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BEAM MODEL

Beam is a thin body in two directions. Bar, torsion bar, and bending beam are used to refer
to the loading modes of beams in straight geometry. In curved geometry, string denotes

the loading mode of vanishing bending moments.
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PLATE MODEL

Plate is a thin body in one direction. Thin-slab and bending plate refer to the loading
modes of the mode. In curved geometry, membrane denotes the mode of vanishing

bending moments.
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BEAM, PLATE AND SHELL MODELS Scr (P)

Beam and plate kinematics in flat and curved geometries.

Beam and plate equilibrium equations, constitutive equations and boundary conditions

in flat and curved geometries in tensor forms.

Component forms of the beam and plate equations in orthonormal Cartesian and

curvilinear coordinate systems (cylindrical shell equations etc.)

Example solutions in flat and curved geometries.
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BALANCE LAWS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work SW =SW™ + W™ =0 Vi eU is just one representation of

the balance laws of continuum mechanics. It 1s important due to its wide applicability and

physical meanings of the terms.

v

Swnt = j 5 mth_—j (62, :6)dV

virtual work. density

et j SwEdy = j (f-Si)dV

e j SwetdA = j ( - 5ii)dA

The details of the expressions vary case by case, but the principle itself does not!
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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 9:

O Vector and tensor quantities in mechanics. Representations in orthonormal curvilinear

basis. Tensor products and expressions.

O Material coordinate system. Vectors, basis vector derivatives, and gradient operator in

the polar, cylindrical, and spherical material coordinate systems.

O Basis vectors, basis vector derivatives, and gradient operator in the beam and shell

material coordinate systems.

O Curvature of curves and surfaces.
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1.1 QUANTITIES OF MECHANICS

The quantities in mechanics can be classified into scalars a, vectors a and multi-vectors or

a which are vectors of vectors called also as tensors. Rank 0, 1, 2, 4 tensors are common

1in mechanics

f—;\Tr 3 e NT =)

i a, a, i
Vector d=j a,r=3a, (Jr=as +a,j+ak (rankl tensor)
kk) \az) \az) \k)
(=) T_ N (=)
i a, a,, d i

Tensor =3¢ |a, a, a,|1j¢= axxff+axyfj +...+a_kk (rank 2 tensor)

ol
N
ol
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COORDINATE SYSTEM INVARIANCE

Physical tensor quantities are invariant with respect to coordinate system although
components and basis vector are not. Representation change from one coordinate system

to another requires the relationship between the basis vectors.

T -
L | B Y] . . B}
a=-q_ ¢ < (Cartesian system representation) €
J) 1% Gy U ) J &
!
- T . . T (> —
e, COSP SIng || dyy dy, || COS¢ sing e, v
a= PN r
n —sing cos¢@ || dyy Ay, || —SIng cosp | |& \ & ~
I
T

r Ay Ay || € .
. (Polar system representation)

—_ —_

6] [Y%r Yo | (%

Q[
Il
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TENSOR PRODUCTS

In manipulation of expression containing tensors, it is important to remember that tensor
(®), cross (x), inner () products are non-commutative (order matters). For simplicity of
presentation, outer (tensor) products like ¢ ®b are denoted by @b in MEC-E8003.

Otherwise, the usual rules of vector algebra apply:

—_—

a-b=ab,+a,b,+a,b,,
axb=(a,b,—ab))i +(a,b.—ab,)j+(ab,—a,bk,
b = a b ii + axbyl_']»' +a. b, ik + aybxﬁ + aybyﬁ + ayszlg +a,b ki + azbyl_cj' +a_b_kk .

Calculation with tensors is straightforward although the number of terms may make

manipulations somewhat tedious.
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As an example, manipulations needed to find the cross-product of two vectors in a

Cartesian system (orthonormal and right-handed) consists of steps

S

xb=(a,i+a,j+ak)x(bi+b,j+bk) <

Y}

—_

aybyi xi +a.byi xj+ab,ixk+ ( \

ayb.jxi+a,b,jxj+a,b,jxk+ N p

x b

N}

ab kxi +abkxj+abkxk =

axb= O+axbyl€—axsz—aybx/€+O+aybzf+asz]—azby; +0 &
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The manipulations are often (but not always) easier when the components and basis

vectors are arranged as matrices

fax\T ) KZ\T fax\ K;\T fbx\ fbx\T )
a=qa, . Sir=<J¢ <ay>andl;:<j'¥ 1by r=1by ¢ jr =
(42 ] ﬁ) \IEJ (92 ) J;, 02) bz \];,
fax\T ) KZ\T fbx\ fax\T 0 F - rbx\
szl;:<ay> (<]’>><<]’>)<by>:<ay> -k 0 i <by><:>
a.) (k) (&) (b)) jo -0 3

Gxb=(a,b, —ab,)i +(ab.—ab,)j+(ab,-ab)k. €
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EXAMPLE. The local forms of the balance laws of momentum and moment of

momentum are V-0 + f =0 and o =6, (conjugate tensor). Assuming a planar case and a

|

Cartesian coordinate system so that

T
J 0/ oy il jl o oy

derive the component forms of the balance laws.

. =

Week 9/15



In a Cartesian system, basis vectors are constants and one may transpose the gradient

operator to get (transposing cannot be used with non-constant basis vectors)

vﬁj}:{a/ax}T({i}{i}T) Cur Oy {} i {}O
a/ay ] ] ny ny ] fy ]
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SOME DEFINITIONS AND IDENTITIES

—

Conjugate tensor d,: d-b=b-d, Vb

-

Second order identity tensor /: [-d=d-1=a Va

- - -

Fourth order identity tensor /: [ :a [

Qi

\v,

Qt

a:l =

Associated vector g of an antisymmetric tensor ¢: b-a=axb,when a =-a,

Scalar triple product a - (Z; xCc)=(ax b )-C

Vector triple product a x (Z; XC)= Z;(Zz .c)—c(a -I;)

-

Symmetric-antisymmetric double product a =-a_ ja b= b, = a: b=0

. . VT SR | R,
Symmetric-antisymmetric division a =a, +a, = E(G +a,)+ E(Cl —d.)
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1.2 COORDINATE SYSTEMS

In solid mechanics, particles of a body (a closed system of particles) are identified by
coordinates of the initial geometry. Equilibrium equations etc. can be written for any

selection of the material coordinates, but a clever selection may simplify the setting.

- ——
-
-

-~
o

0

A Cartesian (x,y,z) coordinate system with known derivatives of the basis vector,

gradient operator etc. is always needed as a reference system.
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BASIS VECTORS

In a Cartesian coordinate system, the position vector of a particle (x,y,z) 1s given by

7(x,y,z)=xz7+y]+zl€, basis vectors by e, =0r/dx, e,=0r/0x, and e, =0r/0z. In
addition, the derivatives of the basis vectors vanish. In a curvilinear system, when a

particle is identified by (a, 8,7)

e, | [(6F/oa)|oF/bal) 7 7 G, |
Basis vectors: ¢z - =< (07 /9p)/ |07 / OB | =[Flij; < <]>:[F]_1<éﬁ -
é, | | (oF/ay)|oFioy|) k k é,
R R
Basis vector derivatives: i< ép = (i[F])[F]_1< égr nefa, By}
on on
\éy) \éy)
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e The starting point is the position vector of a material point in the reference system

F(a, B,y) = x(a, B,7)i +y(a, B,7)] +2(a, B,y)k expressed in terms of (a,f,7)

identifying the particles. Basis vectors of the curvilinear (o, 3,y) — system

3 =) r— ) e 3

l l

(67 1 0a) | 6F | e

Q
S |

g t=1@F10B)|0F 0B =[F]1jt < 17r=[F] {és+.

V.

ol
ol
Nl

e, | | (@F/loy)|oF /oy

< . J C \7/)

e C(alculating the derivative on both sides with respect to 1 € {«, 5,7} and retaining the

basis of the curvilinear system gives

s 3  — ( N

e, I e,
% s >:%[F]< j >:(%[F])[F]_l< G €
\57, \k) \57)

Week 9/20



GRADIENT OPERATOR

As a vector gradient in invariant with respect to the coordinate system. Change of the basis

and the quantities used for particle identification affects, however, the representation

1 (a/ax)

(x,y,z): V=<e,r 30/0y;=€,—+e,—+e,—

4 ox Yoy ‘oz
le,| |0/0z]
(. \T - S _ —
e, 0/ 0c Ox/0a 0Oy/oda 0Oz/O0a

(@, B,y): V=125t [F] ' [H] '{0/0B | where [H]=|ox/op ov/op oz/0p |.

é, 0/0y | ox/dy dyldy éz/0y |

Notice that [ F| and [H | differ only in the scaling of the rows i.e. [F|= [R]_1 [H]!
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e Using the chain rule, the relationships between coordinates and basis vectors and the

(coordinate system) invariance of the gradient operator (it is a vector)

(0/0a) [ox/da dy/da 0z/da|(d/6x 8/ x)
s0/0B y=|ox/o0B oy/op oz/op <8/8y>:[H]<8/8y> —
0/dy| |ex/oy dyloy ezloy ||olez 0/0z)

1 (ar0x) [, 8/6a)
V=ijt 10/dyr=1ést [F] ' [H] HoroB} =

k) |orez] &, 0/0y |

Ak 0100 [(2,) 5/8a)
V=iést [F] [H] 10/opr=1¢s: (H][F]) {0708} €

z, | aroy) e, 0/0y
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POLAR COORDINATES (r,9)

In a curvilinear rectangular Polar coordinate system, a particle i1s identified by its distance

r from the origin and angle ¢ from a chosen line. Basis vectors, their derivatives, and the

gradient operator are given by mapping 7(r,§) = rcos¢i +rsing;:

[ cos¢

sing | |i i .
| cr=LFR g T
| —sin¢g cos¢ || j J . ~s &
~ p

} (otherwise zeros), r
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The derivatives follow from the generic expression or in a more clear manner from

steps (just to emphasize the idea)

—_

é.| | cos¢ sing || I [ cos$ —sing | | &, -1 e

) — ~ :[F] ~ & B = ~ :[F] _ —
€y| |—sing cos¢ || j J sing  cos¢ || & “

5 é. | o | cos¢ sing | |7 —sing cos¢ |[i

v >:(_ ) — S

09 |é5) 09| -sing cosp| |j| |—cos¢ —sing||j

P E,,\ —sing cos¢ || cos¢p —sing ||e, 0 1][é é¢ «

5_¢ E¢J>_ —cos¢ —sing || sing cos¢ ||€; ) -1 0]|é€ ) —e, |

In writing the gradient expression, one needs the relationships between basis and

partial derivatives in a Cartesian and polar coordinate systems:
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o/ or Ox/or Oy/or ||0/0x cos¢ sing ||0/0Ox [ ] 0/ 0x
0/0¢| |ox/op aylog||e/oy| |—rsing rcose||6/oy o/ y

Using the vector (operator) invariance with respect to the coordinate system used
" (arax) (&) o [orar
v SN IR =
J 0/ 0y €y 0/ 0¢
- T . .
e, cos¢  sing |[cos¢ —sing | o/or
V=4 ( ) =
€y —rsing rcos@ || sing cos¢ 0/ 0¢

&)'[1 olfeler) 5 a4
V= =6, —+8y——. €
éy] |0 1/r||0/0¢ or "rog
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EXAMPLE. Derive the component forms of the balance law V-6+f =0 in the polar

coordinate system when stress and distributed force

T - - T
SIS METSHIN
=3 _pand f=4 ,

| | O¢r Ogp ||% | /o

respectively. Derivatives of the basis vectors and the gradient operator of the polar

\Nl

coordinate system are

o )% | | % &) [ alar o .10
—1 b= and V = =8, —+85——.
0p |es| |-é, és| |0/ (rog) or  Tro

0 0 0
ANsSwer 1[8(1”6,,,,) 4 G¢V 1 (VG,,¢) " G¢¢
r  Or o0p r  or o0Q
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e In polar coordinate system basis vectors depend on the angular coordinate. First, let us

expand the stress divergence and consider the terms one-by-one by keeping the order

of the basis vectors and position of the inner product:

. .0 _10 - - o -
V.o =(e,. P 7 ;8_¢) (0,.€.6. +0,4€.64 + 04646, +0p4€5€4) &
o .. . O 0 0

V'GZQF'EGW, 4 r+€r'50r¢€r€¢ +€r'50¢r€¢€r+€r'EG¢¢€¢€¢+

1 0 . . 1o 1 0 1 0

— —

é¢ ';8—¢0r},€r€r + €¢ ;8—¢0r¢éré¢ + €¢ ;a—G¢ré¢ér + €¢ ;—G¢¢é¢é¢ .

e Let us consider the terms one-by-one by keeping the order of the basis vectors,

position of the inner product, and taking into account the non-zero derivatives

aér /8¢ = é¢ and aé¢ /8¢ = —ér,
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EG,,,,E,,E,, = a’” “(e.-¢e.)e,. = ’f Le., (basis vectors are orthonormal)
D55, -0 515 275

or T g T YT e W

o . 0oy .

5 Coréer afr (e.-€p)e. =0,

0 00y .

o T 9% = aqu (€,-e4)es =0,

le¢ .. 160, ,. ... 1 _ . o0Oe.. 1 _ . _ oe. 1
_a¢ rerér = a;r (e¢ er)er+ Grr(e¢'a_;)er+ Grr(e¢ er) a; _;Grr ro
10 __ 1004 1 0, 1 s 1
;a—¢ar¢ere¢— o6 (e¢ €.)ey +— G,,¢(e¢ ¢)e¢+ Org (€4 - er)—¢—;0r¢e¢,
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_>

0 5 1 0044 1 de, 1
b o9 THN = 5 "%y 248+ L AC —¢)e¢+ AC e¢) ¢

oo
100y ¢ _l%bew

r8¢

e Finally, by combining the terms

. 00, . 00, 1 1004 . 1 10045 _ 1
V.c=—">F¢, + + = G €y +— e, +— G €y +— e ——G e
’ or o or “ rG S SR o0¢ ? o
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oo oo oo
V-&:l(raa’”’"+a,,,,+ ¢r—0¢¢)ér+l(r r¢+c7,,¢ +0y + ¢¢)é¢ =
r  Or o0p r o0p
oo o(ro oo
V'&:l[a(rarr)-l- ¢V—G¢¢]ér+l[ ( r¢)+ ¢¢+G¢r]é¢
r  or ol r  or o0Q

e With the distributed force f = fré. + fyes, the local form of the momentum balance

V-o+ f = 0 1n the polar coordinate system

1 0(rc,,) 004 . 1 .0(ro,y) 004
= + é¢ P =l +
r  Or o0p r o or ol

+G¢r+l’f‘¢]é¢=0. &
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EXAMPLE. The small strain measure is obtained as the symmetric part of displacement
gradient (a tensor then). Use the definition to find the components of the strain tensor (a)

in Cartesian coordinate system and (b) in the polar system.

ou Ou 1 Ou
Answer (a) 6,..=—* & =—2 ande,, =€, =—(—=+—X
( ) XX Ox Yy ay Xy X 2" Ox ay)
8u 1 5% 1,10u, | Uy 8u¢
b Esp =—(——+u,),and ¢ =—(— +
(b) & =5 g = (Gt ) b= =0 T T )
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e In Cartesian system, V=i0/0x+ jo /0y and ii = uxf + uy]', therefore

- 0

-~ 0
Vu =(i + 7
(8x]

- - — Ou _»8u — OU _,_,al/l
ud+u,j)=il —2+ij—2L+ji—2+jj—) =
Yuyd +uy,f) o Ut 5 Jj 8y)

ou ou, _..ou, -Ou

Vi), =il —%+ ji —2 +]§ x4 5 Y
(Vit)g =it — =+ ji — PSS
giving
. _.Ou, _.1 Ou . ou
§ =L wviie i) =7 My 5y 5 L QO L Ous Ty e
2 Ox oy 2 Ox Oy 2 0y Ox

e In polar coordinates u =u.e. +uyéy, and V=e.0/0r+ey0/(rop), Oe./0¢=ey and
Oey | O =—e

.. Otherwise calculation follows the steps used with the Cartesian

coordinate system (one of the exercise problems).
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CYLINDRICAL COORDINATES (r,4,z)

A particle is identified by its distance » from the z-axis origin, angle ¢ from the x-axis and

distance z from the xy-plane. Mapping 7 = rcos¢i +rsing; + zk gives

- 3 — =

é.| [ cosg sing 0]|i

.

ésr=|-sing cosp 04/,

kéz) L O O 1— kg

f_,r\ [ O 1 O_ f_,r\
i< g¢ .=l=-1 0 O <é¢ > otherwise zeros,
o¢p

kéZ) - O O O_ \EZ)
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SPHERICAL COORDINATES (0,4, 7)

A particle is identified by its distance 7, angle ¢ from the x-axis, and angle 6 from the z-

axis. Mapping 7(0,¢,r) = r(sinf cos¢i +sinfsing; +cos Ok ), gives

C ) — . — (=)

ep cosfcosg cosOsing —sinf ||i

/\.

O
<

-

Il

—sing cos¢ 0 |Kj¢

e, sinfcos¢ sinfsing cosf ||k
\ J L -

( A

€ cos6 é¢ (59 ] (_ér ]
0 |- o - 0 |-
——1€p (=4 sinbe,. —cosbeg r, —1€5 =7 0 ¢,
Y, 00
\é»r, \ sm9§¢ J \é},) \ é@ )
1o - 1 o0 _. 0
V=28)—— <

€¢ - t+e, .
r 00 rsin@ 0¢ or
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According to the generic recipe (here ¢ ~ cos and s ~ sin )

or

0
L= (—
(8r

[FDIFT

GG

>:(%[F])[F]_l<

é,e\ rO\

E¢ >:<O>,

ér) \OJ

59\ [ O c@ O i é»@\ C0§¢
epr=|—cO0 0 —s0|<esr=1-sbe.—cle
le.] | 0 s6 0 |le sbe,
égl [0 0 -1](é] [-€,

§¢>=O 0 0 <é¢>:< 0 ;. €&

\E,,) _1 0 O_ \é,,) \59 )
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1.3 CURVES AND SURFACES

The domain €2 of an engineering (mathematical) model has usually lower dimension than
the body V e R3. The representation of the domain embedded in RS may be curve (mid-

curve of beam) or surface (mid-surface of shell).
Curve: 7y(a)=x(a)i +y(a)]+ zk aeQcR Y;Jﬂfﬂrm&tﬂr
Surface: #(c, ) =x(ct, )i + y(et, B)j +z(a, Bk (a,B)eQCR> Z parameters

Shape of a mid-curve is defined by a one-parameter mapping and a mid-surface by a two-
parameter mapping. In MEC-E8003, the coordinate curves of surfaces (defined by

constant values of a or ) are assumed to be orthogonal (just to simplify the setting).
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SOME MAPPINGS

Coil 1 (@)= chos¢+]’Rsin¢+l€h2i,
T

Cylinder 7y(z,4) = R(i cos¢+ jsing) + kz
Cone 7(z,5) = R(z)(i cosd+ jsing)+ kz
Sphere 7(¢,0) = R(isin@cos¢ + jsinOsin ¢ + kcos )

Ellipsoid 7(4,0) = R(isin@cos ¢ + jsin@sing + gkcos 0)

Hyperboloid 7 (¢,0)= R(isinh@cos¢+ jsinhfsin$ — gkcosh0)

Torus 7(4,0) =i cosg(R+rcos@)+ jsing(R + rcosf) + krsin6
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CURVED BEAMS AND PLATES

Curve or surface mapping identifies the particles on the mid-curve or mid-surface.
Identification of all particles (P in the figure) of a thin body requires also the relative

position vector p: .
relative

N
r N\

Beam mapping: 7(a,n,b)=r(a)+ne,(a)+bey(a)

Shell mapping: 7(a,f,n)=r(a,p)+ne, (a,p)

Y

relative

The mapping for the mid-curve or surface is used to define the basis vectors. In MEC-
E8003 basis vectors are orthonormal to keep the setting as simple as possible (curved

geometry induces some complications anyway)!
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BEAM COORDINATES (s,n1,b)

Particle is identified by distance s along the mid-curve and distances (n,b) from the curve.
Mapping 7(s,n,b) =1y(s) + ne, (s) +bey(s) gives

N\

e, o7 | Os

/\
o
—
Il
/\
'

(0é, / 0s)/ |0é / Os|

6b ) L €s X €y )
— — T (=
e 0 x O0]]e
o |._ -
—qe,r=|-k 0 71l|ie,,
Os
\eb) i 0 —T O_ keb)

6 & o 6 o _ &
V = S +7T b—— —_— -I-_> ——|-_> .
e PG P L T
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Beam (s,n,b) coordinate system is curvilinear and orthonormal. Therefore the matrix

of the basis vector derivatives 1s anti-symmetric and expressible in the form

—_ - N

0 kK, —K,||é€

3\ —

Es Es

_<§n>:(%[F])[F]_1<En>: -k, 0 K, |36,

\é»b, \é»b, K —Ky 0 \é»b)
containing geometrical quantities x;, =7, k, =0, and k;, =x =1/ R. Antisymmetry
follows from [ F ]T =|F ]_1 and

9 | 0 | 0l [0 1]
—(FI|F]| )=0 = (—|FDIF| =-|F|=[F| =-|(=[FDIF| | .
C(FET™ ST =2 (] =~ DI

The generic expression of the gradient operator is given by (some manipulations are

needed to end up with the expression)
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! (9/6s)

_T 1 e 9, 0 0 . 0 _ 0
L F H| {0/ony=—3=5 +1(b——-n—)|+¢é, —+e, — .
7] 1A ] = e TG T ey, e g,

2, | 0/ 0b)|

e The geometrical quantitities k¥ and 7 follow from the expressions of the basis vector

derivatives

_ 0. -
Kzen-aesz—e -—e, and T=¢,-—e, =—¢€, —¢,

or from the concept and expressions of curvature of curves and surfaces embedded in

R’ discussed later.
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CURVATURE AND TORSION

Curvature x is the amount by which a curve deviates from being straight. The radius of
curvature R =1/ at a point is given by the best fitting circle. Torsion 7 describes the rate

by which ¢, and €, rotate around the mid-curve.

Circle: « =% and 7 =0

Twisted bar: =0 and 7= 277[

R and 7 = h

Coil: k=
h? + R? h? + R?
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e A circular bar of radius R has zero twist. The basis vectors of (x,y,z) and (s,n,b)
coordinate systems differ by rotation with respect to the normal direction to the plane

of circle (z here). With distance s along the mid-curve and ¢ =s/ R

( — )

é,| |[-sing cos¢g 0]|i
- : - . 0. 1
i€,r=|—cos¢p —sing O|<j; = Kk=¢,-—é,=—. €
B oS R
& | 0 0 1|k

- AN J

e Twisted bar has zero curvature. The basis vectors of (x, y,z) and (s,n,b) differ by

rotation along the x —axis. With notation w =2¢/ h

€, 1 0 0 I

. . - - 8 - 271'

€, +r=|0 cosws sinwsl|{jr = T=¢€,-—e,=—. €
" os " h

¢,)] |0 —sinws cosws ||k
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SHELL COORDINATES (a, 3,n)

A particle is identified by mid-surface position («,f) (generalized coordinates) and

distance n in the normal direction. Mapping 7(«, B,n) =ry(a, B) +ne, (a, B) gives

&,) [(@r/oa)!|oR /oal] (7
Ve t=1 (i /0P)/|ory 1 8Bt =[F1{ 7t
€ \ Co Xéﬂ ) ];

fﬁa\ féa\ fﬁa\T 5/ 00
i<é >:(i[F])[F]_1<§ - nefa,B,nt and V=<é4¢ [F]_T[H]_1< 0/0B ¢
on 1P ([~ n p i

\én) \én) \én) \a/al’l)

In-surface basis vectors are assumed to be orthogonal i.e. ¢, -eg =0.
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CYLINDRICAL SHELL (z,¢,n)

A particle 1s i1dentified by mid-surface position (z,¢) and distance n in the normal

direction (inwards). Mid-surface mapping 7#)(z,¢) = iRcos¢+ jRsing + kz gives

- 3 — — =

e, 0 0 1||i
1€4 ¢ =| —sing cosg 0|4,
¢,] |—cosp —sing O] kk}
B 0

o0 |. . :
——1€4 (=9 €, [ zeros otherwise,
0¢

ken) \—€¢)
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SPHERICAL SHELL (¢,0,n)

A particle is identified by mid-surface position (¢,0) and distance n in the normal

direction (inwards). Mid-surface mapping 7,(¢,0) = R(isin® cos ¢ + jsin@sin ¢ + kcos 0):

3 — — =

e —sing COSQ 0 i
{8y - =| cosOcosp cosOsing —sind |{ ¢, } k .
el’l
¢,] |-—sinfcosp —sinfsing —cos6 ||k
(éqj\ sinfe, —cosOey réqf (0
o0 |- . 0 |- -
—3€p =1 cos e by ——9€9 =19 €, ¢,
o0Q 00
€, \ —sinf é¢ ) ¢, |—¢]
R 1 _ 0 R 1. 0 _. O
\% e, —.

= ey —+ —eg—+
R-nRsind Y09 R-nR 00 "on
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1.4 CURVATURE

Curvature is the amount by which a geometric object deviates from being flat, or straight

in the case of a curve. Curvature of a surface (k¥ ~1/ R) at a point depends on the direction

of a curve through the point.

Curvature: K, =Vé, Definion!

Principal curvatures: (xy,7) and (k,,7,) such that K -n=kn

Gaussian curvature: K =det[k]=x1kx, Curvature measure!

1 Another curvature

—

1
Mean curvature: H =—V-e, =
2 measure!

Curvature concept has many somewhat different aspects and the related definitions!
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https://en.wikipedia.org/wiki/Curvature

EXAMPLE. A planar curve is defined by mapping

@) pla)= x()i +y(a)j (generic parametric form of a planar curve)
(b) #(x)=xi +y(x)]

Derive the expression of curvature starting with the definition K, = Ve,

_ L xr "o rxrr
Answer: (a) K =e¢, €, 2y J; 3/2
[} 4
(x'“+ ")

b) F=ée6—2
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e To use the definition, one needs the derivatives of the basis vectors and also the

gradient operator of the curvilinear (a,n,b) system. With the Lagrange’s notation of

derivative with respect to o, g = \/x'2 +y'2 ,Sy=x'/g,and s, =y"/g

N\ — —_ =) (— )

éoc (’7(;/|’7(; Sx Sy 07| :

1€ =16/ 1€y | = =Sy Sy 0 <j>:[F]4j> and [F]_IZ[F]T =
&) &%, ) [0 0 1|k k

@) [s s 0][7] B

e = —S; S 0<j>=[F]l<j> —

g [0 0 o]lk k
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https://en.wikipedia.org/wiki/Notation_for_differentiation

.

C=[FTIFT 98, p=(shs, —shs)| |

(6 / 0at”
o7 | on
(o7 /0b

Y
I

.

(0(7y +né, +béy) / dar
o0(1y +ne, +bey)/ on

| O(ry +ne, +bey)/ b |

giving the gradient operator expression

€a

T

> ([H][F]T)_1<

=e,

0 -1 0]fe,)
0 O0lqe, s

0 0 O0]le)
_x'—nsg, y'+ns. 0][7]
= =Sy, Sy 0/
0 0 ||k
1 o . O
, +e,—
g+n(S x ~SxSy) Ot on
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e The definition of curvature gives now (the mid-curve corresponds to n =0)

- 18@ 85 85 1 SxS — S Sx

K.=Vyé, =€, ——+-+é,—-+6é,—-=¢é,—¢€, =¢€,¢ Y

C 0%n n o n ata s
g o on ob g g

SS _S S x” I_ ”xf
K=e.ce Y VX _g ¢ =) <«
a~o a~o 2 12\3/2

g (x“+y")

e For a circular curve defined by 7,(¢) = Rcos¢i + Rsingj and o = ¢, the outcome is
K =eyés/ R. Selection a =x gives x'=1, x"=0 and
o y”
e,e :
XX (1_|_yr2)3/2

K

€
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EXAMPLE. Consider torus surface (donut) having distance R from the center of the tube
to the center of the torus and radius » of the tube. Derive the basis vectors, basis vector
derivatives, gradient expression, and curvature in (¢,60,n) coordinate system. The mapping

defining the geometry, ¢ €[0,2x] and 6 €[0,27], is

7(0,0) = (R +rcosO)(i cosd+ j sing)+krsin@.

Answer:

1 o . 1 o0 . o . cosf I |

= é¢ +€9 —+€n
R+ (n+r)cosf " 0¢ n+r oo on

b

K=e,e + epe
¢ ¢R+(n+r)cos@ 9% iy
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Let us start with the relationship between the basis vectors. Definitions give

&5 [(@ry/09) |ory /04| [ —sing cos ¢ 0 (7 (7]
169 ¢ =101y /00)/|0ry /00 |} =| —cos¢sin@ —sinfsing cosO 4}>=[F]< Jt
€, €% € | cosfcos¢g cosOsing sind | l? k

Since the basis is orthonormal i.e. [F ]_1 =|F ]T, the partial derivatives of the basis

vectors are given by / nntisymmetric/
(é,) éy] | 0 sin@ —cosd |[é;]
o |. o -1 - . _
—2eyr=(—|FDIF| <{eypr=|—-smn@ O 0 € ¢
MK (a¢[ DIF] 1é 0
\é’n, \én) i cos@ O 0 | \én)
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¢ &) [0 0 07fe ¢
%<ée>:(%[F])[F]_l<é@>: 0O 0 -1 <é@>,anda—an<é@>:0.
€n &) [0 1 0]le,) €n

The gradient expression in concerned with a generic material point so that the mapping
between the curvilinear (¢,0,n) coordinate system and the reference (x,y,z)
coordinate system is written as ¥ =y +ne, (the mapping needs to define positions of

all particles of the body not just those on the mid-surface). Relationship gives

[ [R+(n+r)cosflsing (R +(n+r)cos@)cose 0
[H]=| —(n+r)cos¢gsing —(n+r)sinfsing  (n+r)cosf| <
i cosfcosg cosfsing sinf
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B sin ¢ _cos¢sinb c0s0c0s ¢
R+ (n+r)cos6 n+r
[H]_l _ COSQ _sinf sing c0s0 sin g
R+ (n+r)cos6 n+r
0 cos0 sin 6
i n+r ]

e The generic formula for the gradient operator gives (| F |=[F ]_T)

fé,¢\T fa/a¢\
V=46 [F]_T[H]_1<8/69>: : € g +ép : i+éni.
R+(n+r)cos@ " 0¢ n+r o6 on

€, |0/ 0n |

e Finally, curvature of the torus geometry becomes
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Ve 1 o. - 1 o0. _. 0

e, = e e, +e —e, +te,—e, =
"T Ri(n+r)cosd® P04 " Cnira0 " "on "

~ cos@ I |
€¢ +€9€9 .
R+ (n+r)cosf n+r

K=(Ve,). =¢
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