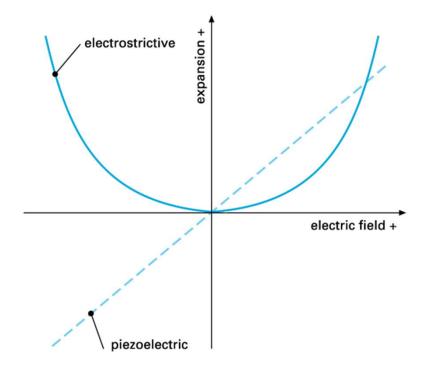

 $E = \begin{bmatrix} E_1 \\ E_2 \\ E \end{bmatrix} \qquad \mathcal{E} = \begin{bmatrix} \mathcal{E}_{ij} \end{bmatrix} i, j = 1..3$


• Piezoelectric coefficients:

$$d_{ijk} = \frac{\partial S_{ij}}{\partial E_k}$$

Piezoresistive effect

- Change in resistivity due to applied mechanical stress.
- Differs from Piezoelectric effect
 - It changes only resistivity and does not create an electric potential.
- Mainly seen in semiconductors
 - Germanium
 - Single crystal, polycrystalline, and amorphous silicon
 - silicon carbide
- Mechanism
 - Change in inter-atomic spacing affects bandgaps
 - Bandgaps might be shifted
- Usage
 - Strain gauge
 - accelerometers



Electrostriction

• Happens in almost all dielectric materials

- Very strong in some engineering materials
 - lead magnesium niobate (PMN)
 - lead magnesium niobate-lead titanate (PMN-PT)
 - lead lanthanum zirconate titanate (PLZT)
 - Up 0.1% at electric field of 2 MV/m
- Quadratic at low fields and linear at high fields

